Influence of Gall-Inducing Insects (Cynipini) on the Nutritional and Defensive Chemical Profile of Quercus rugosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Study Sites and Population Sampling
2.3. Nutritional Chemistry
2.4. Defensive Chemistry: Secondary Metabolites
2.5. Collection of Gall and Determination of Insects
2.6. Statistical Analysis
3. Results
3.1. Leaf Nutritional Chemistry of Q. rugosa
3.2. Composition of the Nutritional Chemistry Between Q. rugosa Leaves with and Without Galls
3.3. Leaf Defensive Chemistry in Q. rugosa
3.4. Composition of the Defensive Chemistry of Leaves with and Without Galls in Q. rugosa
3.5. Composition of Gall-Inducing Cynipids Associated with Q. rugosa
4. Discussion
4.1. Leaf Nutritional Chemistry of Q. rugosa and Composition Between Leaves with and Without Galls
4.2. Leaf Defensive Chemistry of Q. rugosa and Composition Between Leaves with and Without Galls
4.3. Composition of the Gall-Inducing Insect Communities and Its Influence on Nutritional and Defensive Chemical Composition of the Leaf Tissue of Q. rugosa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowman, M.D.; Wittman, P.K. Forest canopies: Methods, hypotheses and future directions. Ann. Rev. Ecol. Syst. 1996, 27, 55–81. [Google Scholar] [CrossRef]
- Lowman, M.D. Canopy research in the twenty-first century: A review of arboreal ecology. Trop. Ecol. 2009, 50, 125–136. [Google Scholar]
- Ribeiro, S.P.; Basset, Y. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 2007, 30, 663–672. [Google Scholar] [CrossRef]
- Ribeiro, S.P.; Borges, P.A.V. Canopy habitat area effect on the arthropod species densities in the Azores: Pondering the contribution of tourist species and other life histories. In Terrestrial arthropods of Macaronesia—Biodiversity, Ecology and Evolution; Serrano, R.M., Borges, P.A.V., Boieiro, M.O.P., Eds.; Sociedade Portuguesa de Entomologia: Lisboa, Portugal, 2010; pp. 81–106. [Google Scholar]
- Wilson, J.K.; Ruiz, L.; Duarte, J.; Davidowitz, G. The nutritional landscape of host plants for a specialist insect herbivore. Ecol. Evol. 2019, 9, 13104–13113. [Google Scholar] [CrossRef]
- Strong, D.R.; Lawton, J.H.; Southwood, T.R.E. Insects on Plants. Community Patterns and Mechanisms; Harvard University Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Hansen, A.K.; Pers, D.; Russell, J.A. Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. In Advances in Insect Physiology; Oliver, K.M., Russell, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 161–205. [Google Scholar] [CrossRef]
- Heidorn, T.J.; Joern, A. Feeding preference and spatial distribution of grasshoppers (Acrididae) in response to nitrogen fertilization of Calamovilfa longifolia. Funct. Ecol. 1987, 1, 369–375. [Google Scholar] [CrossRef]
- Sudakaran, S.; Kost, C.; Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017, 25, 375–390. [Google Scholar] [CrossRef]
- Feeny, P. Plant apparency and chemical defense. In Biochemical Interaction Between Plants and Insects; Wallace, J.W., Mansell, R.L., Eds.; Springer: Boston, MA, USA, 1976; pp. 1–40. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, H.; Morquecho-Contreras, A. Chemical Plant Defense against Herbivores. In Herbivores; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Hartley, S.E.; Eschen, R.; Horwood, J.M.; Robinson, L.; Hill, E.M. Plant secondary metabolites and the interactions between plants and other organisms: The potential of a metabolomic approach. In Ecology of Plant Secondary Metabolites: From Genes to Landscapes; Ianson, G.I., Dick, M., Hartley, S.E., Eds.; Cambridge University Press: Cambridge, MA, USA, 2012; pp. 204–225. [Google Scholar]
- Iason, G.R.; Moore, B.D.; Lennon, J.J.; Stockan, J.A.; Osler, G.H.; Campbell, C.D.; Sim, D.A.; Beaton, J.R.; Russell, J.R. Plant secondary metabolite polymorphisms and the extended chemical phenotype. In The Ecology of Plant Secondary Metabolites: From Genes to Global Processes; Ianson, G.I., Dick, M., Hartley, S.E., Eds.; Cambridge University Press: Cambridge, MA, USA, 2012; pp. 247–268. [Google Scholar]
