High Levels of Antibiotic Resistance but No Antibiotic Production Detected Along a Gypsum Gradient in Great Onyx Cave, KY, USA
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Isolation of Pure Cultures
2.3. Antibiotic Production
2.4. Soil Crumb Plate
2.5. Soil Crumb with Indicator Bacteria
2.6. Cross-Streak Assay
2.7. Antibiotic Resistance
3. Results
3.1. Antibiotic Production
3.2. Antibiotic Resistance
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karam, G.; Chastre, J.; Wilcox, M.H.; Vincent, J.L. Antibiotic strategies in the era of multidrug resistance. Crit. Care 2016, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, V.; King, C.; Kalan, L.; Morar, M.; Sung, W.; Schwartz, C.; Froese, D.; Zazula, G.; Calmels., F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Gupta, R.S. Origin of diderm (Gram-negative) bacteria: Antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 2011, 100, 171–182. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance: Global Report on Surveillance 2014. Available online: http://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed on 13 September 2016).
- Pelaez, F. The historical delivery of antibiotics from microbial natural products—Can history repeat? Biochem. Pharm. 2006, 71, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.R.; Northup, D.E. Microbial Ecology: Caves as an extreme habitat. In Cave Microbiomes: A Novel Resource for Drug Discovery; Cheeptham, N., Ed.; Springer: New York, NY, USA, 2013; pp. 85–108. ISBN 978-1-4614-5206-5. [Google Scholar]
- Zhang, L. Integrated approach for discovery of novel drugs from microbial natural products. In Natural Products. Drug Discovery and Therapeutic Medicine; Zhang, L., Demain, A.L., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 30–55. ISBN 1-58829-383-1. [Google Scholar]
- Leisner, J.J.; Haaber, J. Intraguild predation provides a selection mechanism for bacterial antagonistic compounds. Proc. R. Soc. Lond. B. Biol. Sci. 2012, 279, 4513–4521. [Google Scholar] [CrossRef] [PubMed]
- Leisner, J.J.; Jorgensen, N.O.G.; Middleboe, M. Predation and selection for antibiotic resistance in natural environments. Evol. Appl. 2016, 9, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Dapkevicius, M.L.E. Cave biofilms and their potential for novel antibiotic discovery. In Cave Microbiomes: A Novel Resource for Drug Discovery; Springer: New York, NY, USA, 2013; pp. 35–45. ISBN 978-1-4614-5206-5. [Google Scholar]
- Khumbar, C.; Watwe, M. Why antibiotics: A comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis. Nat. Sci. 2013, 5, 26–40. [Google Scholar] [CrossRef]
- Martinez, J.L.; Fajardo, A.; Garmendia, L.; Hernandez, A.; Linares, J.F.; Martinez-Solano, L.; Sánchez, M.B. A global view of antibiotic resistance. FEMS Microbiol. Rev. 2009, 33, 44–65. [Google Scholar] [CrossRef] [PubMed]
- OSHA. Safety Data Sheet, OSHA Occupational Chemical Database. Available online: www.osha.gov/chemicaldata/ (accessed on 21 September 2017).
- Montano, E.T.; Henderson, L.O. Studies of antibiotic production by cave bacteria. In Cave Microbiomes: A Novel Resource for Drug Discovery; Cheeptham, N., Ed.; Springer: New York, NY, USA, 2012; pp. 109–130. ISBN 978-1-4614-5206-5. [Google Scholar]
- Gypsum. Available online: https://www.gypsum.org/about/gypsum-101/uses-gypsum/ (accessed on 12 September 2016).
- Singh, T.M. The Effect of Gypsum on Bacterial Activities in Soils. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1920. Retrospective Theses and Dissertations 14298. Available online: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=15297&context=rtd (accessed on 21 September 2016).
