Species and Functional Diversity of Bird Communities in Different Habitats in Shiquan River National Wetland Park, Tibet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Survey Methods
2.3. Data Analysis
3. Results
3.1. Sample Adequacy Results
3.2. Species Composition
3.3. Diversity-Analysis Results
3.3.1. Diversity of Species
3.3.2. Functional Diversity
3.4. Correlation Analysis
4. Discussion
4.1. Changes in Bird Community Composition
4.2. Relationship Between Different Habitat Diversity Indices
4.3. Differences in Bird Communities Along Vertical Gradients
4.4. Effects of Human Disturbance on Birds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
IDX | Latin Name | Fauna | Distribution Type | Resident Type | Protection Class | IUCN | Red List | Habitat Type | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Grass | Marshes | Bare Grounds | Water Areas | ||||||||
O1 | GALLIFORMES | ||||||||||
F1 | Phasianidae | ||||||||||
1 | Perdix hodgsoniae | O | We | R | LC | LC | + | + | |||
2 | Tetraogallus tibetanus | OP | Pa | R | II | LC | NT | + | + | + | |
O2 | ANSERIFORMES | ||||||||||
F2 | Anatidae | ||||||||||
3 | Anser indicus | OP | P | W | LC | LC | + | + | + | ||
4 | Mergus merganser | OP | Cb | W | LC | LC | + | ||||
5 | Tadorna ferruginea | OP | Uf | S | LC | LC | + | + | + | ||
6 | Anas platyrhynchos | OP | Cf | W | LC | LC | + | + | + | ||
O3 | PODICIPEDIFORMES | ||||||||||
F3 | Podicipedidae | ||||||||||
7 | Tachybaptus ruficollis | OP | We | R | LC | LC | + | ||||
8 | Podiceps cristatus | OP | Ud | S | LC | LC | + | ||||
O4 | COLUMBIFORMES | ||||||||||
F4 | Columbidae | ||||||||||
9 | Columba rupestris | OP | O3 | R | LC | LC | + | + | |||
10 | Streptopelia orientalis | OP | E | R | LC | LC | + | + | |||
O5 | CUCULIFORMES | ||||||||||
F5 | Cuculidae | ||||||||||
11 | Cuculus canorus | OP | O1 | S | LC | LC | + | ||||
O6 | GRUIFORMES | ||||||||||
F6 | Gruidae | ||||||||||
12 | Grus nigricollis | OP | Pc | S | I | NT | VU | + | + | + | |
O7 | CHARADRIIFORMES | ||||||||||
F7 | Ibidorhynchidae | ||||||||||
13 | Ibidorhyncha struthersii | OP | Pf | R | II | LC | NT | + | |||
F8 | Charadriidae | ||||||||||
14 | Vanellus cinereus | OP | D | P | LC | LC | + | + | + | ||
F9 | Scolopacidae | ||||||||||
15 | Tringa ochropus | OP | Uc | P | LC | LC | + | + | |||
16 | Tringa totanus | OP | Uf | P | LC | LC | + | + | + | ||
F10 | Laridae | ||||||||||
17 | Larus brunnicephalus | OP | Pa | S | LC | LC | + | + | |||
18 | Larus ichthyaetus | OP | D | P | LC | LC | + | + | |||
19 | Sterna hirundo | OP | Cc | S | LC | LC | + | + | |||
O8 | ACCIPITRIFORMES | ||||||||||
F11 | Accipitridae | ||||||||||
20 | Gypaetus barbatus | OP | O | R | I | EN | NT | + | + | ||
21 | Gyps himalayensis | OP | O3 | R | II | NT | NT | + | + | + | |
22 | Aquila nipalensis | OP | Da | S | I | EN | VU | + | + | ||
