How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Analysis of Environmental Variables
2.3. Nematode Analysis
2.3.1. Analysis of Nematode Community Structure
2.3.2. Ecological Indices of Nematodes
2.4. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Structure and Composition of Nematode Communities
3.3. Nematoid Indices
3.4. Relationship Between Environmental Variables and Nematode Community Under Different Conditions in the Caatinga
3.5. Spatial Distribution of Environmental Variables and Functional Guilds of Nematodes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sampaio, E.V.S.B. Caracterização Do Bioma Caatinga: Características e Potencialidades. In Uso Sustentável e Conservação dos Recursos Florestais da Caatinga; Gariglio, M.A., Sampaio, E.V.S.B., Cestaro, L.A., Kageyama, P.Y., Eds.; Serviço Florestal Brasileiro: Brasilia, Brazil, 2010; pp. 29–48. [Google Scholar]
- Gariglio, M.A.; Sampaio, E.V.S.B.; Cestaro, L.A.; Kageyama, P.Y. Uso Sustentável e Conservação dos Recursos Florestais da Caatinga, 2nd ed.; MMA: Serviço Florestal Brasileiro: Brasilia, Brazil, 2010.
- Oliveira, P.T.; Santos e Silva, C.M.; Lima, K.C. Climatology and Trend Analysis of Extreme Precipitation in Subregions of Northeast Brazil. Theor. Appl. Climatol. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Freire, N.C.F.; Moura, D.; Silva, J.B.; Sobreira, A.; Melo, J.I.M.; Pachêco, A.P. Atlas Das Caatingas; Editora Massangana: Recife, Brazil, 2018.
- Nóbrega, R.S.; Santiago, G.A.C.F.; Soares, D.B. Tendências do Controle Climático Oceânico Sob a Variabilidade Temporal da Precipitação no Nordeste do Brasil. Control Trends Oceanic Climate Under Temporary Variability of Rainfall in Northeast Brazil. Rev. Bras. Climatologia 2016, 18, 9–26. [Google Scholar] [CrossRef]
- Barnes, A.D.; Allen, K.; Kreft, H.; Corre, M.D.; Jochum, M.; Veldkamp, E.; Clough, Y.; Daniel, R.; Darras, K.; Denmead, L.H.; et al. Direct and Cascading Impacts of Tropical Land-Use Change on Multi-Trophic Biodiversity. Nat. Ecol. Evol. 2017, 1, 1511–1519. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Ball, B.A. Impacts of Altered Precipitation Regimes on Soil Communities and Biogeochemistry in Arid and Semi-arid Ecosystems. Glob. Change Biol. 2015, 21, 1407–1421. [Google Scholar] [CrossRef]
- Rito, K.F.; Arroyo-Rodríguez, V.; Queiroz, R.T.; Leal, I.R.; Tabarelli, M. Precipitation Mediates the Effect of Human Disturbance on the Brazilian Caatinga Vegetation. J. Ecol. 2017, 105, 828–838. [Google Scholar] [CrossRef]
- Bengtsson, J.; Angelstam, P.; Elmqvist, T.; Emanuelsson, U.; Folke, C.; Ihse, M.; Moberg, F.; Nyström, M. Reserves, Resilience and Dynamic Landscapes. AMBIO J. Hum. Environ. 2003, 32, 389–396. [Google Scholar] [CrossRef]
- Hodson, A.K.; Ferris, H.; Hollander, A.D.; Jackson, L.E. Nematode Food Webs Associated with Native Perennial Plant Species and Soil Nutrient Pools in California Riparian Oak Woodlands. Geoderma 2014, 228–229, 182–191. [Google Scholar] [CrossRef]
- Lopes, I.; de Assunção Montenegro, A.A. Spatialization of electrical conductivity and physical hydraulic parameters of soils under different uses in an alluvial valley. Rev. Caatinga 2019, 32, 222–233. [Google Scholar] [CrossRef]
- Nascimento, C.E.d.S.; Tabarelli, M.; da Silva, C.A.D.; Leal, I.R.; de Souza Tavares, W.; Serrão, J.E.; Zanuncio, J.C. The Introduced Tree Prosopis Juliflora Is a Serious Threat to Native Species of the Brazilian Caatinga Vegetation. Sci. Total Environ. 2014, 481, 108–113. [Google Scholar] [CrossRef]