- Dyer, L.A.; Philbin, C.S.; Ochsenrider, K.M.; Richards, L.A.; Massad, T.J.; Smilanich, A.M.; Forister, M.L.; Parchman, T.L.; Galland, L.M.; Hurtado, P.J.; et al. Modern approaches to study plant–insect interactions in chemical ecology. Nat. Rev. Chem. 2018, 2, 50–64. [Google Scholar] [CrossRef]
- Aliabadi, A.; Renwick, J.A.A. Sequestration of glucosinolates by harlequin bug Murgantia histriónica. J. Chem. Ecol. 2002, 28, 49–62. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; Van Loon, J.J.A.; Dicke, M. Insect effects on ecosystem services-introduction. Basic Appl. Ecol. 2005, 26, 1–7. [Google Scholar] [CrossRef]
- Wimp, G.M.; Wooley, S.; Bangert, R.K.; Young, W.P.; Martinsen, G.D.; Keim, P.; Rehill, B.; Lindroth, R.L.; Whitham, T.G. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure. Mol. Ecol. 2007, 16, 5057–5069. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Barbosa, D.; Van Loon, J.J.A.; Dicke, M. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 2022, 72, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.N.; Schönrogge, K.; Atkinson, R.J.; Pujade-Villar, J. The population biology of gall wasp (Hymenoptera: Cynipidae). Annu. Rev. Entomol. 2002, 47, 633–668. [Google Scholar] [CrossRef] [PubMed]
- Shorthouse, J.D.; Rohfritsch, O. Biology of Insect-Induced Galls; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Price, P.W.; Fernandes, G.W.; Waring, G.L. Adaptive nature of insect galls. Environ. Entomol. 1987, 16, 15–24. [Google Scholar] [CrossRef]
- Stone, G.N.; Schönrogge, K. The adaptative significance of insect gall morphology. Trends Ecol. Evol. 2003, 18, 512–522. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Coelho, M.S.; Santos, J.C. Neotropical Insect Galls: Status of Knowledge and Perspectives; Springer: Dordrecht, The Netherlands, 2014; pp. 1–14. [Google Scholar]
- Dawkins, R. The Extended Phenotype; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Giron, D.; Huguet, E.; Stone, G.N.; Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 2016, 84, 70–89. [Google Scholar] [CrossRef]
- Csóka, G.; Stone, G.N.; Melika, G. Non-native gall-inducing insects on forest trees: A global review. Biol. Invasions 2017, 19, 3161–3181. [Google Scholar] [CrossRef]
- Coelho, K.V.; Costa, R.U.; Fernandes, C.J.C.; dos Santos, I.R.M.; Coelho de Oliveira, D. How Galling Organisms Manipulate the Secondary Metabolites in the Host Plant Tissues? A Histochemical Overview in Neotropical Gall Systems. In Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Oliveira, D.C.; Moreira, A.S.F.P.; Isaias, R.M.S. Functional gradients in insect gall tissues, studies on neotropical host plants. In Neotropical Insect Galls; Fernandes, G.W., Santos, J.C., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef]
- Kariñho-Betancourt, E. Coevolution: Plant-herbivore interactions and secondary metabolites of plants. In Co-Evolution of Secondary Metabolites; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 47–76. [Google Scholar]
- Hartley, S.E. The chemical composition of plant galls: Are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 1998, 113, 492–501. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Price, P.W. Biogeographical gradients in galling species richness: Tests of hypotheses. Oecologia 1988, 76, 161–167. [Google Scholar] [CrossRef]
- Abrahamson, W.G.; Hunter, M.D.; Melika, G.; Price, P.W. Cynipid gall-wasp communities correlate with oak chemistry. J. Chem. Ecol. 2003, 29, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Pujade-Villar, J. Las agallas de los encinos: Un ecosistema en miniatura que hace posibles estudios multidiciplinares. Entomol. Mex. 2013, 12, 2–22. [Google Scholar]
- Wetzel, S.R.M.; Li, I.; McKenzie, J.; Phillips, K.A.; Cruz, M.; Zhang, W.; Greene, A.; Lee, E.; Singh, N.; Tran, C.; et al. Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees. Ecology 2016, 97, 427–438. [Google Scholar] [CrossRef]
- Serrano-Muñoz, M.; Pujade-Villar, J.; Lobato-Vila, I.; Valencia-Cuevas, L.; Mussali-Galante, P.; Castillo-Mendoza, E.; Tovar-Sánchez, E. Influence of elevation gradient on Cynipid galls and their associated insect communities: The case of Quercus rugosa (Fagaceae). Arthropod Plant Interact. 2022, 16, 401–421. [Google Scholar] [CrossRef]