23 | Milvus migrans | OP | Uh | R | II | LC | LC | + | + | ||
24 | Buteo hemilasius | OP | Df | S | II | LC | VU | + | + | ||
O9 | BUCEROTIFORMES | ||||||||||
F12 | Upupldae | ||||||||||
25 | Upupa epops | OP | O | S | LC | LC | + | + | + | ||
O10 | FALCONIFORMES | ||||||||||
F13 | Falconidae | ||||||||||
26 | Falco tinnunculus | OP | O1 | R | II | LC | LC | + | + | + | |
27 | Falco cherrug | OP | Ca | S | I | EN | EN | + | + | + | |
O11 | PASSERIFORMES | ||||||||||
F14 | Corvidae | ||||||||||
28 | Pica pica | OP | Ch | R | LC | LC | + | + | + | ||
29 | Pyrrhocorax pyrrhocorax | OP | O3 | R | LC | LC | + | + | + | ||
30 | Pyrrhocorax graculus | OP | O | R | LC | LC | + | + | + | ||
31 | Corvus corax | OP | Ch | R | LC | LC | + | + | + | ||
F15 | Paridae | ||||||||||
32 | Pseudopodoces humilis | OP | Pa | R | LC | LC | + | + | |||
F16 | Alaudidae | ||||||||||
33 | Eremophila alpestris | OP | C | S | LC | LC | + | + | |||
F17 | Hirundinidae | ||||||||||
34 | Hirundo rustica | OP | Ch | S | LC | LC | + | + | + | ||
35 | Ptyonoprogne rupestris | OP | O3 | R | LC | LC | + | + | |||
F18 | Turdidae | ||||||||||
36 | Turdus mandarinus | OP | O3 | R | LC | LC | + | + | + | ||
F19 | Muscicapidae | ||||||||||
37 | Copsychus saularis | O | Wd | R | LC | LC | + | ||||
38 | Phoenicurus ochruros | OP | O | S | LC | LC | + | ||||
39 | Phoenicuru erythrogastrus | OP | P | S | LC | + | |||||
40 | Saxicola maurus | OP | O1 | R | LC | LC | + | + | + | ||
41 | Oenanthe deserti | P | Da | R | LC | LC | + | + | + | ||
F20 | Prunellidae | ||||||||||
42 | Prunella collaris | OP | Ud | R | LC | LC | + | + | + | ||
43 | Prunella rubeculoides | OP | Pd | R | + | + | + | ||||
44 | Prunella fulvescens | OP | Pw | R | LC | LC | + | + | + | ||
F21 | Passeridae | ||||||||||
45 | Passer montanus | OP | Uh | R | LC | LC | + | + | + | ||
46 | Montifringilla adamsi | OP | Py | R | LC | LC | + | + | + | ||
47 | Onychostruthus taczanowskii | OP | Py | R | LC | LC | + | + | + | ||
48 | Pyrgilauda ruficollis | OP | Py | R | LC | LC | + | + | |||
49 | Pyrgilauda blanfordi | OP | Py | R | LC | LC | + | + | + | ||
F22 | Motacillidae | ||||||||||
50 | Motacilla citreola | OP | U | R | LC | LC | + | + | + | + | |
51 | Motacilla alba | OP | U | R | LC | LC | + | + | + | + | |
F23 | Fringillidae | ||||||||||
52 | Carpodacus erythrinus | OP | U | S | LC | LC | + | ||||
53 | Carpodacus rubicilla | P | Pw | S | LC | LC | + | ||||
54 | Leucosticte nemoricola | OP | Pw | R | LC | LC | + | + | |||
55 | Leucosticte brandti | OP | Pw | R | LC | LC | + | ||||
56 | Linaria flavirostris | OP | U | R | LC | LC | + | + |
Appendix B
IDX | Latin Name | Weight/g | Body Length/mm | Culmem/mm | Wing Length/mm | Tail Length/mm | Metatarsal Length/mm | Feeding Habits | Nest Type | Nest Site | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | |||||
