Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials
Abstract
:1. Introduction
1.1. Overview of Fluorescent Dyes
1.2. Fluorescent Dyes for Bioassays
1.3. Fluorescent Dyes Used in DNA Microarray Assay
2. Application of Fluorescence-Based Bioassays
2.1. Fluorescence-Based Bioassays
Bioassay/Biomaterial | Purpose/Subject | Fluorescent Dye/Molecule (Representative) | Reference |
---|---|---|---|
Biosensing | |||
Fluorescent molecular biosensing | Detection of intermolecular interactions | GFP | Altschuh et al., 2006 [40] |
Fluorometric HPLC | Analysis of nitrite/nitrate | 2,3-Naphthotriazole | Jobgen et al., 2007 [41] |
Magnetic modulation biosensing | Detection of targets at low concentrations | Alexa Fluor 488 | Danielli et al., 2010 [42] |
Cell Assay | |||
Flow cytometry/FACS | Particle-based flow cytometric assay | GFP | Vignali, 2000 [43] |
Flow cytometry/Suspension array | Measurement of cell fluorescence | GFP/FITC/Phycoerythrin | Edwards et al., 2004 [44] |
Fluorescence microscopy | Drug delivery research | GFP/Fluorescein | White & Errington, 2005 [45] |
Fluorescent cell assay | High-throughput drug discovery | GFP-family proteins | Wolff et al., 2008 [46] |
Fluorescent cell assay | Application in cellular assays | Lanthanides/GFP/FAM | Hanson & Hanson, 2008 [47] |
Fluorescent cytomics | Application of RNA/DNA aptamers | Fluorescein/TMR-C5 | Ulrich et al., 2004 [48] |
Fluorescent reporter-gene assay | Screening of hormonally active compounds | GFP | Svobodová & Cajthaml, 2010 [49] |
Single live-cell imaging | Gene expression/Protein interaction | GFP | Mullassery et al., 2008 [50] |
Energy Transfer-Based Assay | |||
FRET | Live-cell imaging | GFP/BFP | Salipalli et al., 2014 [51] |
FRET/Flow cytometry | Analysis of protein structure | FITC/Phycoerythrin/GFP | Szöllosi et al., 1998 [52] |
Probing | |||
FISH | Monitoring of chromosome aberrations | (Not shown) | Léonard et al., 2005 [53] |
FISH | Screening of bladder tumor markers | SpectrumGold, etc. | Lokeshwar & Selzer, 2006 [54] |
FISH | Study of gene-gene/protein interactions | SpectrumOrange, etc. | Chun et al., 2009 [55] |
FISH (CO-FISH) | Chromosome segregation study | Cy3/Cy5/FITC/TxR | Falconer & Lansdorp, 2013 [56] |
Fluorescent calcium indicator | Calcium signaling for cell functions | Fluo-4 | Apáti et al., 2012 [57] |
Fluorescent caspase substrate/FRET | Screening of anticancer drugs | FITC/GFP/RFP | Brunelle & Zhang, 2011 [58] |
Fluorescent hybridization | Identification of nucleic acids | Fluorescein/Rhodamine, etc. | Marras et al., 2005 [59] |
Fluorescent nanoparticle | Synthesis of fluorescent probes | Cyanines/FITC/TRITC | Sokolova & Epple, 2011 [60] |
Fluorescent nucleic acid probe | Labeling of nucleic acid probes | Fluorescein/Rhodamine, etc. | Kricka & Fortina, 2009 [61] |
Fluorescent reporter assay | Functional study of ion channels | GFP/RFP | Musa-Aziz et al., 2010 [62] |
Fluorescent reporter assay/FRET | Antimycobacterial susceptibility testing | FDA/GFP/RFP | Sánchez & Kouznetsov, 2010 [63] |
Fluorescent reporter assay/FRET | Detection of gene expression | GFP/RFP | Jiang et al., 2008 [64] |
Fluorescent spectroscopy/FRET | Probing biological enzymatic reactions | Cy3/Cy5 | Jahnz & Schwille, 2004 [65] |
Quantum dot | Fluorescence bioassay | Quantum dot | Liu et al., 2005 [66] |
Quantum dot/FRET | Imaging/labeling/sensing | Quantum dot | Medintz et al., 2005 [67] |
Quantum dot/FRET | Immunoassay/microarray assay/imaging | Quantum dot | Zhang & Wang, 2012 [68] |
Quantum dot/Suspension array | Detection of cancer markers/tumor cells | Quantum dot | Akinfieva et al., 2013 [69] |
Small-molecule fluorochrome | Screening of antagonists for GPCRs | FITC/FuraRed/Alexa Fluor 546 | Arterburn et al., 2009 [70] |
Small-molecule fluorochrome | Detection of reactive oxygen species | Hydroethidine/Hydrocyanines | Maghzal et al., 2012 [71] |
Small-molecule fluorochrome | QSAR | FDA | Horobin et al., 2013 [72] |
Small-molecule fluorochrome | Fluorescently labeled GPCR ligands | Rhodamine B, etc. | Vernall et al., 2014 [73] |
Protein/Immunological Assay | |||
BiFC | Protein interaction/modification | GFP/YFP | Kerppola, 2009 [74] |
BiFC | Protein-protein interaction | GFP/YFP, etc. | Miller et al., 2015 [75] |
