First Microbial Survey of a Submerged Petrified Forest in the Black Sea: Culture-Based and Metagenomic Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling
2.3. Quantification Analysis of Cultivable Bacterial Presence
2.4. Molecular Identification of Dominant Bacterial Strains
2.5. Genomic Analysis of Microbial Diversity
2.5.1. Total DNA Isolation
2.5.2. Shotgun Metagenomic Sequencing
2.5.3. Pre-Processing of the Raw Sequencing Reads
2.5.4. Taxonomic Classification of the Processed Sequencing Reads
2.5.5. Functional Profiling of the Processed Sequencing Reads
2.5.6. Detection of Genes Involved in the Nitrogen Cycle
2.5.7. Identification of Proteins Related to Sulfur Metabolism
3. Results
3.1. Hydrochemical Characterization of Seawater in the Underwater Petrified Forest
3.2. Quantitative Analysis of Culturable Bacterial Abundance
3.3. Bacterial Isolates Identified Through 16S rRNA Sequencing
3.4. Shotgun Metagenomic Analysis
3.4.1. Sequencing Data
3.4.2. Microbial Community Composition
3.4.3. Functional Analysis
4. Discussion
5. Conclusions
6. Limitations of the Study
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Z–MA | Zobell Marine Agar |
TCBS | Thiosulfate–citrate–bile salts–sucrose agar |
PCR | Polymerase chain reaction |
SWC | Seawater complete |
BLAST | Basic Local Alignment Search Tool |
CFU | Colony Forming Units |
References
- Reese, C.A.; Harley, G.L.; DeLong, K.L.; Bentley, S.J., Sr.; Xu, K.; Gonzalez, S.; Truong, J.T.; Obelcz, J.; Caporaso, A. Stratigraphic Pollen Analysis Performed on a Late Pleistocene Cypress Forest Preserved on the Northern Gulf of Mexico Continental Shelf. J. Quat. Sci. 2018, 33, 865–870. [Google Scholar] [CrossRef]
- Gonzalez, S.; Bentley, S.J., Sr.; DeLong, K.L.; Xu, K.; Obelcz, J.; Truong, J.; Harley, G.L.; Reese, C.A.; Caporaso, A. Facies Reconstruction of a Late Pleistocene Cypress Forest Discovered on the Northern Gulf of Mexico Continental Shelf. Gulf Coast Assoc. Geol. Soc. Trans. 2017, 67, 133–146. [Google Scholar]
- DeLong, K.L.; Bentley, S.J.; Xu, K.; Harley, G.L.; Reese, C.A.; Obelcz, J.B.; Gonzalez, S.; Troung, J.T. Investigation of an Ancient Bald Cypress Forest in the Northern Gulf of Mexico; USDI Bureau of Ocean Energy Management: New Orleans, LA, USA, 2020; 108p. [Google Scholar]
- Delong, K.L.; Gonzalez, S.; Obelcz, J.B.; Truong, J.T.; Bentley, S.J., Sr.; Xu, K.; Reese, C.A.; Harley, G.L.; Caporaso, A.; Shen, Z.; et al. Late Pleistocene Baldcypress (Taxodium Distichum) Forest Deposit on the Continental Shelf of the Northern Gulf of Mexico. Boreas 2021, 50, 871–892. [Google Scholar] [CrossRef]
- Martínez-Cabrera, H.I.; Cevallos-Ferriz, S.R.S. Palaeoecology of the Miocene El Cien Formation (Mexico) as Determined from Wood Anatomical Characters. Rev. Palaeobot. Palynol. 2008, 150, 154–167. [Google Scholar] [CrossRef]
- Mustoe, G.E.; Alvarado, G.E.; Palacios, A.J. Mineralogy of Petrified Wood from Costa Rica. Minerals 2025, 15, 497. [Google Scholar] [CrossRef]
- Gungor, Y.; Akkemik, U.; Kasapci, C.; Basaran, E. Geology and Woods of a New Fossil Forest from the Early Miocene of Gokceada (Turkey). Forestist 2019, 69, 22–34. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W.; Zouros, N.; Anastasakis, G. Age, Stratigraphy, Sedimentology and Tectonic Setting of the Sigri Pyroclastic Formation and Its Fossil Forests, Early Miocene, Lesbos, Greece. Basin Res. 2019, 31, 1178–1197. [Google Scholar] [CrossRef]