- Tovar-Sanchez, E. Canopy arthropods community within and among oak species in central Mexico. Curr. Zool. 2009, 55, 132–144. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Oyama, K. Effect of hybridization of the Quercus crassifolia × Quercus crassipes complex on the community structure of endophagous insects. Oecologia 2006, 147, 702–713. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Valencia-Cuevas, L.; Castillo-Mendoza, E.; Mussali-Galante, P.; Pérez-Ruiz, R.V.; Mendoza, A. Association between individual genetic diversity of two oak host species and canopy arthropod community structure. Eur. J. For. Res. 2013, 132, 165–179. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Martí-Flores, E.; Valencia-Cuevas, L.; Mussali-Galante, P. Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia. Rev. Chil. Hist. Nat. 2015, 88, 7. [Google Scholar] [CrossRef]
- Valencia-Cuevas, L.; Tovar-Sánchez, E. Oak canopy arthropod communities: Which factors shape its structure? Rev. Chil. Hist. Nat. 2015, 88, 15. [Google Scholar] [CrossRef]
- Martínez-Romero, A.; Cuesta-Porta, V.; Equihua-Martínez, A.; Estrada-Venegas, E.D.; Barrera-Ruiz, U.M.; Cibrián-Tovar, D.; Pujade-Villar, J. Aportación al conocimiento de las especies de Cynipini (Hymenoptera: Cynipidae) en los estados mexicanos. Rev. Mex. Biodiver. 2022, 93, 21. [Google Scholar] [CrossRef]
- Castillo-Mendoza, E.; Zamilpa, A.; González-Cortazar, M.; Ble-González, E.A.; Tovar-Sánchez, E. Chemical constituents and their production in Mexican oaks (Q. rugosa, Q. glabrescens and Q. obtusata). Plants 2022, 11, 2610. [Google Scholar] [CrossRef] [PubMed]
- Abrahamson, W.G.; McCrea, K.D. Nutrient and biomass allocation in Solidago altissima: Effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia 1986, 68, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Vuorisalo, T.; Walls, M.; Kuitunen, H. Gall mite (Eriophyes laevis) infestation and leaf removal affect growth of leaf area in black alder (Alnus glutinosa) short shoots. Oecologia 1990, 84, 122–125. [Google Scholar] [CrossRef]
- Larson, K.; Whitham, T. Competition between gall aphids and natural plant sinks: Plant architecture affects resistance to galling. Oecologia 1997, 109, 575–582. [Google Scholar] [CrossRef]
- Price, P.W.; Abrahamson, W.G.; Hunter, M.D.; Melika, G. Using gall wasps on oaks to test broad ecological concepts. Conserv. Biol. 2004, 18, 1405–1416. [Google Scholar] [CrossRef]
- Valencia, A.S. Diversidad del género Quercus (Fagaceae) en México. Bol. Soc. Bot. Méx. 2004, 75, 33–53. [Google Scholar] [CrossRef]
- Challenger, A. Utilización y Conservación de los Ecosistemas Terrestres de México: Pasado, Presente, y Futuro; Conabio, IBUNAM y Agrupación Sierra Madre: Mexico City, Mexico, 1998. [Google Scholar]
- Clavijo McCormick, A.; Irmisch, S.; Boeckler, G.A.; Gershenzon, J.; Köllner, T.G.; Unsicker, S.B. Herbivore-induced volatile emission from old-growth black poplar trees under field conditions. Sci. Rep. 2019, 9, 7714. [Google Scholar] [CrossRef]
- Volf, M.; Volfová, T.; Seifert, C.L.; Ludwig, A.; Engelmann, R.A.; Jorge, L.R.; Richter, R.; Sched, A.; Weinhold, A.; Wirth, C.; et al. A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol. Lett. 2022, 25, 729–739. [Google Scholar] [CrossRef]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Wagner, H.; Blandt, S.; Zgainski, E.M. A thin layer chromatography. In Plant Drug Analysis; Springer: Berlín, Germany, 1996; 384 p. [Google Scholar]
- Castillo-Mendoza, E.; Valencia-Cuevas, L.; Mussali-Galante, P.; Ramos-Quintana, F.; Zamilpa, A.; Serrano-Muñoz, M.; Tovar-Sánchez, E. White Oaks Genetic and Chemical Diversity Affect the Community Structure of Canopy Insects Belonging to Two Trophic Levels. Diversity 2025, 17, 62. [Google Scholar] [CrossRef]
- Nieves-Aldrey, J.L. Hymenoptera: Cynipidae; Editorial CSIC-CSIC Press: Madrid, Spain, 2001; Volume 16. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Faith, D.P.; Minchin, P.R.; Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 1987, 69, 57–68. [Google Scholar] [CrossRef]