1 | Tetraogallus tibetanus | 1500~1755 | 1170~1600 | 490~570 | 510~638 | 29.7~32 | 28.7 | 265~283 | 250~270 | 163~174 | 160~176 | 60.3~61.9 | 58.7~59.2 | 1 | 1 | 1 |
2 | Perdix hodgsoniae | 270~550 | 270~430 | 230~300 | 255~320 | 16~19 | 15~19 | 133~160 | 134~152 | 84~100 | 68~100 | 38~42 | 37~41 | 1 | 2 | 1 |
3 | Anser indicus | 2300~3000 | 1600~2700 | 700~850 | 625~735 | 42~52 | 35~46 | 440~480 | 398~440 | 114~160 | 116~150 | 64~80 | 60~73 | 1 | 2 | 1 |
4 | Tadorna ferruginea | 1000~1656 | 969~1689 | 516~670 | 510~680 | 42~50 | 36~46 | 350~390 | 312~380 | 115~165 | 115~165 | 54~63 | 50~58 | 1 | 1 | 1 |
5 | Anas platyrhynchos | 1000~1300 | 910~1015 | 540~615 | 470~550 | 53~61 | 49~59 | 270~285 | 250~286 | 72~112 | 69~125 | 40~55 | 39~50 | 1 | 2 | 1 |
6 | Mergus merganser | 936~1925 | 650~1686 | 630~680 | 540~660 | 48~59 | 43~53 | 270~294 | 250~272 | 108~139 | 100~125 | 47~53 | 43~51 | 2, 3 | 1 | 4 |
7 | Tachybaptus ruficollis | 160~275 | 150~225 | 220~318 | 221~274 | 20~23 | 18~22 | 95~140 | 72~138 | 28~44 | 28~40 | 32~50 | 29~44 | 2, 3 | 2 | 2 |
8 | Podiceps cristatus | 650~1000 | 425~950 | 520~580 | 450~546 | 50~53 | 38~50 | 180~197 | 165~190 | 40~48 | 36~46 | 61~64 | 51~67 | 2, 3 | 2 | 2 |
9 | Columba rupestris | 180~305 | 201~290 | 290~350 | 232~333 | 14~18 | 15~18 | 211~230 | 210~230 | 110~146 | 108~141 | 25~28 | 25~28 | 4 | 2 | 5 |
10 | Streptopelia orientalis | 175~323 | 192~280 | 300~359 | 260~340 | 16~20 | 16~19 | 187~205 | 180~203 | 124~145 | 114~148 | 20~29 | 20~26 | 1 | 2 | 4 |
11 | Cuculus canorus | 100~153 | 91~135 | 302~345 | 260~334 | 18~23 | 19~23 | 203~240 | 187~223 | 150~190 | 147~189 | 20~24 | 19~26 | 2 | 3 | 0 |
12 | Grus nigricollis | 3850~6100 | 5000~6250 | 1140~1190 | 1160~1200 | 114~128 | 115~127 | 585~593 | 540~680 | 225~231 | 218~240 | 231~253 | 238~233 | 1 | 2 | 1 |
13 | Ibidorhyncha struthersii | 253~292 | 293~337 | 370~412 | 381~442 | 71~78 | 80~84 | 225~241 | 230~242 | 113~131 | 113~126 | 45~56 | 47~57 | 2, 3 | 2 | 1 |
14 | Charadrius mongolus | 55~67 | 51~67 | 180~198 | 180~196 | 17~19 | 17~19 | 124~139 | 126~131 | 47~60 | 45~51 | 31~36 | 30~34 | 2, 3 | 2 | 1 |
15 | Tringa totanus | 97~157 | 105~145 | 260~283 | 250~287 | 38~45 | 41~46 | 147~160 | 150~161 | 59~67 | 58~68 | 45~51 | 45~50 | 2 | 2 | 1 |
16 | Tringa ochropus | 60~104 | 60~107 | 200~255 | 217~264 | 32~37 | 31~38 | 131~147 | 133~151 | 50~63 | 54~67 | 30~38 | 30~42 | 2 | 2 | 1 |
17 | Chroicocephalus brunnicephalus | 550~714 | 450~700 | 419~466 | 421~462 | 37~41 | 35~37 | 344~379 | 323~341 | 133~143 | 121~138 | 50~55 | 49~50 | 2, 3 | 2 | 1 |
18 | Ichthyaetus ichthyaetus | 2000 | 2000 | 630~715 | 630~715 | 50~71 | 50~71 | 470~520 | 460~497 | 170~200 | 170~200 | 68~80 | 68~80 | 2, 3 | 2 | 1 |
19 | Sterna hirundo | 100~122 | 92~110 | 327~375 | 310~354 | 33~36 | 28~35 | 258~271 | 260~271 | 111~164 | 118~160 | 18~19 | 18~20 | 2, 3 | 2 | 1 |