- Fitoussi, N.; Pen-Mouratov, S.; Steinberger, Y. Soil Free-Living Nematodes as Bio-Indicators for Assaying the Invasive Effect of the Alien Plant Heterotheca Subaxillaris in a Coastal Dune Ecosystem. Appl. Soil Ecol. 2016, 102, 1–9. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground Biodiversity and Ecosystem Functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Vandegehuchte, M.L.; Sylvain, Z.A.; Reichmann, L.G.; de Tomasel, C.M.; Nielsen, U.N.; Wall, D.H.; Sala, O.E. Responses of a Desert Nematode Community to Changes in Water Availability. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Segat, J.C.; Figueiredo Vasconcellos, R.L.; Paiva Silva, D.; Baretta, D.; Cardoso, E.J.B.N. Ants as Indicators of Soil Quality in an On-Going Recovery of Riparian Forests. Ecol. Manag. 2017, 404, 338–343. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Q.; Gao, D.; Jiang, C.; Liu, F.; Jiang, J.; Ma, Y. Higher Soil Capacity of Intercepting Heavy Rainfall in Mixed Stands than in Pure Stands in Riparian Forests. Sci. Total Environ. 2019, 658, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R. Nematode Infestation, a Potential Threat to Indian Forests. Indian Phytopathol. 2020, 73, 397–414. [Google Scholar] [CrossRef]
- Bongers, T. The Maturity Index: An Ecological Measure of Environmental Disturbance Based on Nematode Species Composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A Framework for Soil Food Web Diagnostics: Extension of the Nematode Faunal Analysis Concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Ferris, H. Contribution of Nematodes to the Structure and Function of the Soil Food Web. J. Nematol. 2010, 42, 63–67. [Google Scholar]
- Ferris, H. Form and Function: Metabolic Footprints of Nematodes in the Soil Food Web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- Neher, D.A. Role of Nematodes in Soil Health and Their Use as Indicators. J. Nematol. 2001, 33, 161–168. [Google Scholar]
- Nielsen, U.N.; Wall, D.H. The Future of Soil Invertebrate Communities in Polar Regions: Different Climate Change Responses in the Arctic and Antarctic? Ecol. Lett. 2013, 16, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, B.S.; de Groot, G.A.; Laros, I.; Stone, D.; Geisen, S. The Need for Standardisation: Exemplified by a Description of the Diversity, Community Structure and Ecological Indices of Soil Nematodes. Ecol. Indic. 2018, 87, 43–46. [Google Scholar] [CrossRef]
- Thakur, M.P.; Tilman, D.; Purschke, O.; Ciobanu, M.; Cowles, J.; Isbell, F.; Wragg, P.D.; Eisenhauer, N. Climate Warming Promotes Species Diversity, but with Greater Taxonomic Redundancy, in Complex Environments. Sci. Adv. 2017, 3, e1700866. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Yu, H.; Liu, X.; Xu, Z.; Zhou, G.; Shi, Y. Climatic Warming Shifts the Soil Nematode Community in a Desert Steppe. Clim. Change 2018, 150, 243–258. [Google Scholar] [CrossRef]
- Mejía-Madrid, H.H. Soil Nematode Abundance and Diversity from Four Vegetation Types in Central Mexico. Nematology 2018, 20, 15–32. [Google Scholar] [CrossRef]
- Iori, P.; Silva, R.B.D.; Junior, M.D.S.D.; Nakamura, R.; Ferreira De Almeida, L.C. Soil Quality Analysis in Riparian Areas for Soil and Water Resource Management. Arch. Agron. Soil Sci. 2020, 66, 572–585. [Google Scholar] [CrossRef]
- Vicente, T.F.d.S.; Montenegro, A.A.d.A.; Pedrosa, E.M.R.; Fontes, R.V.d.P.; Silva, J.S.d.; Tavares, U.E. Community Structure and Spatial Variability of Soil Nematodes in an Alluvial Soil in a Semiarid Region of Pernambuco State, Brazil. Nematoda 2015, 2, e082015. [Google Scholar] [CrossRef]
- de L. da Silva, J.V.C.; Hirschfeld, M.N.C.; Cares, J.E.; Esteves, A.M. Land Use, Soil Properties and Climate Variables Influence the Nematode Communities in the Caatinga Dry Forest. Appl. Soil Ecol. 2020, 150, 103474. [Google Scholar] [CrossRef]