- Warwick, R.M.; Clarke, K.R.; Suharsono. A statistical analysis of coral community responses to the 1982–1983 El Nino in the thousand islands, Indonesia. Coral Reefs 1990, 8, 171–179. [Google Scholar] [CrossRef]
- Statsoft Inc. Statistica for Windows; STATISTICA: Tulsa, OK, USA, 2007. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.; Ryan, P. Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Rani, P.U.; Sambangi, P.; Sandhyarani, K. Impact of plant phenolics as semiochemicals on the performance of Trichogramma chilonis Ishii. J. Insect Behav. 2017, 30, 16–31. [Google Scholar] [CrossRef]
- Kariyat, R.R.; Gaffoor, I.; Sattar, S.; Dixon, C.W.; Frock, N.; Moen, J.; De Moraes, C.M.; Mescher, M.C.; Thompson, G.A.; Chopra, S. Sorghum 3-deoxyanthocyanidin flavonoids confer resistance against corn leaf aphid. J. Chem. Ecol. 2019, 45, 502–514. [Google Scholar] [CrossRef]
- Bernays, E.A.; Chapman, R.F. Evolution of host range. In Host Plant Selection in Phytophagous Insects; Chapman and Hall: New York, NY, USA, 1994; pp. 258–263. [Google Scholar]
- Mattson, W.J. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 1980, 11, 119–161. [Google Scholar] [CrossRef]
- Schädler, M.; Jung, G.; Auge, H.; Brandl, R. Palatability, decomposition and insect herbivory: Patterns in a successional old-field plant community. Oikos 2003, 103, 121–132. [Google Scholar] [CrossRef]
- Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Pellissier, L.; Roger, A.; Bilat, J.; Rasmann, S. High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: Is it just temperature? Ecography 2014, 37, 950–959. [Google Scholar] [CrossRef]
- De Long, J.R.; Sundqvist, M.K.; Gundale, M.J.; Giesler, R.; Wardle, D.A. Effects of elevation and nitrogen and phosphorus fertilization on plant defense compounds in subarctic tundra heath vegetation. Funct. Ecol. 2016, 30, 314–325. [Google Scholar] [CrossRef]
- Pellissier, L.; Moreira, X.; Danner, H.; Serrano, M.; Salamin, N.; van Dam, N.M.; Rasmann, S. The simultaneous inducibility of phytochemicals related to plant direct and indirect defenses against herbivores is stronger at low elevation. J. Ecol. 2016, 104, 1116–1125. [Google Scholar] [CrossRef]
- Pillacela Zhunio, D.P. Evaluación de la Regeneración Natural su Relación con Variables Ambientales y de Cobertura Arbórea en Ecosistemas Naturales Alto Andinos de la Provincia del Azuay. Bachelor’s Thesis, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, Ecuador, 2017. [Google Scholar]
- Morecroft, M.D.; Woodward, F.I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. New Phytol. 1996, 134, 471–479. [Google Scholar] [CrossRef]
- Niemelä, P.; Rousi, M.; Saarenmaa, H. Topographical delimitation of Neodiprion sertifer (Hym., Diprionidae) outbreaks on Scots pine in relation to needle quality. J. Appl. Entomol. 1987, 103, 84–91. [Google Scholar] [CrossRef]
- Erelli, M.C.; Ayres, M.P.; Eaton, G.K. Altitudinal patterns in host suitability for forest insects. Oecologia 1998, 117, 133–142. [Google Scholar] [CrossRef]
- Buse, A.; Good, J.E.G.; Dury, S.; Perrins, C.M. Effects of elevated temperature and carbon dioxide on the nutritional quality of leaves of oak (Quercus robur L.) as food for the winter moth (Operophtera brumata L.). Funct. Ecol. 1998, 12, 742–749. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Kull, K. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecol. 2003, 24, 209–219. [Google Scholar] [CrossRef]
- Valencia-Cuevas, L.; Mussali-Galante, P.; Piñero, D.; Castillo-Mendoza, E.; Tovar-Sánchez, E. Hybridization of Quercus castanea (Fagaceae) across a red oak species gradient in Mexico. Plant Syst. Evol. 2015, 301, 1085–1097. [Google Scholar] [CrossRef]
- Jakobs, R.; Müller, C. Effects of intraspecific and intra-individual differences in plant quality on preference and performance of monophagous aphid species. Oecologia 2018, 186, 173–184. [Google Scholar] [CrossRef]
- Behmer, S.T. Insect Herbivore Nutrient Regulation. Annu. Rev. Entomol. 2009, 54, 165–187. [Google Scholar] [CrossRef]
- Joern, A.; Provin, T.; Behmer, S.T. Not just the usual suspects: Insect herbivore populations and communities are associated with multiple plant nutrients. Ecology 2012, 93, 1002–1015. [Google Scholar] [CrossRef]