20 | Gypaetus barbatus | 3500~5600 | 3500~5600 | 1000~1400 | 1000~1400 | 51~54 | 51~54 | 780~860 | 780~860 | 540~630 | 540~630 | 91~100 | 91~100 | 5 | 2 | 5 |
21 | Gyps himalayensis | 8000~12,000 | 8000~12,000 | 1200~1499 | 1200~1499 | 71~81 | 71~81 | 755~805 | 755~805 | 365~402 | 365~402 | 110~126 | 110~126 | 5 | 2 | 5 |
22 | Aquila nipalensis | 2015~2650 | 2150~2900 | 707~758 | 705~818 | 38~39.5 | 38~42 | 510~553 | 592~620 | 265~280 | 295~340 | 87~97 | 97~102 | 2, 3, 5 | 2 | 5 |
23 | Milvus migrans | 1015~1150 | 900~1160 | 540~660 | 585~690 | 25~40 | 27~38 | 438~550 | 440~530 | 270~362 | 285~358 | 52~75 | 50~72 | 2, 3 | 2 | 4 |
24 | Buteo hemilasius | 1320~1800 | 1950~2100 | 582~622 | 569~676 | 24~30 | 28~30 | 446~477 | 470~520 | 262~272 | 262~285 | 76~92 | 80~94 | 3 | 2 | 4 |
25 | Upupa epops | 53~81 | 55~90 | 266~312 | 245~300 | 47~59 | 43~56 | 140~158 | 136~157 | 95~124 | 90~110 | 18~27 | 20~25 | 2 | 1 | 4 |
26 | Falco tinnunculus | 173~240 | 180~335 | 316~340 | 305~360 | 14~15 | 14~15 | 238~252 | 234~269 | 161~183 | 152~184 | 37~42 | 33~43 | 2, 3 | 2 | 4 |
27 | Falco cherrug | 680~890 | 970~1200 | 425~580 | 520~591 | 20~22 | 24.2~26.5 | 348~380 | 378~412 | 232~240 | 245~258 | 55~55.5 | 59.5~60.5 | 3 | 2 | 4 |
28 | Pica pica | 190~266 | 180~250 | 365~485 | 380~460 | 31~38 | 28~37 | 190~230 | 178~210 | 210~275 | 200~262 | 48~58 | 42~54 | 1 | 2 | 4 |
29 | Pyrrhocorax pyrrhocorax | 210~485 | 216~370 | 360~470 | 370~422 | 44~60 | 33~56 | 268~333 | 263~312 | 143~187 | 135~173 | 36~51 | 38~50 | 1 | 2 | 5 |
30 | Pyrrhocorax graculus | 202~254 | 165~290 | 335~426 | 321~376 | 29~43 | 27~40 | 265~295 | 230~266 | 150~188 | 157~180 | 40~46 | 38~44 | 1 | 1 | 5 |
31 | Corvus corax | 650~1450 | 600~1240 | 630~710 | 607~671 | 64~82 | 68~76 | 450~469 | 431~460 | 265~290 | 246~285 | 58~69 | 57~67 | 1 | 2 | 4 |
32 | Pseudopodoces humilis | 25~46 | 25~47 | 132~180 | 133~171 | 18~27 | 19~23 | 78~96 | 76~94 | 53~71 | 51~68 | 23~30 | 25~29 | 2 | 1 | 1 |
33 | Eremophila alpestris | 32~43 | 29~47 | 150~193 | 147~182 | 10~15 | 10~14 | 91~121 | 95~120 | 63~92 | 63~92 | 19~26 | 19~26 | 1 | 2 | 1 |
34 | Ptyonoprogne rupestris | 18~25 | 20~28 | 127~160 | 130~175 | 6~9 | 7~8 | 120~140 | 126~175 | 57~73 | 57~70 | 10~12 | 10~12 | 2 | 1 | 5 |
35 | Hirundo rustica | 14~22 | 14~21 | 134~197 | 132~183 | 6~9 | 6~9 | 101~121 | 106~116 | 68~112 | 66~109 | 8~12 | 9~12 | 2 | 1 | 5 |
36 | Turdus mandarinus | 80~110 | NA | 240~250 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 2 | 4 |
37 | Copsychus saularis | 33~47 | 32~50 | 187~227 | 178~214 | 15~21 | 15~20 | 90~105 | 88~99 | 87~110 | 80~96 | 27~34 | 26~32 | 2 | 1 | 4 |
38 | Phoenicurus ochruros | 14~24 | 17~24 | 127~165 | 128~152 | 9~12 | 10~12 | 78~89 | 73~88 | 57~70 | 56~78 | 22~25 | 21~25 | 2 | 1 | 3 |