- Ribeiro, E.M.S.; Arroyo-Rodríguez, V.; Santos, B.A.; Tabarelli, M.; Leal, I.R. Chronic Anthropogenic Disturbance Drives the Biological Impoverishment of the Brazilian Caatinga Vegetation. J. Appl. Ecol. 2015, 52, 611–620. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Donagema, G.K.; Campos, D.V.B.; Calderano, S.B.; Teixeira, W.G.; Moreira, J.H.M. Manual de Métodos de Análise Do Solo, 2nd ed.; Donagema, G.K., Campos, D.V.B., Calderano, S.B., Teixeira, W.G., Moreira, J.H.M., Eds.; Embrapa Solos: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Chemical Methods; SSSA: Madison, WI, USA, 2018; pp. 961–1010. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A Rapid and Precise Method for Routine Determination of Organic Carbon in Soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Jenkins, W.R.A. Rapid Centrifugal-Flotation Technique for Separating Nematodes from Soil. Plant Dis. Report. 1964, 48, 692. [Google Scholar]
- Yeates, G.W.; Bongers, T.; de Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding Habits in Soil Nematode Families and Genera—An Outline for Soil Ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar] [PubMed]
- Mai, W.F.; Mullin, P.G. Plant-Parasitic Nematodes: A Pictorial Key to Genera, 4th ed.; Cornell University Press: Ithaca, NY, USA, 1996. [Google Scholar]
- Tarjan, A.C.; Esser, R.P.; Chang, S.L. An Illustrated Key to Nematodes Found in Freshwater. J. Water Pollut. Control Fed. 1977, 49, 2318–2337. [Google Scholar]
- Bongers, T.; Bongers, M. Functional Diversity of Nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Yeates, G.W. Modification and Qualification of the Nematode Maturity Index. Pedobiologia 1994, 38, 97–101. [Google Scholar] [CrossRef]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G.M. NINJA: An Automated Calculation System for Nematode-Based Biological Monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R, 2nd ed.; Springer: Cham, Switzerland, 2011. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. 2017. [Google Scholar]
- Oksanen, J.; Blanchet, G.F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2020. [Google Scholar]
- Journel, A.G. Fundamentals of Geostatistics in Five Lessons, 8th ed.; Short Courses in Geology; American Geophysical Union: Washington, DC, USA, 1989. [Google Scholar]
- Matheron, G. Principles of Geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Journel, A.G. GSLIB: Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University Press: New York, UK, 1998. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Vauclin, M.; Vieira, S.R.; Vachaud, G.; Nielsen, D.R. The Use of Cokriging with Limited Field Soil Observations. Soil Sci. Soc. Am. J. 1983, 47, 175–184. [Google Scholar] [CrossRef]
- Or, D.; Keller, T.; Schlesinger, W.H. Natural and Managed Soil Structure: On the Fragile Scaffolding for Soil Functioning. Soil Tillage Res. 2021, 208, 104912. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Migunova, V.D.; Ackermann, M.; Ruess, L.; Scheu, S. Changes in Plant Species Richness Induce Functional Shifts in Soil Nematode Communities in Experimental Grassland. PLoS ONE 2011, 6, e24087. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Milcu, A.; Sabais, A.C.W.; Bessler, H.; Brenner, J.; Engels, C.; Klarner, B.; Maraun, M.; Partsch, S.; Roscher, C.; et al. Plant Diversity Surpasses Plant Functional Groups and Plant Productivity as Driver of Soil Biota in the Long Term. PLoS ONE 2011, 6, e16055. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Neher, D.A.; Xu, C.-Y.; Wu, J. Status of Soil Nematode Communities during Natural Regeneration of a Subtropical Forest in Southwestern China. Nematology 2015, 17, 79–90. [Google Scholar] [CrossRef]
- Cesarz, S.; Ciobanu, M.; Wright, A.J.; Ebeling, A.; Vogel, A.; Weisser, W.W.; Eisenhauer, N. Plant Species Richness Sustains Higher Trophic Levels of Soil Nematode Communities after Consecutive Environmental Perturbations. Oecologia 2017, 184, 715–728. [Google Scholar] [CrossRef]