Chemifluorescent ELISA | Monitoring of kinase activity | (Not shown) | Wu et al., 2010 [76] |
Fluorescent dye-based protein assay | Quantitation of protein | NanoOrange | Noble & Bailey, 2009 [77] |
Immuno-detection (FACTT) | Quantification of rare blood biomarkers | RiboGreen | Freudenberg et al., 2008 [78] |
Lanthanide-doped fluorescent assay | Application for bioassay/therapy | Lanthanides | Guo & Sun, 2012 [79] |
Lanthanide fluorescent immunoassay | Time-resolved fluorescence bioassay | Eu3+/Sm3+/Tb3+/Dy3+ | Yuan & Wang, 2005 [16] |
Lanthanide fluorescent immunoassay | Prion disease research | Lanthanides | Sakudo et al., 2007 [80] |
Real-time immuno-PCR | Diagnoses of viral antigens/pathogens | SYBR Green I/BEBO | Barletta, 2006 [81] |
Sandwich fluoroimmunoassay | Detection/identification of toxins | Cy5 | Ligler et al., 2003 [82] |
Microarray/Biochip Assay (see Table 2) |
2.2. Fluorescence-Based Microarrays/Biochips
2.2.1. Antibody/Protein Microarray
2.2.2. Bead/Suspension Array
2.2.3. Capillary/Sensor Array
2.2.4. DNA Microarray/PCR-Based Array
2.2.5. Glycan/Lectin Array
2.2.6. Immunoassay/ELISA-Based Array
2.2.7. Microfluidic Chip
2.2.8. Tissue Array
2.3. Application of Fluorescence-Based Microarrays/Biochips for Food Study
Method/Tool | Purpose/Subject | Fluorescent Dye/Molecule | Reference |
---|---|---|---|
Antibody/Protein microarray | |||
Antibody microarray | Screening of foodborne pathogens | Cy3/Fluorescein | Gehring et al., 2008 [91] |
Antibody microarray | Detection of multiplex toxins | Cy3/RuBpy | Lian et al., 2010 [92] |
Bead/Suspension array | |||
Aptamer/Suspension array | Detection of mycotoxins | FITC | Sun et al., 2014 [94] |
Cytometric bead array | Detection of pathogens | Alexa Fluor 532/Cy3 | Stroot et al., 2012 [108] |
Liquid bead array | Genetically modified maize | Phycoerythrin | Han et al., 2013 [109] |
Magnetic suspension assay | Quantification of bacterial/plant toxins | Phycoerythrin | Pauly et al., 2009 [93] |
Microsphere suspension array | Multiplex mycotoxin detection | FITC | Deng et al., 2013 [110] |
Suspension array | Detection of pesticides | Phycoerythrin | Wang et al., 2014 [95] |
Capillary/Sensor array | |||
Capillary array electrophoresis | Carbohydrate analysis | Sulforhodamine B | Khandurina et al., 2004 [111] |
Chemical sensor array | Discrimination of fresh fruit juices | Lissamine rhodamine B | Tan et al., 2014 [98] |
Fluorescent sensor array | Electronic tongue for food analysis | Dendritic fluorophores | Niamnont et al., 2010 [97] |
DNA Microarray/PCR-Based Array | |||
Direct RNA hybridization/Microarray | Detection of mycoplasmas | Alexa Fluor 647 | Kong et al., 2007 [112] |
DNA microarray | Authentication of ginseng drugs | Cy5 | Zhu et al., 2008 [113] |
DNA microarray | Hypoxia-inducible genes | Phycoerythrin | Otsuka et al., 2010 [114] |
DNA microarray | Genotyping of beef/chicken | Cy3/Cy5 | Reverter et al., 2014 [115] |
DNA microarray | Food safety assessment | PolyAn-Green/PolyAn-Red | Brunner et al., 2015 [116] |
Laser microdissection/Microarray | Gene expression profiling of fungi | AmCyan1 | Tang et al., 2006 [117] |
MAPREC assay | Recombinant flavivirus vaccine strain | NIR Dye 700/800 | Bidzhieva et al., 2011 [118] |
NAIMA | GMO detection | Oyster-550 | Morisset et al., 2008 [119] |
Oligonucleotide microarray | Detection of pathogenic bacteria | Quantum dot | Huang et al., 2014 [120] |
Oligonucleotide microarray | Detection of grapevine viruses | Cy3 | Abdullahi et al., 2011 [121] |
PCR/Bead array | Detection of genetically modified cotton | Phycoerythrin | Choi, 2011 [122] |
PCR/Microarray | Detection of pathogenic Vibrio spp. | Alexa Fluor 546 | Panicker et al., 2004 [123] |
PCR/Single-base extension-tag array | Seafood-borne pathogens | Cy3 | Chen et al., 2011 [124] |
PNA microarray | Genetically modified soybean | Cy3/Cy5 | Germini et al., 2004 [125] |
Glycan/Lectin Array | |||
Glycan microarray | Functional glycomic analysis | Alexa Fluor 488/Cy5 | Yu et al., 2012 [99] |
Lectin array | Glycosylation profiling | Phycoerythrin | Wang et al., 2014 [100] |
Immunoassay/ELISA-Based Array | |||
Competitive immunoassay | Detection of ochratoxin A | Cy5 | Ngundi et al., 2005 [126] |
ELISA chip | Food safety assessment | Fluorescein | Herrmann et al., 2006 [127] |