- Mustoe, G.E. Wood Petrifaction: A New View of Permineralization and Replacement. Geosciences 2017, 7, 119. [Google Scholar] [CrossRef]
- Weibel, R. Petrified Wood from an Unconsolidated Sediment, Voervadsbro, Denmark. Sediment. Geol. 1996, 101, 31–41. [Google Scholar] [CrossRef]
- Yossifova, M.G.; Eskenazy, G.M.; Valčeva, S.P. Petrology, Mineralogy, and Geochemistry of Submarine Coals and Petrified Forest in the Sozopol Bay, Bulgaria. Int. J. Coal Geol. 2011, 87, 212–225. [Google Scholar] [CrossRef]
- Caruso, G. Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. J. Mar. Sci. Eng. 2020, 8, 78. [Google Scholar] [CrossRef]
- Merk, V.; Chanana, M.; Gaan, S.; Burgert, I. Mineralization of Wood by Calcium Carbonate Insertion for Improved Flame Retardancy. Holzforschung 2016, 70, 867–876. [Google Scholar] [CrossRef]
- Bardelli, T.; Gómez-Brandón, M.; Fornasier, F.; Arfaioli, P.; Egli, M.; Pietramellara, G.; Ceccherini, M.T.; Insam, H.; Ascher-Jenull, J. Chemical and Microbiological Changes in Norway Spruce Deadwood during the Early Stage of Decomposition as a Function of Exposure in an Alpine Setting. Arct. Antarct. Alp. Res. 2018, 50, e1438347. [Google Scholar] [CrossRef]
- Zobell, C. Studies on Marine Bacteria. I. The Cultural Requirements of Heterotrophic Aerobes. J. Mar. Res. 1941, 4. Available online: https://elischolar.library.yale.edu/journal_of_marine_research/582/ (accessed on 15 July 2025).
- Reasoner, D.J.; Geldreich, E.E. A New Medium for the Enumeration and Subculture of Bacteria from Potable Water. Appl. Environ. Microb. 1985, 49, 1–7. [Google Scholar] [CrossRef]
- Uchiyama, H. Distribution of Vibrio Species Isolated from Aquatic Environments with TCBS Agar. Environ. Health Prev. 2000, 4, 199–204. [Google Scholar] [CrossRef]
- Starosvetsky, J.; Zukerman, U.; Armon, R.H. A Simple Medium Modification for Isolation, Growth and Enumeration of Acidithiobacillus Thiooxidans (Syn. Thiobacillus Thiooxidans) from Water Samples. J. Microbiol. Methods 2013, 92, 178–182. [Google Scholar] [CrossRef]
- Ghazy, E.A.; Mahmoud, M.G.; Asker, M.S.; Mahmoud, M.N.; Elsoud, M.M.A.; Sami, M.E.A. Cultivation and Detection of Sulfate Reducing Bacteria (SRB) in Sea Water. J. Am. Sci. 2011, 7, 604–608. [Google Scholar]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.N.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher Sequence Analysis Tools Framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- The Galaxy Community; Afgan, E.; Nekrutenko, A.; Grüning, B.A.; Blankenberg, D.; Goecks, J.; Schatz, M.C.; Ostrovsky, A.E.; Mahmoud, A.; Lonie, A.J.; et al. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2022 Update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Arkin, A.P.; Cottingham, R.W.; Henry, C.S.; Harris, N.L.; Stevens, R.L.; Maslov, S.; Dehal, P.; Ware, D.; Perez, F.; Canon, S.; et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 2018, 36, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Menzel, P.; Ng, K.L.; Krogh, A. Fast and Sensitive Taxonomic Classification for Metagenomics with Kaiju. Nat. Commun. 2016, 7, 11257. [Google Scholar] [CrossRef]