- Wilschut, R.A.; Geisen, S. Nematodes as Drivers of Plant Performance in Natural Systems. Trends Plant Sci. 2021, 26, 237–247. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil Nematode Abundance and Functional Group Composition at a Global Scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef]
- Benitez, L.; Kendig, A.E.; Adhikari, A.; Clay, K.; Harmon, P.F.; Holt, R.D.; Goss, E.M.; Flory, S.L. Invasive Grass Litter Suppresses a Native Grass Species and Promotes Disease. Ecosphere 2022, 13, e3907. [Google Scholar] [CrossRef]
- Abbas, A.M.; Alomran, M.M.; Alharbi, N.K.; Novak, S.J. Suppression of Seedling Survival and Recruitment of the Invasive Tree Prosopis Juliflora in Saudi Arabia through Its Own Leaf Litter: Greenhouse and Field Assessments. Plants 2023, 12, 959. [Google Scholar] [CrossRef]
- Howland, A.D.; Schreiner, R.P.; Zasada, I.A. Spatial Distribution of Plant-Parasitic Nematodes in Semi-Arid Vitis Vinífera Vineyards in Washington. J. Nematol. 2014, 46, 321–330. [Google Scholar]
- Tedersoo, L.; Bahram, M.; Cajthaml, T.; Põlme, S.; Hiiesalu, I.; Anslan, S.; Harend, H.; Buegger, F.; Pritsch, K.; Koricheva, J.; et al. Tree Diversity and Species Identity Effects on Soil Fungi, Protists and Animals Are Context Dependent. ISME J. 2016, 10, 346–362. [Google Scholar] [CrossRef] [PubMed]
- Steinauer, K.; Chatzinotas, A.; Eisenhauer, N. Root Exudate Cocktails: The Link between Plant Diversity and Soil Microorganisms? Ecol. Evol. 2016, 6, 7387–7396. [Google Scholar] [CrossRef] [PubMed]
- Navrátilová, D.; Tláskalová, P.; Kohout, P.; Dřevojan, P.; Fajmon, K.; Chytrý, M.; Baldrian, P. Diversity of Fungi and Bacteria in Species-Rich Grasslands Increases with Plant Diversity in Shoots but Not in Roots and Soil. FEMS Microbiol. Ecol. 2018, 95, fiy208. [Google Scholar] [CrossRef]
- Ikram, N.; Shahnaz, D. Effect of Prosopis juliflora (Sw.) Dc. in the Control of Root Rot Fungi of Cowpea (Vigna unguiculata L.) and Mung Bean [Vigna radiata (L.) Wilczek]. Pak. J. Bot. 2013, 45, 649–654. [Google Scholar]
- Peralta, G.; Schon, N.L.; Dickie, I.A.; St. John, M.G.; Orwin, K.H.; Yeates, G.W.; Peltzer, D.A. Contrasting Responses of Soil Nematode Communities to Native and Non-Native Woody Plant Expansion. Oecologia 2019, 190, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, V.E.; Arbeli, Z.; Terán, W.; Lorenz, N.; Dick, R.P.; Roldan, F. Effect of Land Management and Prosopis juliflora (Sw.) DC Trees on Soil Microbial Community and Enzymatic Activities in Intensive Silvopastoral Systems of Colombia. Agric. Ecosyst. Environ. 2012, 150, 139–148. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Ayres, E.; Wall, D.H.; Li, G.; Bardgett, R.D.; Wu, T.; Garey, J.R. Global-scale Patterns of Assemblage Structure of Soil Nematodes in Relation to Climate and Ecosystem Properties. Glob. Ecol. Biogeogr. 2014, 23, 968–978. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Huang, J.; Liu, Z. First Report of a Stunt Nematode (Tylenchorhynchus agri) from Pitaya (Hylocereus polyrhizus) in Guangxi Province of China. Plant Dis. 2018, 102, 2662. [Google Scholar] [CrossRef]
- Simon, A.C.M.; Lopez-Nicora, H.D.; Ralston, T.I.; Richer, E.A.; Niblack, T.L.; Paul, P.A. First Report of Stunt Nematode (Tylenchorhynchus annulatus) on Corn in Ohio. Plant Dis. 2020, 104, 2527. [Google Scholar] [CrossRef]
- Lin, L.F.; Liu, C.G.; Wang, C.M.; Luo, Q.Y.; Liu, Y.H.; Hu, X.Q. Preliminary Identification of Parasitic Nematodes in Forest Soils in Jinping County, Yunnan Province. J. South China Agric. Univ. 2017, 30, 1808–1813. [Google Scholar]
- Kavitha, P.G.; Sudha, A.; Devi, P.A. Exploration and Biodiversity of Nematode in Nilgiri Forest Ecosystem. J. Pharmacogn. Phytochem. 2020, 9, 1722–1727. [Google Scholar]