ELISA chip | Staphylococcal enterotoxin B detection | FluoSpheres | Han et al., 2013 [128] |
Fluoroimmunoassay | Detection of food allergens | Alexa Fluor 647 | Shriver-Lake et al., 2004 [129] |
Fluoroimmunoassay | Detection of mycotoxins | Cy5 | Ngundi et al., 2006 [130] |
Immunoassay microarray | Detection and quantification of toxins | Cy5 | Weingart et al., 2012 [131] |
Immunoassay microarray | Multiplex mycotoxin detection | Cy3 | Hu et al., 2013 [101] |
Immunoassay microarray | Detection of mycotoxins | Phycoerythrin | Peters et al., 2014 [102] |
Sandwich fluoroimmunoassay | Detection of pathogens/toxins | Cy5 | Ngundi & Taitt, 2006 [132] |
Sandwich fluoroimmunoassay | Staphylococcal enterotoxin B detection | RuBpy | Zhang et al., 2011 [133] |
Microfluidic Chip | |||
Microfluidic chip | Detection of food poisoning bacteria | Alexa Fluor 647 | Ikeda et al., 2006 [105] |
Microfluidic chip | Detection of single-base mismatches | FAM | Wang et al., 2013 [134] |
Microfluidic chip | In-line monitoring of food processing | GFP | Le et al., 2014 [106] |
Tissue Array | |||
Microbial cell fluorescence staining | Microbial staining | Brilliant blue FCF | Chau et al., 2011 [107] |
3. DNA Microarray-Based Assay for Food Study
3.1. DNA Microarray Assay Protocols
3.2. Application of DNA Microarray Assay for Food Study
Food Source or Material | Material Detected or Subject Examined | Type of Microarray Used (Source a/Dye) | Reference |
---|---|---|---|
Allergy/Poisoning/Toxicity | |||
Bovine milk/Pork | Staphylococcal food poisoning | Genotyping (Clondiag/TMB) | Johler et al., 2011 [141] |
Cheese | Staphylococcus aureus poisoning | Genotyping (Alere/TMB) | Johler et al., 2015 [142] |
Cheese/Fish/Meat, etc. | Staphylococcus aureus poisoning | Genotyping (Clondiag/TMB) | Baumgartner et al., 2014 [143] |
Citrinin | Mycotoxin toxicity | Gene expression (Custom/Cy3, Cy5) | Iwahashi et al., 2007 [144] |
Food | Bacillus cereus poisoning | Genotyping (Custom, E) | Liu et al., 2007 [145] |
Food | Coagulase-negative staphylococci | Genotyping (Custom/Cy5) | Seitter et al., 2011 [146] |
Food | 69 Salmonella virulence genes | Genotyping (Custom/Cy3) | Zou et al., 2011 [147] |
Food | Salmonella serogroups | Genotyping (Custom, C/SG) | Braun et al., 2012 [148] |
Food | Clostridium perfringens poisoning | Genotyping (Custom/Cy3, Cy5) | Lahti et al., 2012 [149] |
Food | Allergen-specific response | Gene expression (Affymetrix/PE) | Martino et al., 2012 [150] |
Food | Staphylococcal food poisoning | Genotyping (Clondiag/TMB) | Wattinger et al., 2012 [151] |
Food | Silver-nanoparticle-induced genotoxicity | Gene expression (Agilent/Cy3, Cy5) | Xu et al., 2012 [152] |
Food | 46 Salmonella O serogroups | Genotyping (Custom/Cy3) | Guo et al., 2013 [153] |
Food | Campylobacter pathotypes | Genotyping (Custom/Cy3) | Marotta et al., 2013 [154] |
Food | Botulinum neurotoxin poisoning | Genotyping (Custom/PE) | Vanhomwegen et al., 2013 [155] |
Food | 117 antibiotic resistance genes | Genotyping (Custom, C/True Blue) | Strauss et al., 2015 [156] |
Food additive | Toxicity in liver | Gene expression (Custom/Cy3, Cy5) | Stierum et al., 2008 [157] |
Horseradish | Quorum sensing inhibitors | Gene expression (Custom/PE) | Jakobsen et al., 2012 [158] |
Meat | Shiga toxin-producing Escherichia coli | Genotyping (GeneSystems/6-FAM) | Miko et al., 2014 [159] |
Meat | Cephalosporin-resistant Escherichia coli | Genotyping (Alere/TMB) | Vogt et al., 2014 [160] |
Meat/Milk | Coagulase-negative staphylococci | Genotyping (Custom/Cy3, Cy5) | Even et al., 2010 [161] |
Pancake with chicken | Staphylococcus aureus poisoning | Genotyping (Clondiag/TMB) | Johler et al., 2013 [162] |
Pork | Salmonella enterica pathogenicity genes | Genotyping (Custom/Alexa Fluor 555/647) | Hauser et al., 2011 [163] |
Pufferfish | Tetrodotoxin accumulation | Gene expression (Custom/Cy3) | Feroudj et al., 2014 [164] |
Rice | Cadmium toxicity | Gene expression (Custom, C/CSPD) | Zhang et al., 2012 [165] |
Vegetable | Latex and/or vegetable food allergy | Gene expression (Affymetrix/PE) | Saulnier et al., 2014 [166] |
Contamination | |||
Alfalfa/Cilantro/Mung bean, etc. | Detection of Yersinia enterocolitica | Genotyping (Custom/Cy3, Cy5) | Siddique et al., 2009 [167] |
Beef | Pathogenic Escherichia coli O157 | Gene expression (Custom/Cy3, Cy5) | Fratamico et al., 2011 [168] |