- Ajjappalavara, P.S.; Dharmatti, P.R.; Salimath, P.M.; Patil, R.V.; Patil, M.S.; Krishnaraj, P.U. Effect of gypsum application on the control of bacterial wilt in Brinjal (Solanum. melongena L.). Karnataka J. Agric. Sci. 2008, 21, 600–601. [Google Scholar]
- Palmer, A.N. The Mammoth Cave Region, Kentucky. In Caves and Karst of the USA; Palmer, A.N., Palmer, M.V., Eds.; National Speleological Society: Huntsville, AL, USA, 2009; pp. 108–113. [Google Scholar]
- Lavoie, K.H. A grand, gloomy, and peculiar place: Microbiology in the Mammoth Cave Region. In Life in Extreme Environments: Microbial Life of Cave Systems; Engel, A.S., Ed.; De Gruyter: Berlin, Germany, 2015; pp. 47–78. ISBN 978-3-1103-3499-9. [Google Scholar]
- Carson, V. Mammoth Cave Hits 400 Miles. Available online: https://www.nps.gov/maca/learn/news/mammoth-cave-400-miles.htm (accessed on 5 July 2017).
- Poulson, T.L.; Lavoie, K.H.; Keith, J.H. Biological desert under the cap rock. In Proceedings of Annual Report for Cave Research Foundation; Cave Books: Dayton, OH, USA, 1986; pp. 24–25. [Google Scholar]
- Brucker, R.W.; Watson, R.A. The Longest Cave, 1st ed.; Southern Illinois University Press: Carbondale, IL, USA, 1976; ISBN 0-394-48793-1. [Google Scholar]
- Reasoner, D.J.; Geldreich, E.E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7. [Google Scholar]
- Antibiotic Guides. Johns Hopkins ABX Guides. Available online: www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX (accessed on 21 September 2017).
- Interpretaive Standards. Available online: https://catalog.hardydiagnostics.com/cp_prod/Content/hugo/HardyDiskASTProceduresandChart.pdf (accessed on 21 September 2017).
- Klusaite, A.; Vickackaite, V.; Vaitkeviciene, B.; Karnickaite, R.; Bukelskis, D.; Kieraite-Alkesandrova, I.; Kuisiene, N. Characterization of antimicrobial activity of culturable bacteria isolated from Krubera-Voronja Cave. Int. J. Speleol. 2016, 45, 275–287. [Google Scholar] [CrossRef]
- Dedesko, S.; Siegel, J.A. Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome 2015, 3, 71. [Google Scholar] [CrossRef] [PubMed]
- Van Laarhoven, K.A.; Huinink, H.P.; Segers, F.J.J.; Dijksterhuis, J.; Adan, O.C.G. Separate effects of moisture content and water activity on the hyphal extension of Penicillium rubens on porous media. Environ. Microbiol. 2015, 17, 5089–5099. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspect. Med. 2012, 2, a012427. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, K.; Waglechner, N.; Pawlowski, A.; Koteva, K.; Banks, E.D.; Johnston, M.D.; Barton, H.A.; Wright, G.D. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 2012, 7, e34953. [Google Scholar] [CrossRef] [PubMed]
Location | Gypsum Content |
---|---|
Entrance, 10 m | None |
30 m | None |
Natural Entrance, 20 m | None |
Natural Entrance, 40 m | None |
50 m | None |
70 m | None |
90 m | None |
Edwards, 110 m | None |
Left Hand Tunnel | None |
Edwards, 200 m | Start gypsum |
Edwards, 300 m | Gypsum crust |
Edwards, 400 m | Gypsum flowers |
Edwards, 500 m | Gypsum crust |
Edwards, 600 m | Gypsum crust |
Edwards, 700 m | Gypsum crust |
Edwards, 800 m | Gypsum crust |
Edwards, 900 m | Limited gypsum |
Edwards, 1000 m | Limited gypsum |
Edwards, 1100 m | Limited gypsum |
Cox Avenue, 100 m | Limited gypsum |
Cox Avenue, 200 m | Gypsum crust |
Cox Avenue, 300 m | None |
Cox Avenue, 400 m | None |
Cox Avenue, 500 m | None |
Code | Name | Supplier | Mode of Action | Concentration | Origin |