- Franzosa, E.A.; McIver, L.J.; Rahnavard, G.; Thompson, L.R.; Schirmer, M.; Weingart, G.; Lipson, K.S.; Knight, R.; Caporaso, J.G.; Segata, N.; et al. Species-Level Functional Profiling of Metagenomes and Metatranscriptomes. Nat. Methods 2018, 15, 962–968. [Google Scholar] [CrossRef]
- Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc Database of Metabolic Pathways and Enzymes—A 2019 Update. Nucleic Acids Res. 2020, 48, D445–D453. [Google Scholar] [CrossRef]
- Tu, Q.; Lin, L.; Cheng, L.; Deng, Y.; He, Z. NCycDB: A Curated Integrative Database for Fast and Accurate Metagenomic Profiling of Nitrogen Cycling Genes. Bioinformatics 2019, 35, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Tanabe, T.S.; Dahl, C. HMS-S-S: A Tool for the Identification of Sulphur Metabolism-related Genes and Analysis of Operon Structures in Genome and Metagenome Assemblies. Mol. Ecol. Resour. 2022, 22, 2758–2774. [Google Scholar] [CrossRef]
- Tugrul, S.; Besiktepe, T.; Salihoglu, I. Nutrient Exchange Fluxes between the Aegean and Black Seas through the Marmara Sea. Mediterr. Mar. Sci. 2002, 3, 33–42. [Google Scholar] [CrossRef]
- Konovalov, S.K.; Murray, J.W.; Iii, G.W.L. Basic Processes of Black Sea Biogeochemistry. Oceanography 2015, 18, 24–35. [Google Scholar] [CrossRef]
- Lazar, L.; Boicenco, L.; Pantea, E.; Timofte, F.; Vlas, O.; Bișinicu, E. Modeling Dynamic Processes in the Black Sea Pelagic Habitat—Causal Connections between Abiotic and Biotic Factors in Two Climate Change Scenarios. Sustainability 2024, 16, 1849. [Google Scholar] [CrossRef]
- Shishkov, G.; Valceca, S.; Pimpirev, C. Preconditions for the Formation of “Stone Forest” and Coal Deposits in the Gulf of Sozopol. Annu. Sofia Univ. Fac. Geol. Geogr. 1983, 1, 190–199. [Google Scholar]
- Ognjanova-Rumenova, N. Diatoms as Indicators of Palaeoenvironmental Changes during the Holocene in the Bay of Sozopol (Bulgarian Black Sea Coast). Phytol. Balcan. 1995, 2, 27–39. [Google Scholar]
- Draganov, V. Submerged Coastal Settlements from the Final Eneolithic and the Early Bronze Age in the Sea around Sozopol and Urdoviza Bay near Kiten. In Prehistoric Bulgaria; Bailey, D.W., Panayotov, I., Eds.; Monographs in World Archaelogy No. 22; Prehistoric Press: Cheltenham, UK, 1995; pp. 225–242. [Google Scholar]
- Xu, Z.; Zhao, J.; Li, S.; Shan, J. Investigating Resident Participation in Pro-Environmental Behaviors (PEBs) for Marine Protection in Coastal China. J. Coastal Res. 2023, 39, 455–470. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kwon, K.K.; Cho, K.H.; Park, J.H.; Lee, H.K. Isolation and Identification of Bacteria from Marine Biofilms. Key Eng. Mat. 2005, 277–279, 612–617. [Google Scholar] [CrossRef]
- Swan, B.K.; Tupper, B.; Sczyrba, A.; Lauro, F.M.; Martinez-Garcia, M.; González, J.M.; Luo, H.; Wright, J.J.; Landry, Z.C.; Hanson, N.W.; et al. Prevalent Genome Streamlining and Latitudinal Divergence of Planktonic Bacteria in the Surface Ocean. C. R. Acad. Bulg. Sci. 2013, 110, 11463–11468. [Google Scholar] [CrossRef]
- Bernard, L.; Schäfer, H.; Joux, F.; Courties, C.; Muyzer, G.; Lebaron, P. Genetic Diversity of Total, Active and Culturable Marine Bacteria in Coastal Seawater. Aquat. Microb. Ecol. 2000, 23, 1–11. [Google Scholar] [CrossRef]
- Zweifel, U.L.; Hagstrom, A. Total Counts of Marine Bacteria Include a Large Fraction of Non-Nucleoid-Containing Bacteria (Ghosts). Appl. Environ. Microb. 1995, 61, 2180–2185. [Google Scholar] [CrossRef]