Beer | Beer spoilage bacterial contamination | Beer spoilage bacterial contamination | Weber et al., 2008 [169] |
Beef/Egg/Fish/Milk | 26 probes for pathogenic bacteria | Genotyping (Custom/Cy3) | Wang et al., 2007 [170] |
Bread (Whole-grain/Fiber-rich) | Intestinal microbiota composition | Genotyping (Agilent/Cy3, Cy5) | Lappi et al., 2013 [171] |
Cantaloupe | 24 probes for Listeria monocytogenes | Genotyping (Affymetrix/PE) | Laksanalamai et al., 2012 [172] |
Chicken | Rapid analysis of pathogenic bacteria | Genotyping (Custom/Cy3, Cy5) | Quiñones et al., 2007 [173] |
Chicken/Pork | Salmonella enterica probes | Genotyping (Custom/Alexa Fluor 555/647) | Hauser et al., 2012 [174] |
Compost/Digestate/Waste | Microbial community | Genotyping (Custom/Cy3, Cy5) | Franke-Whittle et al., 2014 [175] |
Egg/Meat/Milk, etc. | Listeria spp. contamination | Genotyping (Custom/Cy5) | Hmaïed et al., 2014 [176] |
Egg/Meat/Milk/Rice, etc. | 16S rRNA probes for pathogens | Genotyping (Custom/Alexa Fluor 647) | Hwang et al., 2012 [177] |
Food | 250 probes for pathogenic bacteria | Genotyping (Custom/Cy3) | Kim et al., 2008 [178] |
Food | Rapid analysis of pathogenic bacteria | Genotyping (Custom/Cy3) | Kim et al., 2010 [179] |
Food | Rapid analysis of pathogenic bacteria | Genotyping (Custom, C/Luminol) | Donhauser et al., 2011 [180] |
Food | Yersinia pestis/Bacillus anthracis | Genotyping (Custom/Alexa Fluor 555/647) | Goji et al., 2012 [181] |
Food | 50 probes for pathogenic bacteria | Genotyping (Custom/Cy3) | Lee et al., 2011 [182] |
Food | Diversity of Arcobacter butzleri | Genotyping (Custom/Cy3, Cy5) | Merga et al., 2013 [183] |
Food | Pathogenic Escherichia coli/Salmonella | Genotyping (Alere/TMB) | Fischer et al., 2014 [184] |
Food/Water | 63 probes for pathogenic bacteria | Genotyping (Custom/TAMRA) | Kostić et al., 2010 [185] |
Juice | Alicyclobacillus spp. contamination | Genotyping (Custom/Cy3, Cy5) | Jang et al., 2011 [186] |
Maize | 96 probes for mycotoxigenic fungi | Genotyping (Custom/Cy3, Cy5) | Lezar & Barros, 2010 [187] |
Meat | Rapid analysis of pathogenic bacteria | Genotyping (Custom/Cy3) | Suo et al., 2010 [188] |
Meat (Ready-to-eat) | Listeria monocytogenes contamination | Gene expression (PFRGC/Cy3, Cy5) | Bae et al., 2011 [189] |
Potato | DNA/RNA pathogens | Genotyping (Custom, C/SG) | Dobnik et al., 2014 [190] |
Poultry meat | 102 pathogenicity genes | Genotyping (Custom/Alexa Fluor 555/647) | Toboldt et al., 2014 [191] |
Sausage (Thai Nham) | 164 probes for lactobacilli | Genotyping (Custom/Cy3, Cy5) | Rungrassamee et al., 2012 [192] |
Water | 26 probes for pathogenic bacteria | Genotyping (Custom/Cy3) | Zhou et al., 2011 [193] |
Water | Pathogenic Legionella spp. | Genotyping (Custom/Cy3) | Cao et al., 2014 [194] |
Efficacy/Mechanism | |||
Beverage/Dairy/Food | Interaction between yeast and bacteria | Gene expression (Affymetrix/PE) | Mendes et al., 2013 [195] |
Cassava | Drought stress response | Gene expression (Custom/Cy3) | Utsumi et al., 2012 [196] |
Chitooligosaccharide | Immune responses in adipocytes | Gene expression (Illumina/NS) | Choi et al., 2012 [197] |
Food | Metabolic change in white blood cells | Gene expression (Affymetrix/PE) | Kawakami et al., 2013 [198] |
Food (High-cholesterol diet) | Osteoporosis risk | Gene expression (Affymetrix/PE) | You et al., 2011 [199] |
Food (High-fat diet) | Inflammation-associated genes | Gene expression (Illumina/NS) | Ding et al., 2014 [200] |
Herb (Hochuekkito) | Mucosal IgA antibody response | Gene expression (Custom/Cy3) | Matsumoto et al., 2010 [201] |
Herb (Licorice) | Estrogen-like effect | Gene expression (Custom/ Cy3, Cy5) | Dong et al., 2007 [202] |
Imbibed soybean | New protein food item | Gene expression (Custom/Cy3) | Tamura et al., 2014 [203] |
Phenolic preservative | Oxidative stress/DNA damage | Gene expression (Custom/Cy3, Cy5) | Martín et al., 2014 [204] |
Pineapple (Ananas comosus) | Absorption of phenolic acid | Gene expression (Custom/Cy3, Cy5) | Dang & Zhu, 2015 [205] |
Polyunsaturated fatty acid, etc. | Growth and metabolic status of rats | Gene expression (Illumina/Cy3) | Castañeda-Gutiérrez et al., 2014 [206] |
Psyllium | Lipid consumption in skeletal muscle | Gene expression (Mitsubishi/Cy5) | Togawa et al., 2013 [207] |
