Towards Fully Integrated Wireless Impedimetric Sensors
Abstract
:1. Introduction
2. Design and Fabrication
2.1. Impedimetric transducers
2.2. Measurement circuit
2.3. Inductive telemetry
3. Results and Discussion
4. Experimental Section
5. Conclusions
Acknowledgments
References and Notes
- Lei, M.; Baldi, A.; Nuxoll, E.; Siegel, R.A.; Ziaie, B. Hydrogel-based microsensors for wireless pH/glucose monitoring. Biomed. Microdev 2009, 11, 529–538. [Google Scholar]
- Ong, K.G.; Bitler, J.S.; Grimes, C.A.; Puckett, L.G.; Bachas, L.G. Remote query resonant-circuit sensors for monitoring of bacteria growth: Application to food quality control. Sensors 2002, 2, 219–232. [Google Scholar]
- Schienle, M.; Paulus, C.; Frey, A.; Hofmann, F.; Holzapfl, B.; Schindler-Bauer, P.; Thewes, R. Fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. IEEE J. Solid-State Circ 2004, 39, 2438–2445. [Google Scholar]
- Kordas, N.; Manoli, Y.; Mokwa, W.; Rospert, M. A CMOS compatible monolithic conductivity sensor with integrated electrodes. Sens. Actuat. A 1994, 43, 31–37. [Google Scholar]
- Arx, J.V.; Najafi, K. On-chip coils with integrated cores for remote inductive powering of integrated Microsystems. Proceedings of the Tranducers 1997, International Conference on Solid State Sensors and Actuators, Chicago, IL, USA, June 1997; pp. 999–1002.
- Baldi, A.; Choi, W.; Ziaie, B. A self-resonant frequency-modulated micromachined passive pressure transensor. IEEE Sens. J 2003, 3, 728–733. [Google Scholar]
- Varlan, A.R.; Sansen, W. Micromachined conductometric p(CO2) sensor. Sens. Actuat. B 1997, 44, 309–315. [Google Scholar]
- Hofmann, T.; Bcckmann, F.; Michaelis, S.; Zacheja, J.; Binder, J.; Tagliante, S. Comparison of a conventional with an advanced micromachined flexible-fuel sensor. Sens. Actuat. A 1997, 61, 319–322. [Google Scholar]
- Varlan, A.R.; Jacobs, P.; Sansen, W. New design technique for planar conductometric haematocrit sensors. Sens. Actuat. B 1996, 34, 258–264. [Google Scholar]
- Ho, W.O.; Krause, S.; McNeil, C.J.; Pritchard, J.A.; Armstrong, R.D.; Athey, D.; Rawson, K. Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Anal. Chem 1999, 71, 1940–1946. [Google Scholar]
- de la Rica, R.; Fernandez-Sanchez, C.; Baldi, A. Polysilicon interdigitated electrodes as impedimetric sensors. Electrochem. Commun 2006, 8, 1239–1244. [Google Scholar]
- Dzyadevich, S.V.; Arkhipova, V.N.; Soldatkin, A.P.; El’skaya, A.V.; Shul’ga, A.A. Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent. Anal. Chim. Acta 1998, 374, 11–18. [Google Scholar]
- de la Rica, R.; Baldi, A.; Fernandez-Sanchez, C.; Matsui, H. Selective detection of live pathogens via surface-confined electric field perturbation on interdigitated silicon transducers. Anal. Chem 2009, 81, 3830–3835. [Google Scholar]
- de la Rica, R.; Baldi, A.; Fernandez-Sanchez, C. Local detection of enzymatic ion generation with polycrystalline silicon interdigitated electrodes and its application to biosensing. Appl. Phys. Lett 2007, 90, 074102/1–3. [Google Scholar]
- Trebbe, U.; Noggemann, M.; Cammann, K.; Fiaccabrino, G.C.; Koudelka-Hep, M.; Dzyadevich, S.; Shulga, O. A new calcium-sensor based on ion-selective conductometric microsensors—Membranes and features. Fresenius J. Anal. Chem 2001, 371, 734–739. [Google Scholar]
- Gill, E.; Arshak, A.; Arshak, K.; Korostynska, O. pH sensitivity of novel PANI/PVB/PS3 composite films. Sensors 2007, 7, 3329–3346. [Google Scholar]
- Wu, J.; Suls, J.; Sansen, W. Electrical properties of polysilicon electrodes for conductometric measurements. Electroanalysis 2000, 12, 538–541. [Google Scholar]
- Sacristan-Riquelme, J.; Segura-Quijano, F.; Baldi, A.; Oses, M.T. Low power impedance measurement integrated circuit for sensor applications. J. Microelec 2009, 40, 177–184. [Google Scholar]
- Neagu, C.R.; Jansen, H.V.; Smith, A.; Gardeniers, J.G.E; Elwenspoek, M.C. Characterization of a planar microcoil for implantable microsystems. Sens. Actuat. A 1997, 62, 599–611. [Google Scholar]
- Segura-Quijano, F.; Garcia-Canton, J.; Sacristan-Riquelme, J.; Oses, M.T.; Baldi, A. Wireless powering of single-chip systems with integrated coil and external wire-loop resonator. J. Appl. Phys. Lett 2008, 92, 074102/1–3. [Google Scholar]
- Johannessen, E.A.; Wang, L.; Reid, S.W.J.; Cumming, D.R.S.; Cooper, J.M. Implementation of radiotelemetry in a lab-in-a-pill format. Lab Chip 2006, 6, 39–45. [Google Scholar]
- Calia, G.; Rocchitta, G.; Migheli, R.; Puggioni, G.; Spissu, Y.; Bazzu, G.; Mazzarello, V.; Lowry, J.P.; O’Neill, R.D.; Desole, M.S.; Serra, P.A. Biotelemetric monitoring of brain neurochemistry in conscious rats using microsensors and biosensors. Sensors 2009, 9, 2511–2523. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Segura-Quijano, F.; Sacristán-Riquelme, J.; García-Cantón, J.; Osés, M.T.; Baldi, A. Towards Fully Integrated Wireless Impedimetric Sensors. Sensors 2010, 10, 4071-4082. https://doi.org/10.3390/s100404071
Segura-Quijano F, Sacristán-Riquelme J, García-Cantón J, Osés MT, Baldi A. Towards Fully Integrated Wireless Impedimetric Sensors. Sensors. 2010; 10(4):4071-4082. https://doi.org/10.3390/s100404071
Chicago/Turabian StyleSegura-Quijano, Fredy, Jordi Sacristán-Riquelme, Jesús García-Cantón, Maria Teresa Osés, and Antonio Baldi. 2010. "Towards Fully Integrated Wireless Impedimetric Sensors" Sensors 10, no. 4: 4071-4082. https://doi.org/10.3390/s100404071
APA StyleSegura-Quijano, F., Sacristán-Riquelme, J., García-Cantón, J., Osés, M. T., & Baldi, A. (2010). Towards Fully Integrated Wireless Impedimetric Sensors. Sensors, 10(4), 4071-4082. https://doi.org/10.3390/s100404071