- Zhang, J.; Chen, G.; Sun, H.; Zhou, S.; Zou, G. Straw Biochar Hastens Organic Matter Degradation and Produces Nutrient-Rich Compost. Bioresour. Technol. 2016, 200, 876–883. [Google Scholar] [CrossRef]
- Treonis, A.M.; Sutton, K.A.; Unangst, S.K.; Wren, J.E.; Dragan, E.S.; McQueen, J.P. Soil Organic Matter Determines the Distribution and Abundance of Nematodes on Alluvial Fans in Death Valley, California. Ecosphere 2019, 10, e02659. [Google Scholar] [CrossRef]
- Lima, S.S.d.; Leite, L.F.C.; das Chagas Oliveira, F.; da Costa, D.B. Atributos Químicos e Estoques de Carbono e Nitrogênio Em Argissolo Vermelho-Amarelo Sob Sistemas Agroflorestais e Agricultura de Corte e Queima No Norte Do Piauí. Rev. Árvore 2011, 35, 51–60. [Google Scholar] [CrossRef]
- Briar, S.S.; Grewal, P.S.; Somasekhar, N.; Stinner, D.; Miller, S.A. Soil Nematode Community, Organic Matter, Microbial Biomass and Nitrogen Dynamics in Field Plots Transitioning from Conventional to Organic Management. Appl. Soil Ecol. 2007, 37, 256–266. [Google Scholar] [CrossRef]
- Holtkamp, R.; Kardol, P.; van der Wal, A.; Dekker, S.C.; van der Putten, W.H.; de Ruiter, P.C. Soil Food Web Structure during Ecosystem Development after Land Abandonment. Appl. Soil Ecol. 2008, 39, 23–34. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, M.; Zhang, J.; Chen, Y.; Chen, X.; Chen, L.; Li, H.; Zhang, X.-X.; Sun, B. Nematode Grazing Promotes Bacterial Community Dynamics in Soil at the Aggregate Level. ISME J. 2017, 11, 2705–2717. [Google Scholar] [CrossRef]
- Jones, F.G.W.; Larbey, D.W.; Parrott, D.M. The Influence of Soil Structure and Moisture on Nematodes, Especially Xiphinema, Longidorus, Trichodorus and Heterodera Spp. Soil Biol. Biochem. 1969, 1, 153–165. [Google Scholar] [CrossRef]
Variables | F | Mean Values | |
---|---|---|---|
MV | NV | ||
Environmental variables | |||
Moisture (%) | 0.033 * | 17.02 | 14.96 |
OM (%) | 2.0 × 10−16 ** | 1.61 | 3.85 |
Total sand | 0.865 ns | 63.82 | 64.28 |
Fine sand | 0.542 ns | 45.16 | 44.02 |
Coarse sand | 0.345 ns | 18.68 | 20.26 |
Clay | 2.34 × 10−10 ** | 27.04 | 13.08 |
Silt | 1.67 × 10−9 ** | 9.13 | 22.64 |
pH | 4.54 × 10−4 ** | 6.80 | 6.27 |
E.C. | 0.42 ns | 1.63 | 1.80 |
Nematodes | |||
Rhabditidae | 0.742 ns | 101.9 | 144.5 |
Acrobeles | 0.754 ns | 322.94 | 341.7 |
Dorylaimus | 0.069 ns | 57.97 | 50.2 |
Tylenchorhynchus | 0.268 ns | 212.9 | 276.8 |
Trophic groups | |||
Bacterivores | 0.099 ns | 450.07 | 591.64 |
Fungivores | 7.64 × 10−6 ** | 36.09 | 98.01 |
Omnivores | 0.213 ns | 125.83 | 94.54 |
Plant-parasitic | 0.001 ** | 218.39 | 432.89 |
Functional guilds | |||
Ba1 | 0.181 ns | 111.24 | 144.51 |
Ba2 | 0.353 ns | 337.54 | 397.70 |
Ba3 | 1.04 × 10−8 ** | 1.29 | 49.43 |
Fu2 | 1.3 × 10−6 ** | 31.01 | 98.01 |
Om4 | 0.090 ns | 125.83 | 83.91 |
PP3 | 0.008 ** | 214.24 | 380.84 |
PP5 | 2.49 × 10−8 ** | 2.17 | 51.94 |
Ecological indices | |||
MI | 0.614 ns | 2.20 | 2.17 |
MI 2-5 | 0.051 ns | 2.52 | 2.41 |
PPI | 2.75 × 10−5 ** | 3.03 | 3.19 |
CI | 0.062 ns | 10.26 | 18.59 |
BI | 0.365 ns | 29.29 | 32.29 |
EI | 0.91 ns | 53.60 | 55.13 |
SI | 0.157 ns | 55.05 | 52.17 |
Metabolic footprints | |||
CF | 0.25 ns | 512.1 | 814.7 |
EF | 0.184 ns | 115.45 | 154.10 |
SF | 0.944 ns | 308.03 | 394.92 |
HF | 1.41 × 10−11 ** | 14.63 | 114.85 |
FF | 6.86 × 10−4 ** | 2.46 | 9.20 |
BF | 0.205 ns | 172.51 | 294.71 |
OF | 0.942 ns | 308.03 | 445.75 |
Totals | |||
TNB | 0.322 ns | 4.01 | 4.43 |
TND | 0.010 * | 830.4 | 1236.9 |
DIVER | 7.13 × 10−7 ** | 7.17 | 10.4 |
Modified Vegetation | Native Vegetation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV (%) | Kurtosis | Skewness | Largest Error | K-S | Mean | SD | CV (%) | Kurtosis | Skewness | Largest Error | K-S | |