Quercetin | Improvement of diabetic symptoms | Gene expression (Affymetrix/PE) | Kobori et al., 2009 [208] |
Skim milk | Survival of L. monocytogenes | Gene expression (Custom/Alexa Fluor 555/647) | Liu & Ream, 2008 [209] |
Sweet corn | Effect of suppressing cancer | Gene expression (GE Healthcare/Cy5) | Tokuji et al., 2009 [210] |
Tea (Eucommia ulmoides) | Plasma triglyceride-lowering effect | Gene expression (Agilent/Cy3) | Kobayashi et al., 2012 [211] |
Xanthan gum | Xanthomonas arboricola metabolism | Genotyping (Custom/Cy3, Cy5) | Mayer et al., 2011 [212] |
Quality Control/Safety | |||
Canola | Genetically modified organism | Genotyping (Custom/Cy3) | Schmidt et al., 2008 [213] |
Canola/Cotton/Maize/Soybean | Genetically modified organism | Genotyping (Custom/Cy5) | Kim et al., 2010 [214] |
Cereal (Barley/Oat/Rice/Wheat) | Authenticity of plant | Genotyping (Custom/Fluorescein) | Rønning et al., 2005 [215] |
Crop | Authenticity of food | Genotyping (Custom/Cy3) | Voorhuijzen et al., 2012 [216] |
Ginseng | Food adulteration | Genotyping (Custom/Cy3) | Niu et al., 2011 [217] |
Kothala himbutu (Medicinal plant) | Food safety assessment | Genotyping (Affymetrix/PE) | Im et al., 2008 [218] |
Maize/Potato | Food safety assessment | Gene expression | van Dijk et al., 2010 (review) [219] |
Maize/Soybean, etc. | Genetically modified organism | Genotyping (Custom, C/Silverquant) | Leimanis et al., 2006 [220] |
Olive | Authenticity of plant | Genotyping (Custom/Cy3, Cy5) | Consolandi et al., 2007 [221] |
Potato | Food safety assessment | Gene expression (Custom/Cy3, Cy5) | van Dijk et al., 2009 [222] |
Royal jelly | Food safety assessment | Gene expression (Amersham/Cy5) | Kamakura et al., 2005 [223] |
3.3. Merits of DNA Microarray Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Grimm, J.B.; Heckman, L.M.; Lavis, L.D. The Chemistry of Small-Molecule Fluorogenic Probes. In Fluorescence-Based Biosensors, Volume 113: From Concepts to Applications (Progress in Molecular Biology and Translational Science); Morris, M.C., Ed.; Academic Press: Oxford, UK, 2013; pp. 1–34. [Google Scholar]
- Yu, W.; So, P.T.; French, T.; Gratton, E. Fluorescence Generalized Polarization of Cell Membranes: A Two-Photon Scanning Microscopy Approach. Biophys. J. 1996, 70, 626–636. [Google Scholar] [CrossRef]
- Parasassi, T.; Gratton, E.; Yu, W.M.; Wilson, P.; Levi, M. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys. J. 1997, 72, 2413–2429. [Google Scholar] [CrossRef]
- Bagatolli, L.A. To see or not to see: Lateral organization of biological membranes and fluorescence microscopy. Biochim. Biophys. Acta 2006, 1758, 1541–1556. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I.; Spence, M.T.Z. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th ed.; Life Technologies, Inc.: Carlsbad, CA, USA, 2010. [Google Scholar]
- Beppu, T.; Tomiguchi, K.; Masuhara, A.; Pu, Y.J.; Katagiri, H. Single Benzene Green Fluorophore: Solid-State Emissive, Water-Soluble, and Solvent- and pH-Independent Fluorescence with Large Stokes Shifts. Angew Chem. Int. Ed. Engl. 2015, 54, 7332–7335. [Google Scholar] [CrossRef] [PubMed]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 5th ed.; Garland Science: New York, NY, USA, 2007. [Google Scholar]
- Herzenberg, L.A.; Sweet, R.G.; Herzenberg, L.A. Fluorescence-activated cell sorting. Sci. Am. 1976, 234, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Connally, R.E. Flow Cytometry. In Fluorescence Applications in Biotechnology and Life Sciences; Goldys, E.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 245–268. [Google Scholar]
- Volpi, E.V.; Bridger, J.M. FISH glossary: An overview of the fluorescence in situ hybridization technique. Biotechniques 2008, 45, 385–409. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.M.; Goodwin, E.H.; Cornforth, M.N. Strand-specific fluorescence in situ hybridization: the CO-FISH family. Cytogenet. Genome Res. 2004, 107, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Kerppola, T.K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 2006, 1, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Kodama, Y.; Hu, C.D. Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. Biotechniques 2012, 53, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, J.K.; Simon, S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 2004, 14, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, G. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J. Fluoresc. 2005, 15, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Liu, M.; Sun, W.; Wang, M.; Liu, S.; Li, Q.X. Recent Progress on Synthesis of Fluorescein Probes. Mini-Rev. Org. Chem. 2009, 6, 35–43. [Google Scholar] [CrossRef]
