Plants for Wild Bees—Field Records in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Wild Bees and Their Food Plants in Bulgaria—Floristic Analysis
Plant Family | Plant Species | Bee Taxa | Bee Family |
---|---|---|---|
Apiaceae | Eryngium campestre L. | Colletes carinatus Radoszkowski, 1891 | Colletidae |
Colletes hylaeformis Eversmann, 1852 | Colletidae | ||
Hylaeus meridionalis Förster, 1871 | Colletidae | ||
Icteranthidium grohmanni (Spinola, 1838) | Megachilidae | ||
Megachile argentata (Fabricius, 1793) | Megachilidae | ||
Scandix pecten-veneris L. | Andrena danuvia E. Stoeckhert, 1950 | Andrenidae | |
Asparagaceae | Ornithogalum montanum Cirillo | Osmia bischoffi Atanassov, 1938 | Megachilidae |
Asteraceae | Achillea clypeolata Sm. | Hylaeus kahri Förster, 1871 | Colletidae |
Calendula officinalis L. | Xylocopa cf. violacea | Apidae | |
Centaurea diffusa Lam. | Megachile argentata (Fabricius, 1793) | Megachilidae | |
Centaurea salonitana Vis. | Andrena albopunctata (Rossi, 1792) | Andrenidae | |
Bombus armeniacus Radoszkowski, 1877 | Apidae | ||
Lithurgus chrysurus Fonscolombe, 1834 | Megachilidae | ||
Pseudoanthidium melanurum (Klug, 1832) | Megachilidae | ||
Cirsium ligulare Boiss. | Bombus cf. lapidarius | Apidae | |
Bombus cf. terrestis | Apidae | ||
Bombus cf. hortorum | Apidae | ||
Crepis biennis L. | Genus species | Megachilidae | |
Leontodon biscutellifolius DC. | Andrena sp. div. | Andrenidae | |
Onopordum tauricum Willd. | Xylocopa cf. violacea | Apidae | |
Bombus cf. lapidarius | Apidae | ||
Megachile cf. melanopyga | Megachilidae | ||
Xeranthemum annuum L. | Osmia spinigera Latreille, 1811 | Megachilidae | |
Brassicaceae | Mutarda nigra (L.) Bernh. | Andrena erberi Morawitz, 1871 | Andrenidae |
Osmia bischoffi Atanassov, 1938 | Megachilidae | ||
Sisymbrium orientale L. | Andrena pilipes Fabricius 1781 | Andrenidae | |
Boraginaceae | Echium vulgare L. | Bombus pratorum (Linnaeus, 1761) | Apidae |
Campanulaceae | Campanula bononiensis L. | Hylaeus sp. | Colletidae |
Campanula rapunculoides L. | Hylaeus sp. | Colletidae | |
Campanula trachelium L. | Hylaeus sp. | Colletidae | |
Caprifoliaceae | Cephalaria transsilvanica (L.) Roem. & Schult. | Megachile melanopyga (Costa, 1863) | Megachilidae |
Icteranthidium grohmanni (Spinola, 1838) | Megachilidae | ||
Knautia arvensis (L.) Coult. | Icteranthidium grohmanni (Spinola, 1838) | Megachilidae | |
Lomelosia argentea (L.) Greuter & Burdet | Trachusa integra (Eversmann, 1852) | Megachilidae | |
Caryophyllaceae | Gypsophila glomerata Pall. ex Adams | Hylaeus meridionalis Förster, 1871 | Colletidae |
Gypsophila trichotoma Wend. | Andrena sp. div. | Andrenidae | |
Eucera sp. div. | Apidae | ||
Ceratina cyanea (Kirby, 1802) | Apidae | ||
Hylaeus communis Nylander, 1852 | Colletidae | ||
Hylaeus gibbus Saunders, 1850 | Colletidae | ||
Hylaeus moricei (Friese, 1898) | Colletidae | ||
Hylaeus sp. | Colletidae | ||
Lasioglossum sp. div. | Halictidae | ||
Lasioglossum malachurum (Kirby, 1802) | Halictidae | ||
Lasioglossum duckei (Alfken, 1909) | Halictidae | ||
Lasioglossum nitidulum (Fabricius, 1804) | Halictidae | ||
Lasioglossum politum (Schenck, 1853) | Halictidae | ||
Cistaceae | Helianthemum nummularium (L.) Miller | Bombus pratorum (Linnaeus, 1761) | Apidae |
Convolvulaceae | Convolvulus cantabrica L. | Hoplitis perezi (Ferton, 1895) | Megachilidae |
Fabaceae | Astragalus alopecurus Pall. | Bombus pascuorum (Scopoli, 1763) | Apidae |
Bombus cf. hortorum | Apidae | ||
Astragalus dasyanthus Pall. | Bombus argillaceus (Scopoli, 1763) | Apidae | |
Bombus cf. lapidarius | Apidae | ||
Bombus cf. terrestris | Apidae | ||
Astragalus glycyphyllos L. | Eucera sp. | Apidae | |
Bombus cf. lapidarius | Apidae | ||
Bombus pascuorum (Scopoli, 1763) | Apidae | ||
Coronilla varia L. | Andrena sp. div. | Andrenidae | |
Bombus cf. lapidarius | Apidae | ||
Bombus pratorum (Linnaeus, 1761) | Apidae | ||
Halictus sp. div. | Halictidae | ||
Genus species | Megachilidae | ||
Megachile argentata (Fabricius, 1793) | Megachilidae | ||
Lathyrus pratensis L. | Bombus cf. hortorum | Apidae | |
Lotus corniculatus L. | Bombus cf. lapidarius | Apidae | |
Bombus cf. terrestris | Apidae | ||
Medicago falcata L. | Andrena sp. div. | Andrenidae | |
Onobrychis alba (Waldst. et Kit.) Desv. | Andrena sp. div. | Andrenidae | |
Genus species | Megachilidae | ||
Onobrychis arenaria W.D.J.Koch | Osmia bischoffi Atanassov, 1939 | Megachilidae | |
Osmia rufohirta Latreille, 1811 | Megachilidae | ||
Trifolium alpestre Crantz | Bombus argillaceus (Scopoli, 1763) | Apidae | |
Trifolium medium L. | Bombus pascuorum (Scopoli, 1763) | Apidae | |
Trifolium pratense L. | Andrena sp. div. | Andrenidae | |
Bombus cf. veteranus | Apidae | ||
Vicia dumetorum L. | Andrena sp. div. | Andrenidae | |
Bombus cf. veteranus | Apidae | ||
Vicia grandiflora Scop. | Eucera sp. | Apidae | |
Vicia tenuifolia Roth. | Bombus haematurus Kriechbaumer, 1870 | Apidae | |
Gentianaceae | Gentiana cruciata L. | Bombus argillaceus (Scopoli, 1763) | Apidae |
Bombus hortorum (Linnaeus 1761) | Apidae | ||
Bombus pascuorum (Scopoli, 1763) | Apidae | ||
Bombus pomorum (Panzer, 1805) | Apidae | ||
Hylaeus dilatatus (Kirby, 1802) | Colletidae | ||
Halictus sp. div. | Halictidae | ||
Lamiaceae | Ajuga chia Schreb. | Osmia andrenoides Spinola, 1808 | Megachilidae |
Osmia bischoffi Atanassov, 1939 | Megachilidae | ||
Osmia rufohirta Latreille, 1811 | Megachilidae | ||
Ballota nigra L. | Andrena sp. div. | Andrenidae | |