- Abrahamson, W.G.; Anderson, S.S.; McCrea, K.D. Effects of manipulation of plant carbon nutrient balance on tall goldenrod resistance to a gallmaking herbivore. Oecologia 1988, 77, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Paquette, L.C.; Bagatto, G.; Shorthouse, J.D. Distribution of mineral nutrients within the leaves of common dandelion (Taraxacum officinale) galled by Phanacis taraxaci (Hymenoptera: Cynipidae). Can. J. Bot. 1993, 71, 1026–1031. [Google Scholar] [CrossRef]
- Bagatto, G.; Shorthouse, J.D. Seasonal acquisition of mineral nutrients by a chalcid gall on lowbush blueberry. Entomol. Exp. Appl. 1994, 73, 61–66. [Google Scholar] [CrossRef]
- McCrea, K.D.; Abrahamson, W.G. Variation in herbivore infestation: Historical vs. Genetic factors. Ecology 1987, 68, 822–827. [Google Scholar] [CrossRef]
- Gätjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. Rev. Biol. Trop. 2019, 67, 1359–1382. [Google Scholar] [CrossRef]
- Tsai, H.H.; Schmidt, W. Mobilization of Iron by Plant-Borne Coumarins. Trends Plant Sci. 2017, 22, 538–548. [Google Scholar] [CrossRef]
- Barker, H.L.; Holeski, L.M.; Lindroth, R.L. Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species. PLoS ONE 2018, 13, e0200954. [Google Scholar] [CrossRef]
- Usha-Rani, P.; Jyothsna, Y. Physiological changes in groundnut plants induced by pathogenic infection of Cercosporidium personatum Deighton. Allelopath. J. 2009, 23, 369–378. [Google Scholar]
- Usha-Rani, P.; Pratyusha, S. Defensive role of Gossypium hirsutum L. antioxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. J. Asia Pac. Entomol. 2013, 16, 131–136. [Google Scholar] [CrossRef]
- Pratyusha, S. Phenolic compounds in the plant development and defense: An overview. In Plant Stress Physiology-Perspectives in Agriculture; Hasanuzzaman, M., Nahar, K., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Sytykiewicz, H.; Durak, R.; Borowiak-Sobkowiak, B.; Chrzanowski, G. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiol. Biochem. 2017, 118, 529–540. [Google Scholar] [CrossRef]
- Tayal, M.; Somavat, P.; Rodriguez, I.; Martinez, L.; Kariyat, R. Cascading effects of polyphenol-rich purple corn pericarp extract on pupal, adult, and offspring of tobacco hornworm (Manduca sexta L.). Commun. Integr. Biol. 2020, 13, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Zhang, S.; Wang, L.; Zhu, X.Z.; Luo, J.Y.; Wang, C.Y.; Lü, L.M.; Cui, J.J. Genetic regulation of defense responses in cotton to insect herbivores. AoB Plants 2017, 9, 10–1093. [Google Scholar] [CrossRef]
- Salminen, J.P.; Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 2011, 25, 325–338. [Google Scholar] [CrossRef]
- Pujade-Villar, J.; Equihua-Martínez, A.; Estrada-Venegas, E.G.; Chagoyán-García. Estado del Conocimiento de los Cynipini (Hymenoptera: Cynipidae) en México: Perspectivas de Estudio. Neotrop. Entomol. 2009, 38, 809–821. [Google Scholar] [CrossRef]
- Castillo-Mendoza, E. Efecto de la hibridación del complejo Q. glabrescens x Q. rugosa y Q. glabrescens x Q. obtsata sobre la comunidad de insectos inductores de agallas y sus parasitoides. PhD Dissertation, Universidad Nacional Autónoma de México, México City, Mexico, 2019. [Google Scholar]
- Uribe-Salas, D.; Saenz-Romero, C.; González-Rodríguez, A.; Tellez-Valdez, O.; Oyama, K. Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. For. Ecol. Manag. 2008, 256, 2121–2126. [Google Scholar] [CrossRef]
- Bronner, R. Contribution a l’etude histochimique des tissue nourriciers des zoocecidies. Marcellia 1977, 40, 11–34. [Google Scholar]
- Price, P.W.; Waring, G.L.; Fernandes, G.W. Hypotheses on the adaptive nature of galls. Proc. Entomol. Soc. 1986, 88, 361–363. [Google Scholar]
- Cornell, H.V. The secondary chemistry and complex morphology of galls formed by the Cynipidae (Hymenoptera): Why and how? Am. Midl. Nat. 1983, 110, 225–234. [Google Scholar] [CrossRef]
- Allison, S.D.; Schultz, J.C. Biochemical responses of chestnut oak to a galling cynipid. J. Chem. Ecol. 2005, 31, 151–166. [Google Scholar] [CrossRef]
- Nyman, T.; Julkunen-Tiitto, R. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc. Nat. Acad. Sci. USA 2000, 97, 13184–13187. [Google Scholar] [CrossRef]