- DeBiasio, R.; Bright, G.R.; Ernst, L.A.; Waggoner, A.S.; Taylor, D.L. Five-parameter fluorescence imaging: Wound healing of living Swiss 3T3 cells. J. Cell Biol. 1987, 105, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- DeRisi, J.L.; Iyer, V.R.; Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Maurel, D.; Banala, S.; Laroche, T.; Johnsson, K. Photoactivatable and photoconvertible fluorescent probes for protein labeling. ACS Chem. Biol. 2010, 5, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Panchuk-Voloshina, N.; Haugland, R.P.; Bishop-Stewart, J.; Bhalgat, M.K.; Millard, P.J.; Mao, F.; Leung, W.Y.; Haugland, R.P. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 1999, 47, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Ormö, M.; Cubitt, A.B.; Kallio, K.; Gross, L.A.; Tsien, R.Y.; Remington, S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273, 1392–1395. [Google Scholar] [CrossRef] [PubMed]
- Heim, R.; Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 1996, 6, 178–182. [Google Scholar] [CrossRef]
- Pollok, B.A.; Heim, R. Using GFP in FRET-based applications. Trends Cell. Biol. 1999, 9, 57–60. [Google Scholar] [CrossRef]
- Kanemaru, T.; Hirata, K.; Takasu, S.; Isobe, S.; Mizuki, K.; Mataka, S.; Nakamura, K. A fluorescence scanning electron microscope. Ultramicroscopy 2009, 109, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ogaeri, T.; Suzuki, J.; Dong, S.; Aoyagi, T.; Mizuki, K.; Takasugi, M.; Isobe, S.; Kiyama, R. Application of Fluolid-Orange-labeled probes for DNA microarray and immunological assays. Biotechnol. Lett. 2011, 33, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Wuxiuer, D.; Zhu, Y.; Ogaeri, T.; Mizuki, K.; Kashiwa, Y.; Nishi, K.; Isobe, S.; Aoyagi, T.; Kiyama, R. Development of pathological diagnostics of human kidney cancer by multiple staining using new fluorescent Fluolid dyes. Biomed. Res. Int. 2014, 2014, 437871. [Google Scholar] [CrossRef] [PubMed]
- Schena, M. Microarray Analysis; Wiley-Liss: Hoboken, NJ, USA, 2002. [Google Scholar]
- Jones, L.J.; Yue, S.T.; Cheung, C.Y.; Singer, V.L. RNA quantitation by fluorescence-based solution assay: RiboGreen reagent characterization. Anal. Biochem. 1998, 265, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Titus, J.A.; Haugland, R.; Sharrow, S.O.; Segal, D.M. Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J. Immunol. Methods 1982, 50, 193–204. [Google Scholar] [CrossRef]
- Jones, L.J.; Haugland, R.P.; Singer, V.L. Development and characterization of the NanoOrange protein quantitation assay: A fluorescence-based assay of proteins in solution. Biotechniques 2003, 34, 850–861. [Google Scholar] [PubMed]
- Sobek, J.; Aquino, C.; Schlapbach, R. Analyzing Properties of Fluorescent Dyes Used for Labeling DNA in Microarray Experiments. BioFiles 2011, 6, 9–12. [Google Scholar]
- Fare, T.L.; Coffey, E.M.; Dai, H.; He, Y.D.; Kessler, D.A.; Kilian, K.A.; Koch, J.E.; LeProust, E.; Marton, M.J.; Meyer, M.R.; et al. Effects of atmospheric ozone on microarray data quality. Anal. Chem. 2003, 75, 4672–4675. [Google Scholar] [CrossRef] [PubMed]
- Cox, W.G.; Beaudet, M.P.; Agnew, J.Y.; Ruth, J.L. Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal. Biochem. 2004, 331, 243–254. [Google Scholar] [PubMed]
- Wang, L.; Lofton, C.; Popp, M.; Tan, W. Using luminescent nanoparticles as staining probes for Affymetrix GeneChips. Bioconjug. Chem. 2007, 18, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Okuzaki, D.; Fukushima, T.; Tougan, T.; Ishii, T.; Kobayashi, S.; Yoshizaki, K.; Akita, T.; Nojima, H. Genopal™: A novel hollow fibre array for focused microarray analysis. DNA Res. 2010, 17, 369–379. [Google Scholar] [CrossRef] [PubMed]
- GE Healthcare. Amersham HyPer5 Dye. Data File 28-9299-03 AA. Available online: http://www.gelifesciences.co.jp/catalog/pdf/hyper5_df.pdf (accessed on 12 October 2015).