39 | Phoenicurus erythrogastrus | 25~31 | 22~28 | 160~190 | 155~180 | 10~13.7 | 11~13 | 101~104 | 100~105 | 74~80 | 71~82 | 23~27 | 22~26 | 2 | 2 | 1 |
40 | Oenanthe deserti | 17~28 | 17~25 | 124~175 | 128~161 | 12~16 | 11~16 | 90~102 | 85~96 | 61~75 | 47~68 | 24~27 | 25~27 | 2 | 1 | 1 |
41 | Saxicola maurus | 12~22 | 12~24 | 118~146 | 115~140 | 9~12 | 8~12 | 62~74 | 60~74 | 41~58 | 42~58 | 20~24 | 20~23 | 2 | 2 | 1 |
42 | Prunella collaris | 31~45 | 30~40 | 160~195 | 154~188 | 10~14 | 10~14 | 90~106 | 95~101 | 59~84 | 63~72 | 20~25 | 19~25 | 1 | 2 | 1 |
43 | Prunella rubeculoides | 15~35 | 22~23 | 145~171 | 150~160 | 11~13 | 9~11 | 72~77 | 73~76 | 63~75 | 66~70 | 22~25 | 22~24 | 1 | 2 | 3 |
44 | Prunella fulvescens | 18~19 | 14~18 | 148~164 | 126~144 | 10~11 | 10~12 | 73~78 | 72~77 | 66~73 | 61~67 | 19~20 | 19~21 | 1 | 2 | 1 |
45 | Passer montanus | 16~24 | 17~23.7 | 115~150 | 116~147 | 9.5~11.8 | 9~12 | 60~78 | 61~70 | 44~66 | 44~66 | 17~20 | 17~20 | 1 | 1 | 5 |
46 | Montifringilla adamsi | 20~36 | 20~31 | 147~182 | 140~171 | 11~13.5 | 11~13.5 | 101~115 | 96~115 | 64.5~80.5 | 61~74 | 19~27 | 19~24.5 | 1 | 1 | 5 |
47 | Onychostruthus taczanowskii | 20~43 | 20~40 | 140~182 | 130~165 | 11~14.5 | 12~14 | 92~116 | 96~108 | 58~81 | 63~86 | 21~26.5 | 21~24.5 | 1 | 1 | 5 |
48 | Pyrgilauda ruficollis | 15~32 | 15~34 | 130~161 | 125~153 | 10~12 | 10~13 | 81~93 | 83~93 | 50~65 | 50~64 | 20~22 | 20~23 | 1 | 1 | 5 |
49 | Pyrgilauda blanfordi | 24~28 | 22~29 | 119~137 | 117~138 | 10~11 | 10~11 | 85~95 | 87~97 | 48~59 | 48~60 | 16~20 | 16~19 | 1 | 1 | 1 |
50 | Motacilla alba | 15~30 | 17~29 | 156~195 | 157~195 | 11~17 | 11~16 | 85~96 | 81~98 | 83~101 | 82~97 | 20~28 | 22~27 | 2 | 2 | 1 |
51 | Motacilla citreola | 17~26 | 14~27 | 150~195 | 145~180 | 12~14 | 12~14 | 77~92 | 74~90 | 76~90 | 68~88 | 21~29 | 21~27 | 2 | 2 | 1 |
52 | Leucosticte nemoricola | 16~25 | 19~25 | 142~167 | 145~167 | 9~11 | 10~11.5 | 92~102 | 90.5~101 | 67~77 | 66~76 | 19~23 | 19~21.5 | 1 | 1 | 5 |
53 | Leucosticte brandti | 28 | 26~29 | 164~190 | 160~179 | 11.8 | 10~11 | 105~119 | 103~119 | 78 | 74~76 | 21.5 | 20~22 | 1 | 2 | 1 |
54 | Carpodacus erythrinus | 18~27 | 18~31 | 133~162 | 126~159 | 10~13 | 10~12 | 71~87 | 71~88 | 51~67 | 51~67 | 17~21 | 17~21 | 1 | 2 | 3 |
55 | Carpodacus rubicilla | 30~52 | 37~52 | 173~205 | 167~198 | 12~15 | 12~15 | 103~130 | 108~118 | 79~96 | 75~95 | 20~28 | 21~29 | 1 | 1 | 5 |
56 | Linaria flavirostris | 10~18 | 10~15 | 112~162 | 118~144 | 7.5~9.5 | 7.3~11 | 73~80 | 71.7~78 | 57~71 | 60~68.5 | 14~18.5 | 14~18 | 1 | 2 | 3 |
References
- Sanjeev, S.; Pardeep, S. Wetlands Conservation: Current Challenges and Future Strategies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Geng, C.; Yan, L.; Tong, S.Z. Analysis of the causes of wetland landscape patterns and hydrological connectivity changes in Momoge National Nature Reserve based on the Google Earth Engine Platform. Arab. J. Geosci. 2021, 14, 170. [Google Scholar]