Environmental variables | ||||||||||||||
Moisture (%) | 17.02 | 3.96 | 23.27 | 2.99 | 1.63 | 0.16 | 0.23 | 14.96 | 4.00 | 26.74 | −1.11 | −0.10 | 0.11 | 0.23 |
OM (%) | 1.61 | 0.59 | 36.84 | −1.22 | 0.15 | 0.13 | 3.85 | 0.61 | 15.77 | 1.18 | −0.49 | 0.09 | ||
Total sand | 63.82 | 15.30 | 23.98 | 1.94 | −1.40 | 0.15 | 64.28 | 4.17 | 6.48 | −0.49 | −0.24 | 0.10 | ||
Fine sand | 45.16 | 9.48 | 20.99 | 2.38 | −1.36 | 0.18 | 44.02 | 5.59 | 12.69 | −1.23 | 0.01 | 0.13 | ||
Coarse sand | 18.68 | 9.41 | 50.40 | −1.01 | −0.27 | 0.11 | 20.26 | 2.94 | 14.51 | −0.97 | 0.15 | 0.10 | ||
Clay | 27.04 | 10.89 | 40.26 | 1.47 | 0.99 | 0.14 | 13.08 | 2.22 | 16.96 | −0.14 | −0.11 | 0.11 | ||
Silt | 9.13 | 11.19 | 122.51 | 3.06 | 1.85 | 0.21 | 22.64 | 2.56 | 11.29 | 0.34 | 0.64 | 0.12 | ||
pH | 6.80 | 0.49 | 7.14 | −0.47 | −0.27 | 0.13 | 6.27 | 0.69 | 11.00 | −1.07 | −0.16 | 0.14 | ||
E.C. | 1.63 | 0.94 | 57.51 | 0.54 | 1.15 | 0.15 | 1.80 | 0.79 | 43.94 | −1.10 | 0.29 | 0.10 | ||
Trophic groups | ||||||||||||||
Bacterivores | 450.07 | 410.35 | 91.17 | 3.75 | 1.86 | 0.20 | 0.23 | 591.64 | 289.46 | 48.92 | −0.47 | 0.42 | 0.07 | 0.23 |
Fungivores | 36.09 | 37.19 | 103.06 | −0.14 | 1.04 | 0.17 | 98.01 | 65.83 | 67.17 | −1.30 | 0.32 | 0.14 | ||
Predators | - | - | - | - | - | - | 19.83 | 31.50 | 158.85 | 1.72 | 1.59 | 0.31 | ||
Omnivores | 125.83 | 135.28 | 107.51 | 5.39 | 2.14 | 0.22 | 94.54 | 57.77 | 61.11 | −0.90 | 0.27 | 0.10 | ||
Plant-parasitic | 218.39 | 294.12 | 134.68 | 7.70 | 2.69 | 0.27 | 432.89 | 240.56 | 55.57 | −0.25 | 0.34 | 0.07 | ||
Functional guilds | ||||||||||||||
Ba1 | 111.24 | 103.57 | 93.10 | 0.53 | 1.21 | 0.14 | 0.23 | 144.51 | 102.45 | 70.89 | −0.93 | 0.55 | 0.15 | 0.23 |
Ba2 | 337.54 | 329.92 | 97.74 | 4.13 | 1.89 | 0.15 | 397.70 | 190.27 | 47.84 | −0.34 | 0.61 | 0.15 | ||
Ba3 | 1.29 | 4.66 | 362.64 | 13.98 | 3.73 | 0.49 | 49.43 | 43.45 | 87.91 | 1.27 | 1.16 | 0.15 | ||
Fu2 | 31.01 | 35.17 | 113.41 | −0.04 | 1.09 | 0.19 | 98.01 | 65.83 | 67.17 | −1.30 | 0.32 | 0.14 | ||
Fu4 | 5.07 | 14.96 | 295.02 | 8.30 | 3.02 | 0.46 | - | - | - | - | - | - | ||
Pr4 | - | - | - | - | - | - | 19.83 | 31.50 | 158.85 | 1.72 | 1.59 | 0.31 | ||
Om4 | 125.83 | 135.28 | 107.51 | 5.39 | 2.14 | 0.22 | 83.91 | 50.23 | 59.86 | −0.52 | 0.35 | 0.08 | ||
PP3 | 214.24 | 293.22 | 136.86 | 7.95 | 2.74 | 0.27 | 10.63 | 20.09 | 188.97 | 1.42 | 1.63 | 0.42 | ||
PP4 | 1.97 | 5.40 | 274.12 | 7.66 | 2.80 | 0.47 | 380.94 | 215.49 | 56.57 | −0.65 | 0.31 | 0.06 | ||
PP5 | 2.17 | 6.87 | 316.21 | 14.44 | 3.72 | 0.45 | 51.94 | 46.20 | 88.95 | −0.03 | 0.74 | 0.13 |
Trophic Groups | FG | Mass (µg) | Modified Vegetation | Native Vegetation | ||||
---|---|---|---|---|---|---|---|---|
A | Mean ± SD | D (%) | A | Mean ± SD | D (%) | |||
Free-living | 21,420 | 611.9 ± 539.8 | 73.7 | 28,141 | 804.0 ± 379.5 | 65.01 | ||
Bacterivores | 15,753 | 450.077 ± 410.34 | 54.2 | 20,708 | 591.6 ± 289.4 | 47.85 | ||
Rhabditidae ● | Ba1 | 5.03 | 3566.5 | 101.9 ± 93.98 | 12.27 | 5058 | 144.5 ± 102.4 | 11.7 |
Rhabditis | Ba1 | 7.5 | 327 | 9.34 ± 20.76 | 1.12 | 0 | 0.00 ± 0.00 | 0 |
Acrobeles ● | Ba2 | 0.6 | 11303 | 322.94 ± 312.20 | 38.89 | 11963 | 341.7 ± 165.9 | 27.63 |
Cephalobidae ● | Ba2 | 0.41 | 435 | 12.42 ± 22.16 | 1.49 | 1636 | 46.4± 45.9 | 3.78 |
Prismatolaimus ● | Ba3 | 0.41 | 45 | 1.28 ± 4.66 | 0.15 | 1730 | 49.4 ± 43.4 | 4 |
Wilsonema ● | Ba2 | 0.05 | 76 | 2.17 ± 5.73 | 0.26 | 321 | 9.17± 15.3 | 0.74 |
Fungivores | 1263 | 36.08 ± 37.18 | 4.34 | 3431 | 98.01 ± 65.8 | 7.92 | ||
Aphelenchus ● | Fu2 | 0.23 | 294.5 | 8.41 ± 16.90 | 1.01 | 270 | 7.7 ± 18.2 | 0.62 |
Aphelenchoides ● | Fu2 | 0.14 | 781 | 22.31 ± 31.23 | 2.69 | 1453 | 41.5 ± 44.9 | 3.35 |
Dorylaimodes | Fu4 | 1.16 | 177.5 | 5.07 ± 14.96 | 0.61 | 0 | 0.00 ± 0.00 | 0 |