- Harper, I.S. Labeling of Cells with Fluorescent Dyes. In Fluorescence Applications in Biotechnology and Life Sciences; Goldys, E.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 27–45. [Google Scholar]
- Ohba, Y.; Fujioka, Y.; Nakada, S.; Tsuda, M. Fluorescent Protein-Based Biosensors and Their Clinical Applications. In Fluorescence-Based Biosensors, Volume 113: From Concepts to Applications (Progress in Molecular Biology and Translational Science); Morris, M.C., Ed.; Academic Press: Oxford, UK, 2013; pp. 313–348. [Google Scholar]
- Altschuh, D.; Oncul, S.; Demchenko, A.P. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J. Mol. Recognit. 2006, 19, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Jobgen, W.S.; Jobgen, S.C.; Li, H.; Meininger, C.J.; Wu, G. Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 851, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Danielli, A.; Porat, N.; Ehrlich, M.; Arie, A. Magnetic modulation biosensing for rapid and homogeneous detection of biological targets at low concentrations. Curr. Pharm. Biotechnol. 2010, 11, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 2000, 243, 243–255. [Google Scholar] [CrossRef]
- Edwards, B.S.; Oprea, T.; Prossnitz, E.R.; Sklar, L.A. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol. 2004, 8, 392–398. [Google Scholar] [CrossRef] [PubMed]
- White, N.S.; Errington, R.J. Fluorescence techniques for drug delivery research: theory and practice. Adv. Drug Deliv. Rev. 2005, 57, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.; Kredel, S.; Wiedenmann, J.; Nienhaus, G.U.; Heilker, R. Cell-based assays in practice: Cell markers from autofluorescent proteins of the GFP-family. Comb. Chem. High Throughput Screen. 2008, 11, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.T.; Hanson, B.J. Fluorescent probes for cellular assays. Comb. Chem. High Throughput Screen. 2008, 11, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, H.; Martins, A.H.; Pesquero, J.B. RNA and DNA aptamers in cytomics analysis. Cytometry A 2004, 59, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Svobodová, K.; Cajthaml, T. New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment. Appl. Microbiol. Biotechnol. 2010, 88, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Mullassery, D.; Horton, C.A.; Wood, C.D.; White, M.R. Single live-cell imaging for systems biology. Essays Biochem. 2008, 45, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Salipalli, S.; Singh, P.K.; Borlak, J. Recent advances in live cell imaging of hepatoma cells. BMC Cell Biol. 2014, 15, 26. [Google Scholar] [CrossRef] [PubMed]
- Szöllosi, J.; Damjanovich, S.; Mátyus, L. Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 1998, 34, 159–179. [Google Scholar] [CrossRef]
- Léonard, A.; Rueff, J.; Gerber, G.B.; Léonard, E.D. Usefulness and limits of biological dosimetry based on cytogenetic methods. Radiat. Prot. Dosimetry 2005, 115, 448–454. [Google Scholar] [CrossRef]
- Lokeshwar, V.B.; Selzer, M.G. Urinary bladder tumor markers. Urol. Oncol. 2006, 24, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.; Lee, D.S.; Kim, H.C. Bio-cell chip fabrication and applications. Methods Mol. Biol. 2009, 509, 145–158. [Google Scholar] [PubMed]
- Falconer, E.; Lansdorp, P.M. Strand-seq: A unifying tool for studies of chromosome segregation. Semin. Cell Dev. Biol. 2013, 24, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Apáti, Á.; Pászty, K.; Erdei, Z.; Szebényi, K.; Homolya, L.; Sarkadi, B. Calcium signaling in pluripotent stem cells. Mol. Cell. Endocrinol. 2012, 353, 57–67. [Google Scholar]
- Brunelle, J.K.; Zhang, B. Apoptosis assays for quantifying the bioactivity of anticancer drug products. Drug Resist. Updates 2010, 13, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Marras, S.A.; Tyagi, S.; Kramer, F.R. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clin. Chim. Acta 2006, 363, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, V.; Epple, M. Synthetic pathways to make nanoparticles fluorescent. Nanoscale 2011, 3, 1957–1962. [Google Scholar] [CrossRef] [PubMed]
- Kricka, L.J.; Fortina, P. Analytical ancestry: “Firsts” in fluorescent labeling of nucleosides, nucleotides, and nucleic acids. Clin. Chem. 2009, 55, 670–683. [Google Scholar] [CrossRef]
- Musa-Aziz, R.; Boron, W.F.; Parker, M.D. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Methods 2010, 51, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.G.; Kouznetsov, V.V. Antimycobacterial susceptibility testing methods for natural products research. Braz. J. Microbiol. 2010, 41, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Xing, B.; Rao, J. Recent developments of biological reporter technology for detecting gene expression. Biotechnol. Genet. Eng. Rev. 2008, 25, 41–75. [Google Scholar] [CrossRef] [PubMed]
- Jahnz, M.; Schwille, P. Enzyme assays for confocal single molecule spectroscopy. Curr. Pharm. Biotechnol. 2004, 5, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, B.; Zhang, H.; Wang, Y. The fluorescence bioassay platforms on quantum dots nanoparticles. J. Fluoresc. 2005, 15, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, T.H. Quantum dot enabled molecular sensing and diagnostics. Theranostics 2012, 2, 631–654. [Google Scholar] [CrossRef] [PubMed]
- Akinfieva, O.; Nabiev, I.; Sukhanova, A. New directions in quantum dot-based cytometry detection of cancer serum markers and tumor cells. Crit. Rev. Oncol. Hematol. 2013, 86, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Arterburn, J.B.; Oprea, T.I.; Prossnitz, E.R.; Edwards, B.S.; Sklar, L.A. Discovery of selective probes and antagonists for G-protein-coupled receptors FPR/FPRL1 and GPR30. Curr. Top. Med. Chem. 2009, 9, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Maghzal, G.J.; Krause, K.H.; Stocker, R.; Jaquet, V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic. Biol. Med. 2012, 53, 1903–1918. [Google Scholar] [CrossRef] [PubMed]