Bombus cf. hortorum | Apidae | ||
Bombus cf. lapidarius | Apidae | ||
Bombus cf. veteranus | Apidae | ||
Bombus cf. veteranus | Apidae | ||
Bombus pascuorum (Scopoli, 1763) | Apidae | ||
Ceratina chalibea Chevrier, 1872 | Apidae | ||
Xylocopa cf. violacea | Apidae | ||
Hylaeus sp. div. | Colletidae | ||
Halictus sp. div. | Halictidae | ||
Lasioglossum sp. div. | Halictidae | ||
Anthidium cf. manicatum | Megachilidae | ||
Clinopodium vulgare L. | Bombus pratorum (Linnaeus, 1761) | Apidae | |
Lamium garganicum L. | Bombus cf. hortorum | Apidae | |
Lamium maculatum (L.) L. | Bombus sp. | Apidae | |
Lavandula angustifolia L. | Andrena sp. div. | Andrenidae | |
Eucera sp. | Apidae | ||
Amegilla sp. | Apidae | ||
Bombus argillaceus (Scopoli, 1763) | Apidae | ||
Bombus cf. terrestris | Apidae | ||
Bombus haematurus (Kriechbaumer 1870) | Apidae | ||
Bombus pascuorum (Scopoli, 1763) | Apidae | ||
Thyreus sp. | Apidae | ||
Hylaeus sp. div. | Colletidae | ||
Halictus sp. div. | Halictidae | ||
Lasioglossum sp. div. | Halictidae | ||
Anthidium cf. manicatum | Megachilidae | ||
Megachile cf. centucularis | Megachilidae | ||
Megachile cf. ericetorum | Megachilidae | ||
Megachile melanopyga (Costa, 1863) | Megachilidae | ||
Osmia sp. | Megachilidae | ||
Stelis cf. nasuta | Megachilidae | ||
Mentha spicata L. | Halictus sp. div. | Halictidae | |
Lasioglossum sp. div. | Halictidae | ||
Salvia pratensis L. | Andrena sp. div. | Andrenidae | |
Genus species | Megachilidae | ||
Salvia virgata Jacq. | Andrena sp. div. | Andrenidae | |
Genus species | Megachilidae | ||
Satureja coerulea Janka | Anthidium manicatum (Linnaeus, 1758) | Megachilidae | |
Sideritis scardica Griseb. | Bombus cf. terrestris | Apidae | |
Bombus pascuorum (Scopoli, 1763) | Apidae | ||
Xylocopa cf. violacea | Apidae | ||
Stachys germanica L. | Bombus cf. lapidarius | Apidae | |
Bombus pascuorum (Scopoli, 1763) | Apidae | ||
Teucrium chamaedrys L. | Bombus argillaceus (Scopoli, 1763) | Apidae | |
Bombus cf. terrestris | Apidae | ||
Rhodanthidium septemdentatum (Latreille, 1809) | Megachilidae | ||
Teucrium capitatum L. | Trachusa integra (Eversmann, 1852) | Megachilidae | |
Onagrceae | Epilobium angustifolium L. | Bombus cf. lapidarius | Apidae |
Orobanchaceae | Rhinanthus wagneri Degen | Bombus cf. lapidarius | Apidae |
Bombus pratorum (Linnaeus, 1761) | Apidae | ||
Paeoniaceae | Paeonia peregrina Mill. | Bombus cf. lapidarius | Apidae |
Plantaginaceae | Digitalis lanata Ehrh. | Bombus argillaceus (Scopoli, 1763) | Apidae |
Anthidium manicatum (Linnaeus, 1758) | Megachilidae | ||
Digitalis viridiflora Lindl. | Bombus cf. hortorum | Apidae | |
Bombus cf. terrestris | Apidae | ||
Ranunculacea | Pulsatilla vulgaris Mill. | Bombus cf. terrestris | Apidae |
Rhamnaceae | Paliurus spina-christi Mill. | Andrena erberi Morawitz, 1872 | Andrenidae |
Hylaeus duckei (Alfken, 1904) | Colletidae | ||
Rosaceae | Rosa pendulina L | Bombus cf. lapidarius | Apidae |
Rubiaceae | Galium verum L. | Hylaeus sp. div. | Halictidae |
Lasioglossum sp. div. | Halictidae |
3.2. Flowering Phenology and Floral Food Rewards
3.3. Diversity of Wild Bees
4. Discussion
4.1. Specialization and Food Preferences of the Wild Bees
Bee Taxa | Food Preferences | References |
---|---|---|
Amegilla sp. | Deficient data | |
Andrena albopunctata (Rossi, 1792) | Deficient data | |
Andrena erberi Morawitz, 1871 | Deficient data | |
Andrena danuvia E. Stoeckhert, 1950 | Polylectic | [41] |
Andrena pilipes Fabricius 1781 | Polylectic | [64] |
Andrena sp. div. | Polylectic/oligolectic | |
Anthidium cf. manicatum | Polylectic | [65] |
Anthidium manicatum (Linnaeus, 1758) | Polylectic | [65] |
Bombus argillaceus (Scopoli, 1763) | Polylectic | [66] |
Bombus armeniacus Radoszkowski, 1877 | Polylectic | [2,63] |
Bombus cf. hortorum | Polylectic | [2,63] |
Bombus cf. lapidarius | Polylectic | [2,63] |
Bombus cf. terrestris | Polylectic | [2,63] |
Bombus cf. veteranus | Polylectic | [2,63] |
Bombus haematurus (Kriechbaumer 1870) | Polylectic | [2,63] |
Bombus pascuorum (Scopoli, 1763) | Polylectic | [2,63] |
Bombus pratorum (Linnaeus, 1761) | Polylectic | [2,63] |
Ceratina chalybea Chevrier, 1872 | Polylectic | [67] |
Ceratina cyanea (Kirby, 1802) | Polylectic | [67] |
Colletes carinatus Radoszkowski, 1891 | Polylectic with a strong preference for Allium | [68] |
Colletes hylaeformis Eversmann, 1852 | Narrowly oligolectic (Eryngium) | [68] |
Eucera sp. div. | Polylectic/oligolectic | |
Halictus sp. div. | Deficient data | |
Hoplitis perezi (Ferton, 1895) | Oligolectic on Convolvulaceae | [69] |
Hylaeus communis Nylander, 1852 | Polylectic | [70] |
Hylaeus duckei (Alfken, 1904) | Broadly oligolectic on Asteraceae | [70] |
Hylaeus gibbus Saunders, 1850 | Polylectic | [70] |
Hylaeus meridionalis Förster, 1871 | Probably polylectic | [71] |
Hylaeus moricei (Friese, 1898) | Polylectic | [70] |
Hylaeus sp. div. | Deficient data | |
Icteranthidium grohmanni (Spinola, 1838) | Polylectic | [65] |
Lasioglossum duckei (Alfken, 1909) | Deficient data | |
Lasioglossum malachurum (Kirby, 1802) | Polylectic | [72] |
Lasioglossum nitidulum (Fabricius, 1804) | Deficient data | |
Lasioglossum politum (Schenck, 1853) | Deficient data | |
Lasioglossum sp. div. | Deficient data | |
Lithurgus chrysurus Fonscolombe, 1834 | Oligolectic on Centaurea | [73] |
Megachile argentata (Fabricius, 1793) | Polylectic | [74] |
Megachile cf. centucularis | Polylectic | [67] |
Megachile cf. ericetorum | Probably oligolectic on Fabaceae | [67] |