- Vento, B.; Rivera, J.; Ontivero, M. Climate influence on future suitability of high-altitude wetlands in two natural protected areas from the Central Andes of Argentina. Perspect. Ecol. Conserv. 2024, 22, 240–249. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.Y.; Kong, L.Q.; Wang, L.J.; Hu, J.M.; Ouyang, Z.Y. Grass-livestock balance under the joint influences of climate change, human activities and ecological protection on Tibetan Plateau. Ecol. Indic. 2024, 162, 112040. [Google Scholar] [CrossRef]
- Wan, W.; Gadd, G.M.; Yang, Y.; Yuan, W.; Gu, J.; Ye, L.; Liu, W. Environmental adaptation is stronger for abundant rather than rare microorganisms in wetland soils from the Qinghai-Tibet Plateau. Mol. Ecol. 2021, 30, 2390–2403. [Google Scholar] [CrossRef] [PubMed]
- Carlos, M.; Ricardo, M.; Vicente, G. Protected area coverage of vulnerable regions to conserve functional diversity of birds. Conserv. Biol. J. Soc. Conserv. Biol. 2023, 37, e14131. [Google Scholar]
- Gregory, D.R.; Strien, V.A. Wild Bird Indicators: Using Composite Population Trends of Birds as Measures of Environmental Health. Ornithol. Sci. 2010, 9, 3–22. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Z.; Zhang, M.; Zhao, F.; Wu, Y.; Sun, Y.; Luo, J.; Zhang, Y.; Wang, X.; Cai, J.; et al. Analysis of anthropogenic disturbance and spatial and temporal changes of bird communities in plateau wetlands fusing bird survey and nighttime light remote sensing data. J. Environ. Manag. 2025, 375, 124349. [Google Scholar] [CrossRef]
- Zhang, J.T.; Xiao, J.; Li, L. Variation of plant functional diversity along a disturbance gradient in mountain meadows of the Donglingshan reserve, Beijing, China. Russ. J. Ecol. 2015, 46, 157–166. [Google Scholar] [CrossRef]
- Griffin, J.N.; Verónica, M.; Johnson, A.F.; Jenkins, S.R.; Foggo, A. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 2009, 118, 37–44. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional diversity: Back to basics and looking forward. Ecol. J. Lett. 2006, 9, 741–775. [Google Scholar] [CrossRef] [PubMed]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Petchey, O.L.; Hector, A.; Gaston, K.J. How do different measures of functional diversity perform? Ecology 2004, 85, 847–857. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Villéger, S.; Mason, N.W.H.; Mouillot, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. J. Funct. Ecol. 2010, 24, 867–876. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Cascadden, K.; Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Wang, Y.; Zong, N.; He, N.P.; Zhang, J.J.; Tian, J.; Li, L.T. Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China. Acta Ecol. Sin. 2018, 38, 2–9. [Google Scholar]