- Arandia-Gorostidi, N.; Weber, P.K.; Alonso-Sáez, L.; Morán, X.A.G.; Mayali, X. Elevated Temperature Increases Carbon and Nitrogen Fluxes between Phytoplankton and Heterotrophic Bacteria through Physical Attachment. ISME J. 2017, 11, 641–650. [Google Scholar] [CrossRef]
- Sardo, A.; Accornero, A.; Giovinazzi, F. Luminescent Bacteria as Indicators of Marine Water Quality: Preliminary Results from the Campania Coastal Waters. Chem. Ecol. 2008, 24, 19–26. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.-B.; Zhang, X.-Y.; Dang, Y.-R.; Sun, L.-L.; Zhang, W.-P.; Fu, H.-H.; Yang, G.-P.; Wang, M.; McMinn, A.; et al. Experimental Evidence for Long-Term Coexistence of Copiotrophic and Oligotrophic Bacteria in Pelagic Surface Seawater. Environ. Microbiol. 2021, 23, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Stal, L.J.; Bolhuis, H.; Cretoiu, M.S. Phototrophic Marine Benthic Microbiomes: The Ecophysiology of These Biological Entities. Environ. Microbiol. 2019, 21, 1529–1551. [Google Scholar] [CrossRef]
- Flombaum, P.; Gallegos, J.L.; Gordillo, R.A.; Rincón, J.; Zabala, L.L.; Jiao, N.; Karl, D.M.; Li, W.K.W.; Lomas, M.W.; Veneziano, D.; et al. Present and Future Global Distributions of the Marine Cyanobacteria Prochlorococcus and Synechococcus. C. R. Acad. Bulg. Sci. 2013, 110, 9824–9829. [Google Scholar] [CrossRef]
- Sabeva, R.; Velev, S.; Kenderov, L.; Angelova, B.; Iliev, M. Pyritization of Trees from the Natural Phenomenon Underwater Petrified Forest, Sozopol Bay, Black Sea, Bulgaria. Rev. Bulg. Geol. Soc. 2024, 85, 120–123. [Google Scholar] [CrossRef]
- An, L.; Yan, Y.-C.; Tian, H.-L.; Chi, C.-Q.; Nie, Y.; Wu, X.-L. Roles of Sulfate-Reducing Bacteria in Sustaining the Diversity and Stability of Marine Bacterial Community. Front. Microbiol. 2023, 14, 1218828. [Google Scholar] [CrossRef]
- Scholze, C.; Jørgensen, B.B.; Røy, H. Psychrophilic Properties of Sulfate-Reducing Bacteria in Arctic Marine Sediments. Limnol. Oceanogr. 2021, 66, S293–S302. [Google Scholar] [CrossRef]
- Supardy, N.A.; Ibrahim, D.; Mat Nor, S.R.; Noordin, W.N.M. Bioactive Compounds of Pseudoalteromonas sp. IBRL PD4.8 Inhibit Growth of Fouling Bacteria and Attenuate Biofilms of Vibrio Alginolyticus FB3. Pol. J. Microbiol. 2019, 68, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Wu, S.; Sun, C. Pseudodesulfovibrio Cashew sp. Nov., a Novel Deep-Sea Sulfate-Reducing Bacterium, Linking Heavy Metal Resistance and Sulfur Cycle. Microorganisms 2021, 9, 429. [Google Scholar] [CrossRef]
- Suominen, S.; Dombrowski, N.; Sinninghe Damsté, J.S.; Villanueva, L. A Diverse Uncultivated Microbial Community Is Responsible for Organic Matter Degradation in the Black Sea Sulphidic Zone. Environ. Microbiol. 2021, 23, 2709–2728. [Google Scholar] [CrossRef] [PubMed]
- Pavlovska, M.; Prekrasna, I.; Dykyi, E.; Zotov, A.; Dzhulai, A.; Frolova, A.; Slobodnik, J.; Stoica, E. Niche Partitioning of Bacterial Communities along the Stratified Water Column in the Black Sea. MicrobiologyOpen 2021, 10, e1195. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Yeves, P.J.; Callieri, C.; Picazo, A.; Mehrshad, M.; Haro-Moreno, J.M.; Roda-Garcia, J.J.; Dzhembekova, N.; Slabakova, V.; Slabakova, N.; Moncheva, S.; et al. The Microbiome of the Black Sea Water Column Analyzed by Shotgun and Genome Centric Metagenomics. Environ. Microbiome 2021, 16, 5. [Google Scholar] [CrossRef]