Megachile melanopyga (Costa, 1863) | Polylectic pollen harvested from Centaurea and Cardueae, Atraceae | [67,75] |
Megachilidae Genus species | Polylectic/oligolectic | [75] |
Osmia andrenoides Spinola, 1808 | Polylectic | [76] |
Osmia bischoffi Atanassov, 1938 | Polylectic | [77] |
Osmia rufohirta Latreille, 1811 | Polylectic | [77] |
Osmia sp. | Polylectic/oligolectic | |
Osmia spinigera Latreille, 1811 | Oligolectic on Asteraceae | [78] |
Pseudoanthidium melanurum (Klug, 1832) | Oligolectic on Carduoideae | [65] |
Rhodanthidium septemdentatum (Latreille, 1809) | Polylectic | [79] |
Stelis cf. nasuta | Parasitic, nectar visits on Lamiaceae | [80] |
Thyreus sp. | ||
Trachusa integra (Eversmann, 1852) | Observed on Jasione (Campanulaceae) | [81] |
Xylocopa cf. violacea | Polylectic | [67] |
4.2. Floral Rewards
4.3. Propagation Potential of the Food Plant Species
Plant Family | Plant Species | Life Form | Propagation | Source of Information |
---|---|---|---|---|
Apiaceae | Eryngium campestre L. | perennial | Sowing seeds in autumn or spring | Unpublished data from Sokolov |
Scandix pecten-veneris L. | annual | Sowing seeds in spring | Unpublished data from Sokolov | |
Asparagaceae | Ornithogalum montanum Cirillo | perennial | Sowing seeds in autumn, divide abundance of small bulbs in summer | [110,111,112] |
Asteraceae | Achillea clypeolata Sm. | perennial | Sowing seeds in spring; divide in winter or spring | [110,111,112] |
Calendula officinalis L. | annual or biennial | Sowing seeds in autumn or spring | [111,112] | |
Centaurea diffusa Lam. | biennial | Sowing seeds in autumn or spring | [110,111,112] | |
Centaurea salonitana Vis. | perennial | |||
Cirsium ligulare Boiss. | annual or biennial | Sowing seeds in spring | Unpublished data from Sokolov | |
Crepis biennis L. | biennial | Sowing seeds in spring to autumn. | Unpublished data from Sokolov | |
Leontodon biscutellifolius DC. | perennial | Sowing seeds in autumn to spring | Unpublished data from Sokolov | |
Onopordum tauricum Willd. | annual or biennial | Sowing seeds in spring | Unpublished data from Sokolov | |
Xeranthemum annuum L. | annual | Sowing seeds in spring | [110,111,112] | |
Boraginaceae | Echium vulgare L. | biennial | Sowing seeds in autumn | [111,112] |
Brassicaceae | Mutarda nigra (L.) Bernh. | annual | Sowing seeds in spring | [111,112] |
Sisymbrium orientale L. | annual | Sowing seeds in spring | [112] | |
Campanulaceae | Campanula bononiensis L. | perennial | Sowing seeds in spring | [110,111,112] |
Campanula rapunculoides L. | perennial | Sowing seeds in spring | ||
Campanula trachelium L. | perennial | Sowing seeds in spring | ||
Caprifoliaceae | Cephalaria transsilvanica (L.) Roem. & Schult. | annual | Sowing seeds in autumn | Unpublished data from Sokolov |
Knautia arvensis (L.) Coult. | biennial or perennial | Sowing seeds in autumn | Unpublished data from Sokolov | |
Lomelosia argentea (L.) Greuter & Burdet biennial or perennial | Sowing seeds in autumn | Unpublished data from Sokolov | ||
Caryophyllaceae | Gypsophila glomerata Pall. ex Adams | perennial | Sowing seeds in autumn | Unpublished data from Sokolov |
Gypsophila trichotoma Wend. | perennial | Sowing seeds in autumn Temperature alternation or treatment with gibberelic acid promote germination | Unpublished data from Sokolov [113] | |
Cistaceae | Helianthemum nummularium (L.) Miller | perennial | Sowing seeds in spring, rooting cuttings | [110,111,112] |
Convolvulaceae | Convolvulus cantabrica L. | perennial | Sowing seeds in spring | [110,112] |
Fabaceae | Astragalus alopecurus Pall. | perennial | Sowing seeds in spring Scarification is needed, but survival of the seedlings is very low | [101,110] |
Astragalus dasyanthus Pall. | perennial | Sowing seeds in spring Scarification is needed, but survival of the seedlings is very low | [101,110] | |
Astragalus glycyphyllos L. | perennial | Sowing seeds in spring | [110] | |
Coronilla varia L. | perennial | Sowing seeds in autumn | [110] | |
Lathyrus pratensis L. | climbing annual or perennial | Sowing seeds in spring | [110,111] | |
Lotus corniculatus L. | perennial or annual | Sowing seeds in spring or autumn | [110,111,114] | |
Medicago falcata L. | perennial | Sowing seeds in early spring | Well-established technology of cultivation of its close relative M. sativa L. | |
Onobrychis alba (Waldst. et Kit.) Desv. | perennial | Sowing seeds in autumn | Unpublished data from Sokolov | |
Onobrychis arenaria W.D.J.Koch | perennial | Sowing seeds in autumn | Unpublished data from Sokolov | |
Trifolium alpestre Crantz | perennial | Sowing seeds in spring or autumn | [110,111,114] | |
Trifolium medium L. | perennial | Sowing seeds in spring or autumn | [110,111,114] | |
Trifolium pratense L. | perennial | Sowing seeds in spring or autumn | [110,111,114] | |
Vicia dumetorum L. | perennial | Sowing seeds in autumn | Unpublished data from Sokolov | |
Vicia grandiflora Scop. | annual or biennial | Sowing seeds in autumn | Unpublished data from Sokolov | |
Vicia tenuifolia Roth. | annual or perennial | Sowing seeds in autumn | Unpublished data from Sokolov | |
Gentianaceae | Gentiana cruciata L. | perennial | Sowing seeds in spring | [110,111] |
Lamiaceae | Ajuga chia Schreb. | annual or subshrub | Sowing seeds in autumn or spring | - |
Ballota nigra L. | perennial | Sowing seeds in spring, rooting cuttings | Unpublished data from Sokolov | |
Clinopodium vulgare L. | perennial | Sowing seeds in spring, Separation of rooted shoots | [110,114] | |