- Schultz, B.B. Insect herbivores as potential causes of mortality and adaptation in gall forming insects. Oecologia 1992, 90, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Alvarado, E.; Cuevas-Reyes, P.; Quesada, M.; Oyama, K. Interactions between galling insects and leaf-feeding insects: The role of plant phenolic compounds and their possible interference with herbivores. J. Trop. Ecol. 2008, 24, 329–336. [Google Scholar] [CrossRef]
- Taper, M.L.; Case, T.J. Interactions between oak tannins and parasite community structure: Unexpected benefits of tannins to cynipid gall-wasps. Oecologia 1987, 71, 254–261. [Google Scholar] [CrossRef]
- Forkner, R.E.; Marquis, R.J.; Lill, J.T. Feeny revisited: Condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol. Entomol. 2004, 29, 174–187. [Google Scholar] [CrossRef]
- Tooker, J.F.; Rohr, J.R.; Abrahamson, W.G.; De Moraes, C.M. Gall insects can avoid and alter indirect plant defenses. New Phytol. 2008, 178, 657–671. [Google Scholar] [CrossRef]
- Brooner, R. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In Biology of Insectinduced Galls; Shorthouse, J.D., Rohfritsch, O., Eds.; Oxford University Press: New York, NY, USA, 1992; pp. 118–140. [Google Scholar]
- Li, X.Q.; Liu, Y.Z.; Guo, W.F.; Solanki, M.K.; Yang, Z.D.; Xiang, Y.; Ma, Z.C.; Wen, Y.G. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling. Tree Physiol. 2017, 37, 1208–1217. [Google Scholar] [CrossRef]
- Kariñho-Betancourt, E.; Hernández-Soto, P.; Rendón-Anaya, M.; Calderón-Cortés, N.; Oyama, K. Differential expression of genes associated with phenolic compounds in galls of Quercus castanea induced by Amphibolips michoacaensis. J. Plant Inter. 2019, 14, 177–186. [Google Scholar] [CrossRef]
Locality | State | Altitude (m) | Latitude (N), Longitude (W) |
---|---|---|---|
Sierra de Guadalupe | State of Mexico | 2593 | 19°36′5.9″, 99°6′39.5″ |
Mineral del Chico | Hidalgo | 2880 | 20°09′50.4″, 98°41′57.7″ |
Mineral del Monte | Hidalgo | 2777 | 20°8′45.5″, 98°40′27.8″ |
Omitlán de Juárez | Hidalgo | 2460 | 20°09′41.5″, 98°39′11.8″ |
Calcahualco | Veracruz | 2332 | 19°09′0.30″, 97°11′44.7″ |
Tlaquetzaltitla | Veracruz | 2479 | 18°37′51.1″, 97°7′12.7″ |
Locality | Nitrogen (N) | Carbon (C) | Phosphorus (P) | C/N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves with galls | Leaves without galls | Leaves with galls | Leaves without galls | Leaves with galls | Leaves without galls | Leaves with galls | Leaves without galls | |||||
Calcahualco | 18.10 ± 1.10 | 15.94 ± 1.41 | * | 25.59 ± 1.38 | 21.72 ± 1.72 | * | 13.11 ± 1.27 | 11.30 ± 0.78 | * | 1.42 ± 1.10 | 1.37 ± 0.15 | * |
Mineral del Chico | 24.57 ± 2.01 | 17.72 ± 1.48 | * | 26.96 ± 1.91 | 24.17 ± 2.56 | * | 13.13 ± 2.36 | 8.79 ± 0.35 | * | 1.10 ± 00.12 | 1.37 ± 0.20 | * |
Mineral del Monte | 32.96 ± 2.76 | 33.43 ± 2.20 | 26.20 ± 1.36 | 25.83 ± 1.88 | 8.88 ± 0.60 | 7.25 ± 0.58 | * | 0.80 ± 0.07 | 0.77 ± 0.05 | |||
Omitlán de Juárez | 14.32 ± 1.42 | 10.47 ± 1.39 | * | 24.87 ± 1.30 | 22.37 ± 1.71 | * | 10.83 ± 0.65 | 9.02 ± 0.35 | * | 1.74 ± ±0.10 | 2.17 ± 0.33 | * |
Sierra de Guadalupe | 22.36 ± 2.14 | 19.79 ± 2.08 | * | 26.77 ± 1.50 | 23.33 ± 2.00 | * | 12.20 ± 1.04 | 9.65 ± 0.63 | * | 1.21 ± 0.43 | 1.20 ± 0.15 | |
Tlaquetzaltitlan | 29.57 ± 4.16 | 17.31 ± 2.14 | * | 25.82 ± 2.03 | 26.41 ± 1.78 | 9.44 ± 0.86 | 9.02 ± 0.57 | 0.89 ± 0.14 | 1.55 ± 0.23 | * | ||
Nested Anova: | ||||||||||||
Site (Treatment), F = 10,108 | 118.97 *** | 6.37 *** | 26.19 *** | 56.38 *** | ||||||||
Treatment, F = 1,108 | 136.57 *** | 39.65 *** | 127.85 *** | 45.90 *** |
Locality | Average Value | Contribution | Accumulative | |
---|---|---|---|---|
Leaves with galls | Leaves without galls | |||
Mineral El Chico | ||||
Nitrogen (N) | 24.6 | 17.7 | 46.35 | 46.35 |
Phosphorus | 13.1 | 8.79 | 29.20 | 75.55 |
Carbon (C) | 27.0 | 24.2 | 22.40 | 97.95 |
C/N | 1.12 | 1.37 | 2.05 | 100 |
Mineral del Monte | ||||
Nitrogen (N) | 34.0 | 28.9 | 54.40 | 54.38 |
Phosphorus | 9.06 | 6.78 | 24.38 | 78.77 |
Carbon (C) | 26.2 | 25.2 | 19.74 | 98.50 |
C/N | 0.76 | 0.88 | 1.50 | 100 |