- Neethu, C.S.; Saravanakumar, C.; Purvaja, R.; Robin, R.S.; Ramesh, R. Oil-Spill Triggered Shift in Indigenous Microbial Structure and Functional Dynamics in Different Marine Environmental Matrices. Sci. Rep. 2019, 9, 1354. [Google Scholar] [CrossRef]
- Moreno-Ulloa, A.; Sicairos Diaz, V.; Tejeda-Mora, J.A.; Macias Contreras, M.I.; Castillo, F.D.; Guerrero, A.; Gonzalez Sanchez, R.; Mendoza-Porras, O.; Vazquez Duhalt, R.; Licea-Navarro, A. Chemical Profiling Provides Insights into the Metabolic Machinery of Hydrocarbon-Degrading Deep-Sea Microbes. mSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Brindefalk, B.; Ekman, M.; Ininbergs, K.; Dupont, C.L.; Yooseph, S.; Pinhassi, J.; Bergman, B. Distribution and Expression of Microbial Rhodopsins in the Baltic Sea and Adjacent Waters. Environ. Microbiol. 2016, 18, 4442–4455. [Google Scholar] [CrossRef]
- Haro-Moreno, J.M.; López-Pérez, M.; de la Torre, J.R.; Picazo, A.; Camacho, A.; Rodriguez-Valera, F. Fine Metagenomic Profile of the Mediterranean Stratified and Mixed Water Columns Revealed by Assembly and Recruitment. Microbiome 2018, 6, 128. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Al-Sarawi, H.; Aldhameer, A.; Shajan, A.; Zakir, F.; Abdul Razzack, N.; Alam, F. Metagenomes from Coastal Sediments of Kuwait: Insights into the Microbiome, Metabolic Functions and Resistome. Microorganisms 2023, 11, 531. [Google Scholar] [CrossRef]
- Chen, J.; McIlroy, S.E.; Archana, A.; Baker, D.M.; Panagiotou, G. A Pollution Gradient Contributes to the Taxonomic, Functional, and Resistome Diversity of Microbial Communities in Marine Sediments. Microbiome 2019, 7, 104. [Google Scholar] [CrossRef]
- Jégousse, C.; Vannier, P.; Groben, R.; Guðmundsson, K.; Marteinsson, V.T. Marine Microbial Communities of North and South Shelves of Iceland. Front. Mar. Sci. 2022, 9, 795835. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Wang, X.; Lin, H.; Liu, J.; Zhou, S.; Sun, H.; Zhang, X.-H. Spatiotemporal Dynamics of Free-Living and Particle-Associated Vibrio Communities in the Northern Chinese Marginal Seas. Appl. Environ. Microb. 2019, 85, e00217-19. [Google Scholar] [CrossRef]
- Xu, L.-L.; McIlroy, S.E.; Ni, Y.; Guibert, I.; Chen, J.; Rocha, U.; Baker, D.M.; Panagiotou, G. Chemical Pollution Drives Taxonomic and Functional Shifts in Marine Sediment Microbiome, Influencing Benthic Metazoans. ISME Commun. 2025, 5, ycae141. [Google Scholar] [CrossRef]
- Wang, B.; Liu, H.; Tang, H.; Hu, X. Microbial Ecological Associations in the Surface Sediments of Bohai Strait. J. Ocean. Limnol. 2018, 36, 795–804. [Google Scholar] [CrossRef]
- Marchese, P.; Garzoli, L.; Young, R.; Allcock, L.; Barry, F.; Tuohy, M.; Murphy, M. Fungi Populate Deep-Sea Coral Gardens as Well as Marine Sediments in the Irish Atlantic Ocean. Environ. Microbiol. 2021, 23, 4168–4184. [Google Scholar] [CrossRef] [PubMed]
- Chrismas, N.; Allen, R.; Allen, M.J.; Bird, K.; Cunliffe, M. A 17-Year Time-Series of Fungal Environmental DNA from a Coastal Marine Ecosystem Reveals Long-Term Seasonal-Scale and Inter-Annual Diversity Patterns. Proc. R. Soc. B Biol. Sci. 2023, 290, 20222129. [Google Scholar] [CrossRef] [PubMed]