- Gao, H.M.; Jiang, F.; Zhang, J.J.; Chi, X.W.; Song, P.F.; Li, B.; Cai, Z.Y.; Zhang, T.Z. Effects of ex situ conservation on diversity and function of the gut microbiota of the Tibetan wild ass (Equus kiang). Integr. Zool. 2023, 18, 1089–1104. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Guo, Y.P.; Feng, Y.H.; Zhang, Z.H.; Tang, R.; Bai, Y.; Tang, Z.Y. Satellite hyperspectral imagery reveals scale dependence of functional diversity patterns in a Qinghai-Tibetan alpine meadow. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103868. [Google Scholar] [CrossRef]
- Min, T.; Hong, L.J.; Feng, T.H.; Kun, Z.Z.; Qian, Q.; Lin, Y.K.; Zhou, C.H.; Ping, M.S.; Jun, X.K.; Yu, C.Z.; et al. Bird fauna and diversity in Selinco National Nature Reserve in Tibet. J. Mianyang Norm. Univ. China 2021, 40, 57–63. [Google Scholar]
- Wu, F.; Yang, X.J. Application of sample point method in forest bird survey. J. Ecol. 2008, 27, 2240–2244. [Google Scholar]
- John, M.; Karen, P.; Ho, F. Chinese Bird Field Manual; Lu, H.F.; He, F.C.; Xie, Y., Translators; Hunan Education Press: Changsha, China, 2000. [Google Scholar]
- Zheng, G.M. Classification and Distribution of Birds in China, 4th ed.; Beijing Science Press: Beijing, Chian, 2023. [Google Scholar]
- China Forestry and Grassland Administration, Ministry of Agriculture and Rural Affairs. National List of Wildlife under Key Protection (revised on 1 February 2021). J. Wildl. 2021, 42, 605–640. [Google Scholar]
- Zhang, Y.Y. China Red List of Biodiversity: Vertebrates Volume 2 Birds; Science Press: Beijing, China, 2021; pp. 2–274. [Google Scholar]
- IUCN. Red List of Threatened Species. R. 2024. Available online: https://www.iucnredlist.org (accessed on 20 December 2024).
- Zhang, R.Z. Zoogeography of China; Science Press: Beijing, China, 2011; pp. 281–315. [Google Scholar]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Ma, K.P.; Liu, Y.M. Methods for measuring the diversity of biological communities I: D Methods for measuring the diversity (ii). Biodiversity 1994, 2, 231–239. [Google Scholar]
- Pielou, E.C. Ecological Diversity; M. John Wiley: New York, NY, USA, 1975. [Google Scholar]
- Wang, Y.P.; Song, Y.F.; Zhong, Y.Q.; Chen, C.W.; Zhao, Y.H.; Zeng, J.; Wu, Y.R.; Ding, P. A dataset of life history and ecological characteristics of birds in China. Biodiversity 2021, 29, 1149–1153. [Google Scholar]
- He, X.; Wen, Z.; Zhang, D.; Yang, Q.; Yin, X.; Chen, X.; Ran, J. Low impact of forest conversion on biodiversity: Evidence from small mammals in contrasting forests of Mt. J. Liangshan. Ecosphere 2021, 14, 10. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. J. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. vegan: Community Ecology Package. R Package Version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 20 December 2024).