Lamium garganicum L. | perennial | Sowing seeds in spring | Unpublished data from Sokolov | |
Lavandula angustifolia L. | subshrub | Cultivated, vegetative propagation (cuttings), adventive (by seed) | [111] | |
Mentha spicata L. | perennial | Sowing seeds in spring, rooting cuttings | [111] | |
Salvia pratensis L. | perennial | Sowing seeds in spring, rooting cuttings | [111] | |
Salvia virgata Jacq. | perennial | Sowing seeds in spring | Unpublished data from Sokolov | |
Satureja coerulea Janka | perennial | Sowing seeds in spring, rooting cuttings | [115] | |
Sideritis scardica Griseb. | perennial (short living) | Seedlings need to be prepared and transplanted. Sowing seeds in February for stratification, giberelic acid treatment promotes germination if the seeds are not stratified divide clump, rooting cuttings | [97,98,99,100,110,116] Unpublished data from Kozuharova Unpublished data from Sokolov | |
Stachys germanica L. | perennial | Sowing seeds in spring, divide clump, rooting cuttings | Unpublished data from Sokolov | |
Teucrium chamaedrys L. | perennial | Sowing seeds in spring, divide clump, rooting cuttings | [115] | |
Teucrium capitatum L. | perennial | Sowing seeds in spring, rooting cuttings | Unpublished data from Sokolov | |
Onagrceae | Epilobium angustifolium L. | perennial | Sowing seeds in spring, root cuttings | [110,111,114] |
Orobanchaceae | Rhinanthus wagneri Degen | annual | Sowing seeds in autumn | Unpublished data from Sokolov |
Paeoniaceae | Paeonia peregrina Mill. | perennial | Seed sowing—germination occurs after 16 months of outdoor stratification, division of the rhizome at the end of summer | Unpublished data from Sokolov and Stoycheva; [111,117,118] |
Plantaginaceae | Digitalis lanata Ehrh. | biennial or perennial | Sowing seeds in spring or early autumn | [110,111,112] |
Digitalis viridiflora Lindl. | perennial | Sowing seeds in spring | ||
Rhamnaceae | Paliurus spina-christi Mill. | shrub or tree | Sowing seeds extracted from the fruits in autumn | Unpublished data from Sokolov [112] |
Rosaceae | Rosa pendulina L. | shrub | Sowing partially mature seeds in autumn | Vastly practiced method for all cultivars of Rosa spp. [111] |
Rubiaceae | Galium verum L. | perennial | Sowing seeds in early autumn; divide clump in winter | [112] |
4.4. Principle Recommendations for the Composition of Pollinator-Friendly Mixes of Plants Seeds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Kevan, P.G.; Viana, B.F. The Global Decline of Pollination Services. Biodiversity 2003, 4, 3–8. [Google Scholar] [CrossRef]
- Goulson, D.; Hanley, M.E.; Darvill, B.; Ellis, J.S.; Knight, M.E. Causes of Rarity in Bumblebees. Biol. Conserv. 2005, 122, 1–8. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Vanbergen, A.J. The Insect Pollinators Initiative Threats to an Ecosystem Service: Pressures on Pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop Pollination from Native Bees at Risk from Agricultural Intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef]
- Kozuharova, E.; Vereecken, N.J. Lavender Production in SE Dobrudja—Intensive Agriculture Impacts Pollinators’ Density and Diversity. Euro-Mediterr. J. Environ. Integr. 2024, 9, 937–943. [Google Scholar] [CrossRef]
- Blaydes, H.; Gardner, E.; Whyatt, J.D.; Potts, S.G.; Armstrong, A. Solar Park Management and Design to Boost Bumble Bee Populations. Environ. Res. Lett. 2022, 17, 044002. [Google Scholar] [CrossRef]
- Yarkov, D.; Stankov, K.; Stankov, I. Historical Review of the Development of Bulgarian Livestock Production. Bulg. J. Agric. Sci. 2022, 28, 564–578. [Google Scholar]
- Vassilev, K.; Pedashenko, H.; Nikolov, S.C.; Apostolova, I.; Dengler, J. Effect of Land Abandonment on the Vegetation of Upland Semi-Natural Grasslands in the Western Balkan Mts., Bulgaria. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2011, 145, 654–665. [Google Scholar] [CrossRef]
- Slavkova, S.; Shindarska, Z. Condition of Meadows and Pastures in Bulgaria and Tendencies for Their Development. Bulg. J. Anim. Husb. 2017, 54, 93–102. [Google Scholar]
- Kevan, P.G.; Phillips, T.P. The Economic Impacts of Pollinator Declines: An Approach to Assessing the Consequences. Conserv. Ecol. 2001, 5, 8. [Google Scholar] [CrossRef]
- Ferreira, P.A.; Boscolo, D.; Viana, B.F. What do we know about the effects of landscape changes on plant–pollinator interaction networks? Ecol. Indic. 2013, 31, 35–40. [Google Scholar] [CrossRef]
- Lippert, C.; Feuerbacher, A.; Narjes, M. Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations. Ecol. Econ. 2021, 180, 106860. [Google Scholar] [CrossRef]
- Scheper, J.; Badenhausser, I.; Kantelhardt, J.; Kirchweger, S.; Bartomeus, I.; Bretagnolle, V.; Clough, Y.; Gross, N.; Raemakers, I.; Vilà, M.; et al. Biodiversity and pollination benefits trade off against profit in an intensive farming system. Proc. Natl. Acad. Sci. USA 2023, 120, e2212124120. [Google Scholar] [CrossRef] [PubMed]
- Garratt, M.P.D.; O’Connor, R.S.; Carvell, C.; Fountain, M.T.; Breeze, T.D.; Pywell, R.; Redhead, J.W.; Kinneen, L.; Mitschunas, N.; Truslove, L.; et al. Addressing pollination deficits in orchard crops through habitat management for wild pollinators. Ecol. Appl. 2023, 33, e2743. [Google Scholar] [CrossRef]
- Cole, L.J.; Brocklehurst, S.; Robertson, D.; Harrison, W.; McCracken, D.I. Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 2017, 246, 157–167. [Google Scholar] [CrossRef]