Omitlán de Juárez | ||||
Nitrogen (N) | 14.3 | 10.5 | 44.08 | 44.08 |
Carbon (C) | 24.9 | 22.4 | 30.31 | 74.39 |
Phosphorus | 10.8 | 9.02 | 20.68 | 95.07 |
C/N | 1.74 | 2.17 | 4.93 | 100 |
Sierra de Guadalupe | ||||
Carbon (C) | 26.8 | 23.3 | 37.97 | 37.97 |
Nitrogen (N) | 22.4 | 19.8 | 33.03 | 71.00 |
Phosphorus | 12.2 | 9.65 | 26.97 | 97.97 |
C/N | 1.21 | 1.20 | 2.03 | 100 |
Tlaquetzaltitla | ||||
Nitrogen (N) | 29.6 | 17.3 | 77.34 | 77.34 |
Carbon (C) | 25.8 | 26.4 | 12.87 | 90.21 |
Phosphorus | 9.44 | 9.03 | 5.59 | 95.80 |
C/N | 0.89 | 1.55 | 4.19 | 100 |
Calcahualco | ||||
Carbon (C) | 25.6 | 21.7 | 47.14 | 47.14 |
Nitrogen (N) | 18.1 | 15.9 | 28.01 | 75.15 |
Phosphorus | 13.1 | 11.3 | 23.19 | 98.35 |
C/N | 1.42 | 1.37 | 1.65 | 100 |
Locality | Gallic Acid | Chlorogenic Acid | 4-Hydroxybenzoic Acid | Rutin | |||||||||
with galls | without galls | with galls | without galls | with galls | without galls | with galls | without galls | ||||||
Calcahualco | 1.58 ± 0.02 | ND | * | ND | ND | 0.68 ± 0.04 | ND | * | ND | 2.11 ± 0.16 | * | ||
Mineral del Chico | ND | ND | 0.75 ± 0.03 | ND | * | ND | ND | 1.72 ± 0.11 | 2.20 ± 0.10 | ||||
Mineral del Monte | ND | ND | 0.80 ± 0.02 | ND | * | ND | ND | ND | 1.70 ± 0.09 | * | |||
Omitlán de Juárez | ND | ND | ND | ND | ND | ND | ND | 2.44 ± 0.25 | * | ||||
Sierra de Guadalupe | ND | ND | ND | ND | ND | ND | 1.67 ± 0.15 | 1.63 ± 0.13 | |||||
Tlaquetzaltitlan | ND | ND | ND | ND | ND | ND | ND | ND | |||||
Nested Anova: | |||||||||||||
Site (Treatment), F = 10,108 | 7591.32 *** | 721.76 *** | 367.76 *** | 56.47 *** | |||||||||
Treatment, F = 1,108 | 7591.32 *** | 1802.82 *** | 367.76 *** | 128.11 *** | |||||||||
Locality | Kaempferol Glucoside | Quercetin Glucoside | Ellagic Acid | ||||||||||
with galls | without galls | with galls | without galls | with galls | without galls | ||||||||
Calcahualco | ND | 0.18 ± 0.01 | ND | ND | 0.09 ± 0.00 | 0.26 ± 0.01 | * | ||||||
Mineral del Chico | ND | ND | 3.67 ± 0.34 | 2.82 ± 0.27 | * | 0.11 ± 0.02 | 0.23 ± 0.03 | * | |||||
Mineral del Monte | ND | ND | 2.91 ± 0.16 | ND | * | 0.19 ± 0.01 | 0.25 ± 0.02 | ||||||
Omitlán de Juárez | 9.93 ± 1.45 | ND | * | 4.48 ± 0.20 | ND | * | 0.35 ± 0.01 | 0.26 ± 0.01 | |||||
Sierra de Guadalupe | 8.21 ± 0.01 | ND | * | ND | ND | 0.34 ± 0.03 | 0.30 ± 0.02 | ||||||
Tlaquetzaltitlan | 2.03 ± 0.22 | ND | * | ND | ND | 0.22 ± 0.02 | 0.29 ± 0.01 | ||||||
Nested Anova: | |||||||||||||
Site (Treatment), F = 10,108 | 366.68 *** | 133.05 *** | 18.40 *** | ||||||||||
Treatment, F = 1,108 | 1194.34 *** | 267.06 *** | 22.34 *** |
Locality | Concentration | Contribution | Cumulative | |
---|---|---|---|---|
with galls | without galls | |||
Mineral El Chico | ||||
Quercetin glucoside | 2.82 | 3.67 | 45.83 | 45.83 |
Chlorogenic acid | 0.75 | 0.00 | 28.45 | 74.28 |
Rutin | 1.72 | 2.2 | 20.55 | 94.83 |
Mineral del Monte | ||||
Quercetin glucoside | 2.91 | 0.00 | 53.35 | 53.35 |
Rutin | 0.00 | 1.66 | 30.62 | 83.97 |
Omitlán de Juárez | ||||
Kaempferol glucoside | 9.93 | 0.00 | 58.67 | 58.67 |
Quercetin glucoside | 4.48 | 0.00 | 26.54 | 85.22 |
Sierra de Guadalupe | ||||
Kaempferol glucoside | 8.21 | 0.00 | 93.14 | 93.14 |
Tlaquetzaltitla | ||||
Kaempferol glucoside | 2.04 | 0.00 | 51.36 | 51.36 |
Rutin | 1.85 | 0.00 | 46.78 | 98.14 |
Calcahualco | ||||
Rutin | 0.00 | 2.11 | 44.15 | 44.15 |
Gallic acid | 1.58 | 0.00 | 33.89 | 78.04 |
Gall-Inducing (Cynipini) | Abundance | Contribution | Cumulative | |
---|---|---|---|---|
Omitlán de Juárez | Tlaquetzaltitla | |||
Andricus sp. 9 | 18.7 | 0.0 | 19.88 | 19.88 |
Andricus sp. 2 | 13.1 | 0.4 | 19.32 | 39.20 |
Andricus sphaericus | 0.7 | 10.3 | 14.99 | 54.19 |
Striatoandricus georgei | 4.4 | 0.9 | 9.164 | 63.35 |
Neuropterus sp. 4 | 6.9 | 0.0 | 7.226 | 70.58 |
Atrusca pictor | 0.0 | 5.5 | 5.785 | 76.37 |
Omitlán de Juárez | Sierra de Guadalupe | |||
Atrusca pictor | 0.0 | 48.5 | 43.94 | 43.94 |
Striatoandricus georgei | 4.4 | 16.5 | 13.56 | 57.50 |
Andricus sp. 9 | 18.7 | 0.0 | 13.41 | 70.91 |
Andricus sp. 2 | 13.1 | 0.0 | 11.72 | 82.62 |
Omitlán de Juárez | Calcahualco | |||
Cynips sp. 1 | 0.0 | 48.2 | 50.61 | 50.61 |
Andricus sp. 2 | 13.1 | 9.5 | 14.11 | 64.72 |