- Gong, H.D. The Relationship Between Bird Community Characteristics and Environmental Factors in Medika Wetland National Nature Reserve, Xizang Province. Master’s Thesis, Xizang University, Xianyang, China, 2021. [Google Scholar]
- Rehfisch, M.M. Man-made lagoons and how their attractiveness to waders might be increased by manipulating the biomass of an insect benthos. J. Appl. Ecol. 1994, 31, 383–401. [Google Scholar] [CrossRef]
- Horváth, Z.; Ferenczi, M.; Móra, A.; Vad, C.F.; Ambrus, A.; Forró, L.; Szövényi, G. Invertebrate food sources for waterbirds provided by the reconstructed wetland of Nyirkai-Hany, northwestern Hungary. Hydrobiologia 2012, 697, 59–72. [Google Scholar] [CrossRef]
- Stefano, M.; Carmona, C.P.; Thomas, G. Concepts and applications in functional diversity. Funct. Ecol. 2021, 35, 1869–1885. [Google Scholar]
- Cosset, C.C.; Edwards, D.P. The effects of restoring logged tropical forests on avian phylogenetic and functional diversity. Ecol. Appl. A Publ. Ecol. Soc. Am. 2017, 27, 1932–1945. [Google Scholar] [CrossRef] [PubMed]
- Batisteli, A.F.; Tanaka, M.O.; Souza, A.L. Bird functional traits respond to forest structure in riparian areas undergoing active restoration. Diversity 2018, 10, 90. [Google Scholar] [CrossRef]
- Majid, S.; Mansoureh, K.; Zeinab, J. The relationship between the functional diversity, functional redundancy and community stability in mountain rangelands. Community Ecol. 2022, 24, 1–8. [Google Scholar]
- Dehling, D.M.; Fritz, S.A.; Till, T.; Martin, P.; Patrizia, E.; Katrin, B.G.; Schleuning, M. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 2014, 37, 1047–1055. [Google Scholar] [CrossRef]
- Pan, X.Y.; Liang, D.; Zeng, W.; Hu, Y.M.; Liang, J.C.; Wang, X.W.; Robinson, S.K.; Luo, X.; Liu, Y. Climate, human disturbance and geometric constraints drive the elevational richness pattern of birds in a biodiversity hotspot in southwest China. Glob. Ecol. Conserv. 2019, 18, 1–11. [Google Scholar] [CrossRef]
- Zhao, L.L. Study on Bird Species Diversity in Sejira National Forest Park, Tibet; Tibet College of Agriculture and Animal Husbandry: Nyingchi, China, 2023. [Google Scholar]
- García, G.J.; Heino, J.; García, C.F.; Camino, F.A.; Janne, A. Biotic interactions hold the key to understanding metacommunity organisation. Ecography 2020, 43, 1180–1190. [Google Scholar] [CrossRef]
- Matuoka, A.M.; Benchimol, M.; Almeida-Rocha, D.M.J.; Morante-Filho, C.J. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 2020, 116, 106471. [Google Scholar] [CrossRef]
- Asefa, A.; Davies, B.A.; McKechnie, E.A.; Kinahan, A.A.; Rensburg, J.B. Effects of anthropogenic disturbance on bird diversity in Ethiopian montane forests. Condor 2017, 119, 416–430. [Google Scholar] [CrossRef]
- Crampton, L.H.; Longland, W.S.; Murphy, D.D.; Sedinger, J.S. Food abundance determines distribution and density of a frugivorous bird across seasons. Oikos 2011, 120, 65–76. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Wang, J.; Guo, Y.; Huang, C.; Li, X. Species and Functional Diversity of Bird Communities in Different Habitats in Shiquan River National Wetland Park, Tibet. Diversity 2025, 17, 271. https://doi.org/10.3390/d17040271
Wei Y, Wang J, Guo Y, Huang C, Li X. Species and Functional Diversity of Bird Communities in Different Habitats in Shiquan River National Wetland Park, Tibet. Diversity. 2025; 17(4):271. https://doi.org/10.3390/d17040271
Chicago/Turabian StyleWei, Yang, Jingshan Wang, Yi Guo, Chen Huang, and Xu Li. 2025. "Species and Functional Diversity of Bird Communities in Different Habitats in Shiquan River National Wetland Park, Tibet" Diversity 17, no. 4: 271. https://doi.org/10.3390/d17040271
APA StyleWei, Y., Wang, J., Guo, Y., Huang, C., & Li, X. (2025). Species and Functional Diversity of Bird Communities in Different Habitats in Shiquan River National Wetland Park, Tibet. Diversity, 17(4), 271. https://doi.org/10.3390/d17040271