- Tassin De Montaigu, C.; Goulson, D. Factors influencing butterfly and bumblebee richness and abundance in gardens. Sci. Total Environ. 2024, 908, 167995. [Google Scholar] [CrossRef]
- Haaland, C.; Naisbit, R.E.; Bersier, L.-F. Sown wildflower strips for insect conservation: A review: Wildflower strips for insect conservation. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Balzan, M.V.; Bocci, G.; Moonen, A.-C. Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J. Insect Conserv. 2014, 18, 713–728. [Google Scholar] [CrossRef]
- Scheper, J.; Bommarco, R.; Holzschuh, A.; Potts, S.G.; Riedinger, V.; Roberts, S.P.M.; Rundlöf, M.; Smith, H.G.; Steffan-Dewenter, I.; Wickens, J.B.; et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 2015, 52, 1165–1175. [Google Scholar] [CrossRef]
- Ouvrard, P.; Transon, J.; Jacquemart, A.-L. Flower-strip agri-environment schemes provide diverse and valuable summer flower resources for pollinating insects. Biodivers. Conserv. 2018, 27, 2193–2216. [Google Scholar] [CrossRef]
- Buhk, C.; Oppermann, R.; Schanowski, A.; Bleil, R.; Lüdemann, J.; Maus, C. Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas. BMC Ecol. 2018, 18, 55. [Google Scholar] [CrossRef]
- Albrecht, M.; Kleijn, D.; Williams, N.M.; Tschumi, M.; Blaauw, B.R.; Bommarco, R.; Campbell, A.J.; Dainese, M.; Drummond, F.A.; Entling, M.H.; et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecol. Lett. 2020, 23, 1488–1498. [Google Scholar] [CrossRef]
- Griffiths-Lee, J.; Davenport, B.; Foster, B.; Nicholls, E.; Goulson, D. Sown wildflowers between vines increase beneficial insect abundance and richness in a British vineyard. Agric. For. Entomol. 2023, 25, 139–151. [Google Scholar] [CrossRef]
- Willcox, B.K.; Garratt, M.P.D.; Breeze, T.D.; Mathimaran, N.; Potts, S.G.; Prasad, G.; Raj, R.; Senapathi, D. The benefits of floral border crops in smallholder rice production depends on agronomic inputs and landscape context. Agric. For. Entomol. 2024, 26, 327–338. [Google Scholar] [CrossRef]
- Scheper, J.; Bukovinszky, T.; Huigens, M.E.; Kleijn, D. Attractiveness of sown wildflower strips to flower-visiting insects depends on seed mixture and establishment success. Basic Appl. Ecol. 2021, 56, 401–415. [Google Scholar] [CrossRef]
- Nichols, R.N.; Holland, J.M.; Goulson, D. A novel farmland wildflower seed mix attracts a greater abundance and richness of pollinating insects than standard mixes. Insect Conserv. Divers. 2023, 16, 190–204. [Google Scholar] [CrossRef]
- Kuppler, J.; Neumüller, U.; Mayr, A.V.; Hopfenmüller, S.; Weiss, K.; Prosi, R.; Schanowski, A.; Schwenninger, H.-R.; Ayasse, M.; Burger, H. Favourite plants of wild bees. Agric. Ecosyst. Environ. 2023, 342, 108266. [Google Scholar] [CrossRef]
- Benvenuti, S. Wildflower strips in the agroecosystem for pollinator biodiversity restoration: Which plant species are capable of self-seeding? Ecol. Eng. 2025, 212, 107486. [Google Scholar] [CrossRef]
- Comba, L. Flowers, Nectar and Insect Visits: Evaluating British Plant Species for Pollinator-friendly Gardens. Ann. Bot. 1999, 83, 369–383. [Google Scholar] [CrossRef]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wäckers, F.L. Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 2017, 239, 20–29. [Google Scholar] [CrossRef]
- Herbertsson, L.; Jönsson, A.M.; Andersson, G.K.S.; Seibel, K.; Rundlöf, M.; Ekroos, J.; Stjernman, M.; Olsson, O.; Smith, H.G. The impact of sown flower strips on plant reproductive success in Southern Sweden varies with landscape context. Agric. Ecosyst. Environ. 2018, 259, 127–134. [Google Scholar] [CrossRef]
- Azpiazu, C.; Medina, P.; Adán, Á.; Sánchez-Ramos, I.; Del Estal, P.; Fereres, A.; Viñuela, E. The Role of Annual Flowering Plant Strips on a Melon Crop in Central Spain. Influence on Pollinators and Crop. Insects 2020, 11, 66. [Google Scholar] [CrossRef]
- Stout, J.C.; Dicks, L.V. From science to society: Implementing effective strategies to improve wild pollinator health. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210165. [Google Scholar] [CrossRef]
- Schmied, H.; Getrost, L.; Diestelhorst, O.; Maaßen, G.; Gerhard, L. Between perfect habitat and ecological trap: Even wildflower strips mulched annually increase pollinating insect numbers in intensively used agricultural landscapes. J. Insect Conserv. 2022, 26, 425–434. [Google Scholar] [CrossRef]
- Ouvrard, P.; Jacquemart, A.-L. Agri-environment schemes targeting farmland bird populations also provide food for pollinating insects. Agric. For. Entomol. 2018, 20, 558–574. [Google Scholar] [CrossRef]
- Giovanetti, M.; Malabusini, S.; Zugno, M.; Lupi, D. Influence of Flowering Characteristics, Local Environment, and Daily Temperature on the Visits Paid by Apis mellifera to the Exotic Crop Phacelia tanacetifolia. Sustainability 2022, 14, 10186. [Google Scholar] [CrossRef]
- Maslo, S.; Šarić, Š. Two new neophytes in the flora of Bosnia and Herzegovina: Oenothera fruticosa and Phacelia campanularia. Glas. Future 2022, 5, 31–38. [Google Scholar] [CrossRef]
- Maurer, C.; Martínez-Núñez, C.; Dominik, C.; Heuschele, J.; Liu, Y.; Neumann, P.; Paxton, R.J.; Pellissier, L.; Proesmans, W.; Schweiger, O.; et al. Landscape simplification leads to loss of plant–pollinator interaction diversity and flower visitation frequency despite buffering by abundant generalist pollinators. Divers. Distrib. 2024, 30, e13853. [Google Scholar] [CrossRef]
- Bee fauna of Slovenia. Available online: https://www2.pms-lj.si/andrej/apoidea.htm (accessed on 16 February 2025).