---|---|---|---|---|---|
CTX-30 | Cefotaxime | Hardy | Inhibits cell wall synthesis | 30 mcg | Semi-synthetic |
C-30 | Chloramphenicol | BD BBLTM | Inhibits protein synthesis | 30 mcg | Natural |
CC-2 | Clindamycin | BBL | Inhibits protein synthesis | 2 mcg | Semi-synthetic |
GM-10 | Gentamicin | BBL | Inhibits protein synthesis | 10 mcg | Natural |
N-30 | Neomycin | BD BBLTM | Inhibits protein synthesis | 30 mcg | Natural |
PIP-100 | Piperacillin | BBL | Inhibits cell wall synthesis | 100 mcg | Semi-synthetic |
TMP-5 | Trimethoprim | BBL | Inhibits DNA synthesis | 5 mcg | Synthetic |
Indicator or Isolate | Gr | Amount Gypsum | CTX30 Cefotaxime | C30 Chloramphenicol | CC2 Clindamycin | GM10 Gentamicin | N30 Neomycin | PIP100 Piperacillin | TMP5 Trimethoprim | Total R |
---|---|---|---|---|---|---|---|---|---|---|
E. coli | − | N/A | S | R | S | S | S | S | 1 (6) | |
B. mycoides | + | R | S | S | S | S | I | R | 2 | |
P. aeruginosa | − | R | I | R | S | R | S | R | 4 | |
S. aureus | + | N/A | S | S | S | S | S | S | 0 (6) | |
E0110 | − | None | R | R | R | R | R | I | R | 6 |
E500 | − | Crust | R | S | N/A | S | R | S | R | 3 (6) |
E500-1 | − | Crust | I | I | R | R | R | N/A | R | 4 (6) |
E500-2 | − | Crust | R | R | R | R | R | S | R | 6 |
E500-3 | − | Crust | R | R | R | R | I | S | R | 5 |
E500-3 | − | Crust | S | S | R | R | R | S | S | 3 |
E500-4 | − | Crust | R | R | R | S | R | S | R | 5 |
E500-6 | − | Crust | R | R | R | R | R | S | R | 6 |
E500-7 | + | Crust | S | R | R | R | R | R | R | 6 |
E500-B | − | Crust | R | R | R | N/A | R | R | R | 6 (6) |
E650-A | − | Crust | R | R | R | R | R | R | R | 7 |
E650-C | + | Crust | I | R | R | S | S | S | R | 3 |
E800-1 | − | Crust | R | R | R | R | R | S | R | 6 |
E800-A | − | Crust | I | N/A | R | N/A | I | S | R | 2 (5) |
E800-2 | + | Crust | I | S | S | S | I | R | R | 2 |
E1000 | − | Limited | R | R | R | R | R | R | R | 7 |
E1000A | − | Limited | S | R | R | R | R | R | R | 6 |
E1000-B | − | Limited | R | R | R | S | S | R | R | 5 |
E1000C | + | Limited | R | R | R | S | R | R | R | 6 |
E1100C | − | Limited | S | R | R | R | R | S | S | 4 |
Cox200B-1 | + | Crust | R | R | R | R | R | R | R | 7 |
Cox200B-2 | − | Crust | R | R | R | S | I | N/A | R | 4 (6) |
Cox 400 | + | None | I | S | R | I | I | S | R | 2 |
Cox400-1 | − | None | R | N/A | R | S | R | S | R | 4 (6) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavoie, K.; Ruhumbika, T.; Bawa, A.; Whitney, A.; De Ondarza, J. High Levels of Antibiotic Resistance but No Antibiotic Production Detected Along a Gypsum Gradient in Great Onyx Cave, KY, USA. Diversity 2017, 9, 42. https://doi.org/10.3390/d9040042
Lavoie K, Ruhumbika T, Bawa A, Whitney A, De Ondarza J. High Levels of Antibiotic Resistance but No Antibiotic Production Detected Along a Gypsum Gradient in Great Onyx Cave, KY, USA. Diversity. 2017; 9(4):42. https://doi.org/10.3390/d9040042
Chicago/Turabian StyleLavoie, Kathleen, Tania Ruhumbika, Anissa Bawa, Aaryn Whitney, and José De Ondarza. 2017. "High Levels of Antibiotic Resistance but No Antibiotic Production Detected Along a Gypsum Gradient in Great Onyx Cave, KY, USA" Diversity 9, no. 4: 42. https://doi.org/10.3390/d9040042
APA StyleLavoie, K., Ruhumbika, T., Bawa, A., Whitney, A., & De Ondarza, J. (2017). High Levels of Antibiotic Resistance but No Antibiotic Production Detected Along a Gypsum Gradient in Great Onyx Cave, KY, USA. Diversity, 9(4), 42. https://doi.org/10.3390/d9040042