Nothotylenchus ● | Fu2 | 0.26 | 10 | 0.28 ± 1.69 | 0.03 | 1707.5 | 48.8 ± 43.8 | 3.95 |
Predators | 0 | 0.00 ± 0.00 | 0 | 694 | 31.5 ± 19.8 | 1.6 | ||
Mononchus | Pr4 | 3.87 | 0 | 0.00 ± 0.00 | 0 | 130 | 3.7 ± 13 | 0.3 |
Mononchulus | Pr4 | 0.98 | 0 | 0.00 ± 0.00 | 0 | 564 | 16.1 ±28.2 | 1.3 |
Omnivores | 4404 | 125.8 ± 135.28 | 15.15 | 3309 | 94.5 ± 57.7 | 7.64 | ||
Dorylaimidae | Om4 | 12.84 | 2375 | 67.85 ± 78.31 | 8.17 | 0 | 0.00 ± 0.00 | 0 |
Dorylaimus ● | Om4 | 39.28 | 2029 | 57.97 ± 66.18 | 6.98 | 2937 | 50.2 ± 83.9 | 6.78 |
Mesodorylaimus | Om5 | 1.31 | 0 | 0.00 ± 0.00 | 0 | 372 | 10.6 ± 20.1 | 0.86 |
Plant-parasitic | 7643.5 | 218.4 ± 294.1 | 26.3 | 15151 | 432.8 ± 240.5 | 34.99 | ||
Tylenchorhynchus ● | PP3 | 0.23 | 7452 | 212.9 ± 292.4 | 25.64 | 9689 | 276.8 ± 170.7 | 22.38 |
Helicotylenchus | PP3 | 0.29 | 0 | 0.00 ± 0.00 | 0 | 1083 | 30.9 ± 37.8 | 2.5 |
Rotylenchulus | PP3 | 1.91 | 0 | 0.00 ± 0.00 | 0 | 1779 | 50.8 ± 37.9 | 4.11 |
Scutellonema | PP3 | 0.51 | 11.5 | 0.33 ± 1.35 | 0.03 | 0 | 0.00 ± 0.00 | 0 |
Xiphodorus | PP5 | 2.59 | 6 | 0.17 ± 1.01 | 0.02 | 0 | 0.00 ± 0.00 | 0 |
Xiphinema ● | PP5 | 5.67 | 70 | 2 ± 6.84 | 0.24 | 1818 | 51.9 ± 46.2 | 4.19 |
Trichodorus | PP4 | 1.03 | 69 | 1.97 ± 5.40 | 0.23 | 0 | 0.00 ± 0.00 | 0 |
Paratylenchus | PP3 | 0.05 | 0 | 0.00 ± 0.00 | 0 | 782 | 22.34 ± 28.7 | 1.81 |
Pratylenchus | PP3 | 0.13 | 35 | 1 ± 3.10 | 0.12 | 0 | 0.00 ± 0.00 | 0 |
Nematode | Contribution (%) | Mean Abundance | |
---|---|---|---|
Modified Vegetation | Native Vegetation | ||
Vegetation: modified vs. native (overall mean dissimilarity: 56.86%) | |||
Acrobeles | 22.12 | 323 | 342 |
Tylenchorhynchus | 20.2 | 213 | 277 |
Rhabditidae | 9.839 | 102 | 145 |
Dorylaimus | 6.534 | 58 | 83.9 |
Dorylaimidae | 5.153 | 67.9 | 0 |
Rotylenchulus | 4.798 | 0 | 50.8 |
Xiphinema | 4.377 | 2 | 51.9 |
Nothotylenchus | 4.329 | 0.286 | 48.8 |
Cephalobidae | 4.164 | 12.4 | 46.7 |
Prismatolaimus | 4.128 | 1.29 | 49.4 |
Modified Vegetation | Native Vegetation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV (%) | Kurtosis | Skewness | Largest Error | K-S | Mean | SD | CV (%) | Kurtosis | Skewness | Largest Error | K-S | |
Ecological indices | ||||||||||||||
MI | 2.20 | 0.22 | 9.91 | −0.56 | 0.04 | 0.08 | 0.23 | 2.17 | 0.18 | 8.35 | −0.44 | −0.40 | 0.08 | 0.23 |
MI 2-5 | 2.52 | 0.27 | 10.82 | 5.98 | 1.80 | 0.14 | 2.41 | 0.19 | 7.93 | −0.59 | −0.25 | 0.11 | ||
PPI | 3.03 | 0.06 | 2.09 | 2.51 | 1.95 | 0.37 | 3.19 | 0.20 | 6.41 | −0.64 | 0.42 | 0.09 | ||
CI | 10.26 | 19.04 | 185.62 | 12.07 | 3.36 | 0.30 | 18.59 | 17.69 | 95.17 | 10.36 | 2.94 | 0.21 | ||
BI | 29.29 | 12.41 | 42.37 | 1.57 | 0.75 | 0.12 | 32.29 | 15.00 | 46.46 | 9.50 | 2.80 | 0.19 | ||
EI | 53.60 | 18.31 | 34.17 | −0.23 | 0.13 | 0.08 | 55.13 | 15.57 | 28.25 | 3.80 | −1.81 | 0.17 | ||
SI | 55.05 | 16.30 | 29.61 | 2.51 | −0.82 | 0.12 | 52.17 | 17.80 | 34.12 | 1.07 | −1.17 | 0.12 | ||
Metabolic footprints | ||||||||||||||
CF | 512.11 | 669.48 | 130.73 | 2.92 | 1.69 | 0.16 | 814.69 | 434.72 | 53.36 | −0.29 | 0.29 | 0.05 | ||
EF | 115.45 | 154.90 | 134.17 | 0.74 | 1.26 | 0.15 | 154.10 | 149.08 | 96.74 | −0.92 | 0.55 | 0.14 | ||
SF | 308.03 | 489.84 | 159.02 | 4.54 | 1.99 | 0.20 | 394.92 | 270.28 | 68.44 | −0.55 | 0.35 | 0.10 | ||
PPF | 14.63 | 30.89 | 211.17 | 5.37 | 2.28 | 0.28 | 114.85 | 67.94 | 59.16 | −0.18 | 0.46 | 0.05 | ||
FuF | 2.46 | 5.49 | 223.30 | 5.90 | 2.30 | 0.22 | 9.20 | 6.28 | 68.24 | −1.06 | 0.40 | 0.10 | ||
BaF | 172.51 | 209.58 | 121.49 | 2.12 | 1.56 | 0.15 | 294.71 | 176.54 | 59.91 | −0.83 | 0.52 | 0.11 | ||
PPF | - | - | - | - | - | - | 7.89 | 14.07 | 178.25 | 3.80 | 2.08 | 0.29 | ||
OmF | 308.03 | 489.37 | 158.87 | 4.59 | 1.99 | 0.19 | 445.75 | 266.09 | 59.70 | −0.55 | 0.34 | 0.09 | ||