- Olesen, J.M.; Jordano, P. Geographic Patterns in Plant–Pollinator Mutualistic Networks. Ecology 2002, 83, 2416–2424. [Google Scholar] [CrossRef]
- Dicks, L.V.; Corbet, S.A.; Pywell, R.F. Compartmentalization in plant–insect flower visitor webs. J. Anim. Ecol. 2002, 71, 32–43. [Google Scholar] [CrossRef]
- Basilio, A.M.; Medan, D.; Torretta, J.P.; Bartoloni, N.J. A year-long plant-pollinator network. Austral Ecol. 2006, 31, 975–983. [Google Scholar] [CrossRef]
- Bosch, J.; Martín González, A.M.; Rodrigo, A.; Navarro, D. Plant–pollinator networks: Adding the pollinator’s perspective. Ecol. Lett. 2009, 12, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Ștefan, V.; Knight, T.M. Oilseed Rape Shares Abundant and Generalized Pollinators with Its Co-Flowering Plant Species. Insects 2021, 12, 1096. [Google Scholar] [CrossRef]
- Marshall, L.; Leclercq, N.; Carvalheiro, L.G.; Dathe, H.H.; Jacobi, B.; Kuhlmann, M.; Potts, S.G.; Rasmont, P.; Roberts, S.P.M.; Vereecken, N.J. Understanding and addressing shortfalls in European wild bee data. Biol. Conserv. 2024, 290, 110455. [Google Scholar] [CrossRef]
- Kozuharova, E.K. Entomophilous plant species inhabiting the southern limestone slopes of Mt. VitoS’a (SW Bulgaria) and their pollinators. Flora Mediterr. 2000, 10, 227–234. [Google Scholar]
- Kozuharova, E.K.; Anchev, M.E.; Popov, P. The pollination ecology of Gentiana cruciata (Gentianaceae)-specifics of a Bulgarian population in comparison to Dutch populations. Nord. J. Bot. 2003, 23, 365–372. [Google Scholar] [CrossRef]
- Kozuharova, E.; Stoyanov, I. Honeybees, wild bees, and entomophilous plants on a meadow in Mt Konyavska, SW Bulgaria. Phytol. Balc. 2004, 9, 3. [Google Scholar]
- Kozuharova, E.; Firmage, D.H. On the pollination ecology of Astragalus alopecurus pallas (Fabaceae) in Bulgaria. Comptes Rendus L’académie Bulg. Des Sci. 2007, 60, 863–870. [Google Scholar]
- Kozuharova, E.; Firmage, D.H. Notes on the reproductive biology of Astragalus dasyanthus pall. (Fabaceae) a rare plant for Bulgaria. Comptes Rendus L’académie Bulg. Des Sci. 2009, 62, 1079–1088. [Google Scholar]
- Banaszak, J.; Dochkova, B. Bees (Hymenoptera, Apoidea, Apiformes) in the Agricultural Landscape of Bulgaria: Species Diversity. J. Apic. Sci. 2014, 58, 29–49. [Google Scholar] [CrossRef]
- Banaszak, J.; Szefer, P.; Dochkova, B. Relationships between bees (Hymenoptera: Apoidea: Apiformes) and flowers in the Bulgarian agricultural landscape. Pol. J. Entomol. 2015, 84, 101–126. [Google Scholar] [CrossRef]
- Kozuharova, E. Bumblebees and pollination of endemic Onobrychis pindicola (Fabaceae) in the subalpine habitats of Pirin Mts. Biol. Nyssana 2019, 9, 89–101. [Google Scholar] [CrossRef]
- Valchev, H.; Kolev, Z.; Stoykova, B.; Kozuharova, E. Pollinators of Lavandula angustifolia Mill., an important factor for optimal production of lavender essential oil. BioRisk 2022, 17, 297–307. [Google Scholar] [CrossRef]
- Valchev, H.; Kozuharova, E. In situ and Ex situ Investigations on Breeding Systems and Pollination of Sideritis scardica Griseb. (Lamiaceae) in Bulgaria. Proc. Bulg. Acad. Sci. 2022, 75, 527–535. [Google Scholar] [CrossRef]
- Plants of the World Online|Kew Science. Available online: https://powo.science.kew.org/ (accessed on 16 February 2025).
- Euro+Med PlantBase—Preview of the New Data Portal|Euro+Med-Plantbase. Available online: https://europlusmed.org/ (accessed on 16 February 2025).
- Bogusch, P.; Bláhová, E.; Horák, J. Pollen specialists are more endangered than non-specialised bees even though they collect pollen on flowers of non-endangered plants. Arthropod-Plant Interact. 2020, 14, 759–769. [Google Scholar] [CrossRef]
- Michez, D.; Patiny, S.; Rasmont, P.; Timmermann, K.; Vereecken, N.J. Phylogeny and host-plant evolution in Melittidae s.l. (Hymenoptera: Apoidea). Apidologie 2008, 39, 146–162. [Google Scholar] [CrossRef]
- Wood, T.J.; Holland, J.M.; Goulson, D. Diet characterisation of solitary bees on farmland: Dietary specialisation predicts rarity. Biodivers. Conserv. 2016, 25, 2655–2671. [Google Scholar] [CrossRef]
- Goulson, D. Bumblebees: Their Behaviour and Ecology; Oxford University Press: Oxford, UK; New York, NY, USA, 2003; ISBN 978-0-19-852606-3. [Google Scholar]
- Skyrpan, I.P.; Pytel, S.R. List of bee species (Hymenoptera, Apoidea) of Lviv city (Ukraine). Part I. Families Andrenidae Latreille, 1802 and Apidae Latreille, 1802. Stud. Biol. 2020, 14, 111–120. [Google Scholar] [CrossRef]
- Muller, A. Host-Plant Specialization in Western Palearctic Anthidine Bees (Hymenoptera: Apoidea: Megachilidae). Ecol. Monogr. 1996, 66, 235–257. [Google Scholar] [CrossRef]
- Kleijn, D.; Raemakers, I. A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 2008, 89, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Westrich, P. Die Wildbienen Baden-Württembergs; E. Ulmer: Stuttgart, Germany, 1990. [Google Scholar]
- Müller, A.; Kuhlmann, M. Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae): The Asteraceae paradox: Pollen hosts of colletes bees. Biol. J. Linn. Soc. 2008, 95, 719–733. [Google Scholar] [CrossRef]
- Ducke, A. Die Bienengattung Osmia Panz. als Ergänzung zu Schmiedeknecht’s “Apidae europaeae”. In Ihren Palaearctischen Arten Monographisch Bearbeitet.-Berichte des Naturwissenschaftlich; Medizinischen Vereins in Innsbruck: Innsbruck, Austria, 1900; Volume 2, pp. 1–323. [Google Scholar]
- Müller, A. The hidden diet—Examination of crop content reveals distinct patterns of pollen host use by Central European bees of the genus Hylaeus (Hymenoptera, Colletidae). Alp. Entomol. 2023, 7, 21–35. [Google Scholar] [CrossRef]
- Baldock, D.W.; Wood, T.J.; Cross, I.; Smith, J. The bees of Portugal (Hymenoptera: Apoidea: Anthophila). In Entomofauna; Maximilian Schwarz: Ansfelden, Austria, 2018; pp. 1–164. [Google Scholar]