- Hensel, M.; Hinsley, A.P.; Nikolaus, T.; Sawers, G.; Berks, B.C. The Genetic Basis of Tetrathionate Respiration in Salmonella Typhimurium. Mol. Microbiol. 1999, 32, 275–287. [Google Scholar] [CrossRef] [PubMed]
Isolate | BLASTn | Phylum | Identity, % | Accession Number |
---|---|---|---|---|
BlS_10 | Vibrio sp. strain NCIS28 | γ-Proteobacteria | 99 | PP267458.1 |
BlS_15 | Vibrio aestuarianus strain 6-25 | γ-Proteobacteria | 99 | MW041305.1 |
BlS_17 | Pseudoalteromonas undina strain VRG_S9 | γ-Proteobacteria | 99 | OL979359.1 |
BlS_18 | Vibrio parahaemolyticus strain BF-1 | γ-Proteobacteria | 100 | KR137715.1 |
BlS_23 | Vibrio orientalis strain S-17 | γ-Proteobacteria | 99 | JF412251.1 |
BlS_26 | Pseudoalteromonas espejiana strain ATCC 29659 | γ-Proteobacteria | 98 | CP011028.1 |
BlS_29 | Cobetia sp. strain INV PRT183 | γ-Proteobacteria | 99 | MZ015175.1 |
BlS_31 | Pseudoalteromonas sp. strain S1-4-6 | γ-Proteobacteria | 99 | MK743964.1 |
BlS_33 | Pseudoalteromonas sp. strain S1-4-6 | γ-Proteobacteria | 99 | MK743964.1 |
BlS_40 | Pseudoalteromonas espejiana strain ATCC 29659 | γ-Proteobacteria | 99 | CP011028.1 |
BlS_43 | Vibrio owensii strain F77142 | γ-Proteobacteria | 99 | HQ908717.1 |
BlS_47 | Pseudoalteromonas sp. strain S1-4-6 | γ-Proteobacteria | 99 | MK743964.1 |
BlS_48 | Pseudoalteromonas sp. B-1054 | γ-Proteobacteria | 100 | DQ347554.1 |
BlS_50 | Vibrio breoganii strain FF50 | γ-Proteobacteria | 100 | CP016177.1 |
BlS_51 | Micrococcus yunnanensis strain Y19 | Actinobacteria | 99 | PP892572.1 |
BlS_52 | Rheinheimera sp. Gbf-Ret-3 | γ-Proteobacteria | 99 | AM117933.1 |
BlS_53 | Pseudoalteromonas sp. AB291d | γ-Proteobacteria | 99 | FR821211.1 |
BlS_63 | Pseudarthrobacter sulfonivorans strain NC756 | Actinobacteria | 100 | MW741513.1 |
BlS_64 | Vibrio celticus 96-414 | γ-Proteobacteria | 99 | LN832940.1 |
BlS_65 | Vibrio orientalis strain S-17 | γ-Proteobacteria | 100 | JF412251.1 |
BlS_74 | Vibrio sp. VibC-Oc-051 | γ-Proteobacteria | 99 | KF577060.1 |
BlS_75 | Pseudoalteromonas sp. strain S1-4-6 | γ-Proteobacteria | 99 | MK743964.1 |
BlS_76 | Marinomonas lutimaris | γ-Proteobacteria | 99 | MZ725944.1 |
BlS_78 | Micrococcus luteus strain KUDC1784 | Actinobacteria | 100 | KC355291.1 |
BlS_86 | Staphylococcus saprophyticus strain AA78 | Firmicutes | 100 | MW255282.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliev, M.; Ilieva, R.; Peykov, S.; Terziyska, V.; Pelkin, A.; Kenderov, L. First Microbial Survey of a Submerged Petrified Forest in the Black Sea: Culture-Based and Metagenomic Insights. Diversity 2025, 17, 583. https://doi.org/10.3390/d17080583
Iliev M, Ilieva R, Peykov S, Terziyska V, Pelkin A, Kenderov L. First Microbial Survey of a Submerged Petrified Forest in the Black Sea: Culture-Based and Metagenomic Insights. Diversity. 2025; 17(8):583. https://doi.org/10.3390/d17080583
Chicago/Turabian StyleIliev, Mihail, Ralitsa Ilieva, Slavil Peykov, Viktoria Terziyska, Anton Pelkin, and Lyubomir Kenderov. 2025. "First Microbial Survey of a Submerged Petrified Forest in the Black Sea: Culture-Based and Metagenomic Insights" Diversity 17, no. 8: 583. https://doi.org/10.3390/d17080583
APA StyleIliev, M., Ilieva, R., Peykov, S., Terziyska, V., Pelkin, A., & Kenderov, L. (2025). First Microbial Survey of a Submerged Petrified Forest in the Black Sea: Culture-Based and Metagenomic Insights. Diversity, 17(8), 583. https://doi.org/10.3390/d17080583