TNB | 4.01 | 3.97 | 99.04 | 3.50 | 1.79 | 0.17 | 4.43 | 2.52 | 56.83 | −0.37 | 0.31 | 0.08 | ||
TND | 830.4 | 694.2 | 83.9 | 0.7 | 1.25 | 0.20 | 1236.9 | 591.3 | 47.8 | −0.05 | 0.44 | 0.058 | ||
DIVER | 7.17 | 2.34 | 34.64 | −0.92 | 0.34 | 0.12 | 10.4 | 2.59 | 24.9 | 0.10 | −0.31 | 0.10 |
Variable | Fitted Model | C0 | C + C0 | C | A0 | r2 | C/[C0 + C] | DSD | Jack-Knifing | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | |||||||||
Modified Vegetation | ||||||||||
Environmental Variables | ||||||||||
Moisture (%) | Gaussian | 5.75 | 17.88 | 12.13 | 51.15 | 1 | 0.678 | Moderate | −0.01 | 0.986 |
OM (%) | Spherical | 0.0201 | 0.3151 | 0.295 | 19.38 | 0.826 | 0.936 | Weak | 0.006 | 0.937 |
Total sand | Exponential | 30.3 | 259.7 | 229.4 | 24.09 | 0.994 | 0.883 | Weak | −0.039 | 0.91 |
Fine sand | Spherical | 1.9 | 91.76 | 89.86 | 15.42 | 0.992 | 0.979 | Weak | −0.041 | 1.09 |
Coarse sand | Spherical | 15.6 | 90.86 | 75.26 | 20.49 | 0.974 | 0.828 | Weak | −0.022 | 0.939 |
Clay | Exponential | 70.01 | 128.9 | 58.89 | 43.05 | 0.786 | 0.457 | Moderate | −0.005 | 0.823 |
Silt | NUG | |||||||||
pH | Gaussian | 0.132 | 0.295 | 0.163 | 37.01 | 0.98 | 0.553 | Moderate | 0.001 | 0.976 |
E.C. | NUG | |||||||||
Functional Guilds (five most abundant and common in both studied areas) | ||||||||||
Ba1 | Spherical | 2790 | 15,010 | 12,220 | 42.21 | 0.986 | 0.814 | Weak | −0.005 | 0.829 |
Ba2 | Gaussian | 29,500 | 147,800 | 118,300 | 33.93 | 1 | 0.800 | Weak | −0.104 | 1.411 |
Fu2 | Exponential | 113 | 1295 | 1182 | 21.12 | 0.952 | 0.913 | Weak | −0.034 | 0.962 |
Om4 | Gaussian | 8710 | 26,360 | 17,650 | 47.70 | 0.881 | 0.670 | Moderate | −0.115 | 1.216 |
PP3 | Gaussian | 35,700 | 122,500 | 86,800 | 76.92 | 0.962 | 0.709 | Moderate | −0.142 | 1.292 |
Native Vegetation | ||||||||||
Environmental Variables | ||||||||||
Moisture (%) | Exponential | 0.01 | 14.96 | 14.95 | 17.85 | 0.81 | 0.999 | Weak | 0.001 | 1.066 |
OM (%) | Exponential | 0.001 | 0.341 | 0.34 | 21.6 | 0.874 | 0.997 | Weak | 0.025 | 1.04 |
Total sand | NUG | |||||||||
Fine sand | Exponential | 20.22 | 41.6 | 21.38 | 46.0 | 0.821 | 0.514 | Moderate | −0.006 | 0.879 |
Coarse sand | Gaussian | 1.33 | 9.69 | 8.36 | 13.6 | 0.776 | 0.863 | Weak | 0.01 | 0.942 |
Clay | NUG | |||||||||
Silt | NUG | |||||||||
pH | NUG | |||||||||
E.C. | Exponential | 0.001 | 0.585 | 0.584 | 18.2 | 0.652 | 0.998 | Weak | −0.047 | 1.074 |
Functional Guilds (five most abundant and common in both studied areas) | ||||||||||
Ba1 | Exponential | 500 | 10,780 | 10,280 | 24.72 | 0.841 | 0.954 | Weak | 0.022 | 1.02 |
Ba2 | NUG | |||||||||
Fu2 | Gaussian | 10 | 4006 | 3996 | 12.08 | 0.988 | 0.998 | Weak | 0.039 | 0.95 |
Om4 | NUG | |||||||||
PP3 | Exponential | 7200 | 52,200 | 45,000 | 28.34 | 0.77 | 0.862 | Weak | 0.026 | 1.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, J.M.M.d.; Pedrosa, E.M.R.; Lopes, I.; Vicente, T.F.d.S.; de Morais, T.F.; Rolim, M.M. How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use? Diversity 2025, 17, 514. https://doi.org/10.3390/d17080514
Melo JMMd, Pedrosa EMR, Lopes I, Vicente TFdS, de Morais TF, Rolim MM. How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use? Diversity. 2025; 17(8):514. https://doi.org/10.3390/d17080514
Chicago/Turabian StyleMelo, Juliana M. M. de, Elvira Maria R. Pedrosa, Iug Lopes, Thais Fernanda da S. Vicente, Thayná Felipe de Morais, and Mário Monteiro Rolim. 2025. "How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use?" Diversity 17, no. 8: 514. https://doi.org/10.3390/d17080514
APA StyleMelo, J. M. M. d., Pedrosa, E. M. R., Lopes, I., Vicente, T. F. d. S., de Morais, T. F., & Rolim, M. M. (2025). How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use? Diversity, 17(8), 514. https://doi.org/10.3390/d17080514