- Knerer, G. The biology and social behaviour of Evylaeus malachurus (K.) (Hymenoptera; Halictidae) in different climatic regions of Europe. Zool. Jahrbücher Abt. Syst. Okol. Geogr. Tiere 1992, 119, 261–290. [Google Scholar]
- Rust, R.W.; Cambon, G.; Grossa, J.-P.T.; Vaissière, B.E. Nesting Biology and Foraging Ecology of the Wood-boring Bee Lithurgus chrysurus (Hymenoptera: Megachilidae). J. Kans. Entomol. Soc. 2004, 77, 269–279. [Google Scholar] [CrossRef]
- Praz, C.J. Subgeneric classification and biology of the leafcutter and dauber bees (genus Megachile Latreille) of the western Palearctic (Hymenoptera, Apoidea, Megachilidae). J. Hymenopt. Res. 2017, 55, 1–54. [Google Scholar] [CrossRef]
- Müller, A.; Bansac, N. A specialized pollen-harvesting device in western palaearctic bees of the genus Megachile (Hymenoptera, Apoidea, Megachilidae). Apidologie 2004, 35, 329–337. [Google Scholar] [CrossRef]
- Müller, A. Palaearctic Osmia bees of the subgenera Hemiosmia, Tergosmia and Erythrosmia (Megachilidae, Osmiini): Biology, taxonomy and key to species. Zootaxa 2020, 4778, 201–236. [Google Scholar] [CrossRef]
- Müller, A. Palaearctic Osmia bees of the subgenera Allosmia and Neosmia (Megachilidae, Osmiini): Biology, taxonomy and key to species. Zootaxa 2022, 5188, 201–232. [Google Scholar] [CrossRef]
- Müller, A. Palaearctic Osmia bees of the subgenus Hoplosmia (Megachilidae, Osmiini): Biology, taxonomy and key to species. Zootaxa 2018, 4415, 297–329. [Google Scholar] [CrossRef] [PubMed]
- Hostinská, L.; Kuneš, P.; Hadrava, J.; Bosch, J.; Scaramozzino, P.L.; Bogusch, P. Comparative biology of four Rhodanthidium species (Hymenoptera, Megachilidae) that nest in snail shells. J. Hymenopt. Res. 2021, 85, 11–28. [Google Scholar] [CrossRef]
- Kasparek, M. The Cuckoo Bees of the Genus Stelis Panzer, 1806 in Europe, North Africa and the Middle East: A Review and Identification Guide; Maximilian Schwartz: Ansfelden, Austria, 2015; 144p, Available online: https://siris-libraries.si.edu/ipac20/ipac.jsp?uri=full=3100001~!1080769~!5&ri=8&aspect=basic&menu=search&source=~!silibraries&profile=liball (accessed on 13 March 2025).
- Kasparek, M. Revision of the Palaearctic Trachusa interrupta species complex (Apoidea: Anthidiini) with description of four new species. Zootaxa 2020, 4728, zootaxa.4728.1.1. [Google Scholar] [CrossRef]
- Corbet, S.A. Bee visits and the nectar of Echium vulgare L. and Sinapis alba L. Ecol. Entomol. 1978, 3, 25–37. [Google Scholar] [CrossRef]
- Hayot Carbonero, C.; Mueller-Harvey, I.; Brown, T.A.; Smith, L. Sainfoin (Onobrychis viciifolia): A beneficial forage legume. Plant Genet. Resour. 2011, 9, 70–85. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M. Nectar production and presentation. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 167–214. ISBN 978-1-4020-5937-7. [Google Scholar]
- Efimov, S.V. Morphology of the staminodial disc of flowers of representatives of the paeoniaceae family and its possible connection with smell (aroma). Reg. Geosyst. 2011, 14, 254–258, (In Russian language). [Google Scholar]
- Weryszko-Chmielewska, E.; Sulborska, A. Staminodial Nectary Structure in Two Pulsatilla (L.) Species. Acta Biol. Cracoviensia Ser. Bot. 2011, 53, 94–103. [Google Scholar] [CrossRef]
- Müller, A.; Diener, S.; Schnyder, S.; Stutz, K.; Sedivy, C.; Dorn, S. Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee–flower relationships. Biol. Conserv. 2006, 130, 604–615. [Google Scholar] [CrossRef]
- Vanderplanck, M.; Gilles, H.; Nonclercq, D.; Duez, P.; Gerbaux, P. Asteraceae Paradox: Chemical and Mechanical Protection of Taraxacum Pollen. Insects 2020, 11, 304. [Google Scholar] [CrossRef]
- Van Dijk, P.J. Ecological and evolutionary opportunities of apomixis: Insights from Taraxacum and Chondrilla. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1113–1121. [Google Scholar] [CrossRef]
- Vrijmoed, P. Collection, Propagation and Use of Native Plants. In Southern Forest Nursery Association Conference; Southern Research Station: Asheville, NC, USA, 1999; p. 156. [Google Scholar]
- Ruchala, S.L. Propagation of Several Native Ornamental Plants. Master’s Thesis, University of Maine, Orono, ME, USA, 2002. [Google Scholar]
- Thetford, M.; Heather, A.E.; Pérez, H.E.; Wilson, S.B. Propagation of Wildflowers from Wild-Collected Seeds or Cuttings. Int. Plant Propagators Soc. Comb. Proc. 2008, 58, 555–560. [Google Scholar]
- Krigas, N.; Mouflis, G.; Grigoriadou, K.; Maloupa, E. Conservation of important plants from the Ionian Islands at the Balkan Botanic Garden of Kroussia, N Greece: Using GIS to link the in situ collection data with plant propagation and ex situ cultivation. Biodivers. Conserv. 2010, 19, 3583–3603. [Google Scholar] [CrossRef]
- Alina, Z.; Lucia, D.; Liliana, C.E. Aspects regarding the “ex situ” propagation of some wild plants in order to introduce them into the culture. Șt. Hortic 2012, 55, 275–280. [Google Scholar]
- Heywood, V.H.; Dullo, M.E. In Situ Conservation of Wild Plant Species: A Critical Global Review of Good Practices; IPGRI Technical Bulletin 11: Rome, Italy, 2005. [Google Scholar]
- Hossain, M.A.; Sen, M.; Jewell, M.I.U.; Kabir, M.A. Propagation of Flacourtia jangomas: An approach towards the domestication of wild fruit species in Bangladesh. Dendrobiology 2011, 65, 63–71. [Google Scholar]
- Evstatieva, L.; Popova, I. Factors, Affecting Germination and Seedling Development of Sideritis scardica Griseb. and S. syriaca L.; CABI Digital Library: Oxford, UK, 1998; Volume 1, pp. 371–376. [Google Scholar]
- Evstatieva, L.; Alipieva, K.; Aneva, I. Introduction and Sustainable Use of Rare Medicinal Plants in Bulgaria. A Model Approach for Sideritis scardica Griseb. Medicinal Plants: Fundamental and Applied Problems. In Proceedings of the 1st International Scientific Conference, Novosibirsk, Russia, 21–22 May 2013; pp. 257–259. [Google Scholar]