Andricus sp. 9 | 18.7 | 0.0 | 12.78 | 77.50 |
Omitlán de Juárez | Mineral El Chico | |||
Andricus sp. 9 | 18.7 | 39.9 | 40.62 | 40.62 |
Andricus sphaericus | 1.8 | 14.3 | 15.18 | 55.80 |
Andricus sp. 2 | 13.1 | 1.0 | 12.53 | 68.33 |
Neuropterus sp. 4 | 6.9 | 4.0 | 9.078 | 77.41 |
Omitlán de Juárez | Mineral del Monte | |||
Andricus sp. 2 | 13.1 | 56.9 | 44.95 | 44.95 |
Striatoandricus georgei | 4.4 | 19.5 | 18.51 | 63.45 |
Andricus sp. 9 | 18.7 | 6.9 | 14.83 | 78.28 |
Mineral El Chico | Mineral del Monte | |||
Andricus sp. 2 | 1 | 56.9 | 34.56 | 34.56 |
Andricus sp. 9 | 39.9 | 6.9 | 25.63 | 60.19 |
Striatoandricus georgei | 2.4 | 19.5 | 13.87 | 74.06 |
Andricus sphaericus | 14.3 | 0.2 | 11.15 | 85.21 |
Mineral El Chico | Tlaquetzaltitla | |||
Andricus sp. 9 | 39.9 | 0.0 | 46.27 | 46.27 |
Andricus sp. 1 | 7.3 | 0.6 | 16.41 | 62.69 |
Andricus sphaericus | 14.3 | 10.3 | 10.31 | 73.00 |
Neuropterus sp. 4 | 4.0 | 0.0 | 4.794 | 77.79 |
Mineral El Chico | Sierra de Guadalupe | |||
Atrusca pictor | 0.0 | 48.5 | 33.37 | 33.37 |
Andricus sp. 9 | 39.9 | 0.0 | 31.55 | 64.91 |
Striatoandricus georgei | 2.4 | 16.5 | 11.69 | 76.6 |
Mineral El Chico | Calcahualco | |||
Cynips sp. 1 | 0.0 | 48.2 | 36.56 | 36.56 |
Andricus sp. 9 | 39.9 | 0.0 | 29.79 | 66.36 |
Striatoandricus georgei | 2.4 | 0.0 | 10.81 | 77.16 |
Mineral del Monte | Tlaquetzaltitla | |||
Andricus sp. 2 | 56.9 | 0.4 | 44.03 | 44.03 |
Striatoandricus georgei | 19.5 | 0.9 | 23.63 | 67.66 |
Andricus sphaericus | 0.7 | 10.3 | 9.84 | 77.5 |
Mineral del Monte | Sierra de Guadalupe | |||
Andricus sp. 2 | 56.9 | 0.0 | 39.42 | 39.42 |
Atrusca pictor | 0.0 | 48.5 | 37.89 | 77.31 |
Mineral del Monte | Calcahualco | |||
Cynips sp. 1 | 0.2 | 48.2 | 38.52 | 38.52 |
Andricus sp. 2 | 56.9 | 9.5 | 33.16 | 71.69 |
Striatoandricus georgei | 19.5 | 0.0 | 15.91 | 87.6 |
Tlaquetzaltitla | Sierra de Guadalupe | |||
Atrusca pictor | 5.5 | 48.5 | 53.88 | 53.88 |
Striatoandricus georgei | 0.9 | 16.5 | 23.93 | 77.81 |
Tlaquetzaltitla | Calcahualco | |||
Cynips sp. 1 | 0.0 | 48.2 | 64.06 | 64.06 |
Andricus sp. 2 | 0.4 | 9.5 | 11.11 | 75.17 |
Sierra de Guadalupe | Calcahualco | |||
Cynips sp. 1 | 0.0 | 48.2 | 39.47 | 39.47 |
Atrusca pictor | 48.5 | 0.0 | 33.57 | 73.04 |
Striatoandricus georgei | 16.5 | 0.0 | 13.77 | 86.81 |
Chemical Variable | NMDS Axis 1 | NMDS Axis 2 | ||
---|---|---|---|---|
R2 | F | R2 | F | |
Nitrogen (N) | 0.09 | 5.702 * | ||
Carbon (C) | ||||
Phosphorus | 0.08 | 5.300 * | ||
C/N | 0.07 | 4.634 * | ||
Gallic acid | 0.69 | 131.739 *** | ||
Chlorogenic acid | 0.29 | 24.131 *** | ||
4-hydroxybenzoic acid | 0.66 | 114.138 *** | ||
Rutin | 0.34 | 29.694 *** | 0.10 | 6.085 * |
Kaempferol glucoside | 0.34 | 30.190 *** | ||
Quercetin glucoside | 0.29 | 23.634 *** | ||
Ellagic acid | 0.08 | 4.768 * | 0.11 | 7.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Muñoz, M.; Castillo-Mendoza, E.; Zamilpa, A.; Mussali-Galante, P.; Pujade-Villar, J.; Valencia-Cuevas, L.; Tovar-Sánchez, E. Influence of Gall-Inducing Insects (Cynipini) on the Nutritional and Defensive Chemical Profile of Quercus rugosa. Diversity 2025, 17, 288. https://doi.org/10.3390/d17040288
Serrano-Muñoz M, Castillo-Mendoza E, Zamilpa A, Mussali-Galante P, Pujade-Villar J, Valencia-Cuevas L, Tovar-Sánchez E. Influence of Gall-Inducing Insects (Cynipini) on the Nutritional and Defensive Chemical Profile of Quercus rugosa. Diversity. 2025; 17(4):288. https://doi.org/10.3390/d17040288
Chicago/Turabian StyleSerrano-Muñoz, Miriam, Elgar Castillo-Mendoza, Alejandro Zamilpa, Patricia Mussali-Galante, Juli Pujade-Villar, Leticia Valencia-Cuevas, and Efraín Tovar-Sánchez. 2025. "Influence of Gall-Inducing Insects (Cynipini) on the Nutritional and Defensive Chemical Profile of Quercus rugosa" Diversity 17, no. 4: 288. https://doi.org/10.3390/d17040288
APA StyleSerrano-Muñoz, M., Castillo-Mendoza, E., Zamilpa, A., Mussali-Galante, P., Pujade-Villar, J., Valencia-Cuevas, L., & Tovar-Sánchez, E. (2025). Influence of Gall-Inducing Insects (Cynipini) on the Nutritional and Defensive Chemical Profile of Quercus rugosa. Diversity, 17(4), 288. https://doi.org/10.3390/d17040288