- Aneva, I. Biological and Phytochemical In Situ and Ex Situ Study of Species of the Genus Sideritis with Conservation Importance in Bulgaria. Ph.D. Thesis, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria, 2016. [Google Scholar]
- Aneva, I.; Zhelev, P. Morphometric studies of Sideritis scardica Grsb. and S. syriaca L. in their natural populations in Bulgaria. Boletín Latinoam. Y Caribe Plantas Med. Y Aromáticas 2019, 18, 71–80. [Google Scholar] [CrossRef]
- Kožuharova, E.; Tzvetanova, V.; Firmage, D. Seed germination and seedling development of two rare Astragalus species (Fabaceae). Phytol. Balc. 2010, 16, 51–56. [Google Scholar]
- Singh, P. Propagation of 14 native prairie forbs by sexual and asexual methods. Nativ. Plants J. 2021, 22, 345–354. [Google Scholar] [CrossRef]
- Pence, V.C. Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell. Dev. Biol. Plant 2011, 47, 176–187. [Google Scholar] [CrossRef]
- Oseni, O.M.; Pande, V.; Nailwal, T.K. A Review on Plant Tissue Culture, A Technique for Propagation and Conservation of Endangered Plant Species. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3778–3786. [Google Scholar] [CrossRef]
- Mikell, L.; Wilson, S.B.; Marble, S.C.; Vendrame, W.; Van Santen, E. Sexual and Asexual Propagation of Wild Lime (Zanthoxylum fagara L. Sarg.), a Native Florida Plant with Ornamental and Ecological Value. J. Environ. Hortic. 2024, 42, 131–139. [Google Scholar] [CrossRef]
- Jiang, X.L.; Zhang, W.G.; Wang, G. Effects of different components of diversity on productivity in artificial plant communities. Ecol. Res. 2007, 22, 629–634. [Google Scholar] [CrossRef]
- Fløjgaard, C.; Valdez, J.W.; Dalby, L.; Moeslund, J.E.; Clausen, K.K.; Ejrnæs, R.; Pärtel, M.; Brunbjerg, A.K. Dark diversity reveals importance of biotic resources and competition for plant diversity across habitats. Ecol. Evol. 2020, 10, 6078–6088. [Google Scholar] [CrossRef]
- Larionov, M.V.; Dogadina, M.A.; Tarakin, A.V.; Minakova, I.V.; Sentishcheva, E.A.; Bukreeva, T.N. Creation of artificial phytocenoses with controlled properties as a tool for managing cultural ecosystems and landscapes. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 012127. [Google Scholar] [CrossRef]
- Salomé-Castañeda, E.; Olivares-Esquivel, E. Artificial communities of plants as guides for design of urban areas of central Mexico. Acta Hortic. 2023, 1374, 125–132. [Google Scholar] [CrossRef]
- Yanev, A. Ornamental Plants form the Bulgarian Flora; Nauka i Izkustvo: Sofia, Bulgaria, 1959; 512p, (In Bulgarian language). [Google Scholar]
- Toogood, A. American Horticultural Society Plant Propagation: The Fully Illustrated Plant-by-Plant Manual of Practical Techniques; DC Publishing Inc.: New York, NY, USA, 1999. [Google Scholar]
- The Royal Horticultural Society. A–Z Encyclopedia of Garden Plants; Brickell, C., Royal Horticultural Society, Eds.; Dorling Kindersley: London, UK, 2000; ISBN 978-0-7513-0436-7. [Google Scholar]
- Balabanova, V.; Zdraveva, P.; Kozuharova, E.; Krasteva, I.; Nikolov, S. A possibility for cultivation and phytochemical study of endangered Gypsophila trichotoma Wend. Comptes Rendus L’académie Bulg. Sci. 2009, 62, 1247–1252. [Google Scholar]
- Naydenova, G.; Vasileva, V.; Mitev, D. Productivity of Bulgarian grazing ecotypes of perennial legumes. J. Mt. Agric. Balk. 2015, 18, 972–982. [Google Scholar]
- Sokolov, R.S. Preliminary test results of 15 species of Bulgarian flora cultivated as ornamental plants. Phytol. Balc. 2016, 22, 187–192. [Google Scholar]
- Sarrou, E.; Tsivelika, N.; Martens, S.; Irakli, M.; Bletsaki, F.; Broufa, S.; Panajiotidis, S.; Chatzopoulou, P.S.; Abraham, E.M. First steps towards pre-breeding of Sideritis scardica: A phenotypic, agronomic, and phytochemical profiling approach. Agronomy 2024, 14, 1448. [Google Scholar] [CrossRef]
- Prijić, Ž.; Mikić, S.; Peškanov, J.; Zhang, X.; Guo, L.; Dragumilo, A.; Filipović, V.; Anačkov, G.; Marković, T. Diversity of Treatments in Overcoming Morphophysiological Dormancy of Paeonia peregrina Mill. Seeds. Plants 2024, 13, 2178. [Google Scholar] [CrossRef]
- Prijić, Z.; Mikić, S.; Filipović, V.; Dragumilo, A.; Gordanić, S.; Batinić, P.; Čutović, N.; Marković, T. Seed Weight and Optimal Imbibition Period for some Herbaceous Peony (Paeonia spp.) Species Native to Serbia. In Proceedings of the XII International Symposium on Agricultural Sciences “AgroReS 2023”, Trebinje, Bosnia and Herzegovina, 24–26 May 2023. [Google Scholar]
- Breeze, T.D.; Bailey, A.P.; Balcombe, K.G.; Brereton, T.; Comont, R.; Edwards, M.; Garratt, M.P.; Harvey, M.; Hawes, C.; Isaac, N.; et al. Pollinator monitoring more than pays for itself. J. Appl. Ecol. 2021, 58, 44–57. [Google Scholar] [CrossRef]
- Lanuza, J.B.; Knight, T.M.; Montes-Perez, N.; Glenny, W.; Acuña, P.; Albrecht, M.; Artamendi, M.; Badenhausser, I.; Bennett, J.M.; Biella, P.; et al. EuPPollNet: A European Database of Plant-Pollinator Networks. Glob. Ecol. Biogeogr. 2025, 34, e70000. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozuharova, E.; Trifonov, T.; Stoycheva, C.; Zapryanova, N.; Sokolov, R.S. Plants for Wild Bees—Field Records in Bulgaria. Diversity 2025, 17, 214. https://doi.org/10.3390/d17030214
Kozuharova E, Trifonov T, Stoycheva C, Zapryanova N, Sokolov RS. Plants for Wild Bees—Field Records in Bulgaria. Diversity. 2025; 17(3):214. https://doi.org/10.3390/d17030214
Chicago/Turabian StyleKozuharova, Ekaterina, Teodor Trifonov, Christina Stoycheva, Nadezhda Zapryanova, and Rosen S. Sokolov. 2025. "Plants for Wild Bees—Field Records in Bulgaria" Diversity 17, no. 3: 214. https://doi.org/10.3390/d17030214
APA StyleKozuharova, E., Trifonov, T., Stoycheva, C., Zapryanova, N., & Sokolov, R. S. (2025). Plants for Wild Bees—Field Records in Bulgaria. Diversity, 17(3), 214. https://doi.org/10.3390/d17030214