- Horobin, R.W.; Stockert, J.C.; Rashid-Doubell, F. Uptake and localisation of small-molecule fluorescent probes in living cells: A critical appraisal of QSAR models and a case study concerning probes for DNA and RNA. Histochem. Cell Biol. 2013, 139, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Vernall, A.J.; Hill, S.J.; Kellam, B. The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. Br. J. Pharmacol. 2014, 171, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Kerppola, T.K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: Characteristics of protein fragment complementation. Chem. Soc. Rev. 2009, 38, 2876–2886. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.E.; Kim, Y.; Huh, W.K.; Park, H.O. Bimolecular fluorescence complementation (BiFC) analysis: Advances and recent applications for genome-wide interaction studies. J. Mol. Biol. 2015, 427, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sylvester, J.E.; Parker, L.L.; Zhou, G.; Kron, S.J. Peptide reporters of kinase activity in whole cell lysates. Biopolymers 2010, 94, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.E.; Bailey, M.J. Quantitation of protein. Methods Enzymol. 2009, 463, 73–95. [Google Scholar] [PubMed]
- Freudenberg, J.A.; Bembas, K.; Greene, M.I.; Zhang, H. Non-invasive, ultra-sensitive, high-throughput assays to quantify rare biomarkers in the blood. Methods 2008, 46, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Sun, S. Lanthanide-doped upconverting phosphors for bioassay and therapy. Nanoscale 2012, 4, 6692–6706. [Google Scholar] [CrossRef] [PubMed]
- Sakudo, A.; Nakamura, I.; Ikuta, K.; Onodera, T. Recent developments in prion disease research: diagnostic tools and in vitro cell culture models. J. Vet. Med. Sci. 2007, 69, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Barletta, J. Applications of real-time immuno-polymerase chain reaction (rt-IPCR) for the rapid diagnoses of viral antigens and pathologic proteins. Mol. Aspects Med. 2006, 27, 224–253. [Google Scholar] [CrossRef] [PubMed]
- Ligler, F.S.; Taitt, C.R.; Shriver-Lake, L.C.; Sapsford, K.E.; Shubin, Y.; Golden, J.P. Array biosensor for detection of toxins. Anal. Bioanal. Chem. 2003, 377, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Bovee, T.F.H.; Heskamp, H.H.; Hamers, A.R.M.; Hoogenboom, L.A.P.; Nielen, M.W.F. Validation of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein, for the screening of estrogenic activity in calf urine. Anal. Chim. Acta 2005, 529, 57–64. [Google Scholar] [CrossRef]
- Bovee, T.F.; Bor, G.; Heskamp, H.H.; Hoogenboom, R.L.; Nielen, M.W. Validation and application of a robust yeast estrogen bioassay for the screening of estrogenic activity in animal feed. Food Addit. Contam. 2006, 23, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Nielen, M.W.; Bovee, T.F.; van Engelen, M.C.; Rutgers, P.; Hamers, A.R.; van Rhijn, J.H.; Hoogenboom, L.R. Urine testing for designer steroids by liquid chromatography with androgen bioassay detection and electrospray quadrupole time-of-flight mass spectrometry identification. Anal. Chem. 2006, 78, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Rijk, J.C.; Bovee, T.F.; Wang, S.; van Poucke, C.; van Peteghem, C.; Nielen, M.W. Detection of anabolic steroids in dietary supplements: The added value of an androgen yeast bioassay in parallel with a liquid chromatography-tandem mass spectrometry screening method. Anal. Chim. Acta 2009, 637, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Toorians, A.W.; Bovee, T.F.; de Rooy, J.; Stolker, L.A.; Hoogenboom, R.L. Gynaecomastia linked to the intake of a herbal supplement fortified with diethylstilbestrol. Food Addit. Contam. Part A 2010, 27, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Simons, R.; Vincken, J.P.; Roidos, N.; Bovee, T.F.; van Iersel, M.; Verbruggen, M.A.; Gruppen, H. Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J. Agric. Food Chem. 2011, 59, 6748–6758. [Google Scholar]
- Rijk, J.C.; Ashwin, H.; van Kuijk, S.J.; Groot, M.J.; Heskamp, H.H.; Bovee, T.F.; Nielen, M.W. Bioassay based screening of steroid derivatives in animal feed and supplements. Anal. Chim. Acta 2011, 700, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.A.; Ptacek, J.; Snyder, M. Protein microarray technology. Mech. Ageing Dev. 2007, 128, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Gehring, A.G.; Albin, D.M.; Reed, S.A.; Tu, S.I.; Brewster, J.D. An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal. Bioanal. Chem. 2008, 391, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Wu, D.; Lim, D.V.; Jin, S. Sensitive detection of multiplex toxins using antibody microarray. Anal. Biochem. 2010, 401, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D.; Kirchner, S.; Stoermann, B.; Schreiber, T.; Kaulfuss, S.; Schade, R.; Zbinden, R.; Avondet, M.A.; Dorner, M.B.; Dorner, B.G. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 2009, 134, 2028–2039. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, J.; Li, W.; Cao, B.; Wang, D.D.; Yang, Y.; Lin, Q.X.; Li, J.L.; Zheng, T.S. Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension array. Anal. Chem. 2014, 86, 11797–11802. [Google Scholar]
- Wang, X.; Mu, Z.; Shangguan, F.; Liu, R.; Pu, Y.; Yin, L. Rapid and sensitive suspension array for multiplex detection of organophosphorus pesticides and carbamate pesticides based on silica-hydrogel hybrid microbeads. J. Hazard. Mater. 2014, 273, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.P.; Sklar, L.A. Suspension array technology: Evolution of the flat-array paradigm. Trends Biotechnol. 2002, 20, 9–12. [Google Scholar] [CrossRef]
- Niamnont, N.; Mungkarndee, R.; Techakriengkrai, I.; Rashatasakhon, P.; Sukwattanasinitt, M. Protein discrimination by fluorescent sensor array constituted of variously charged dendritic phenylene-ethynylene fluorophores. Biosens. Bioelectron. 2010, 26, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Li, R.; Jiang, Z.T. Discrimination of fresh fruit juices by a fluorescent sensor array for carboxylic acids based on molecularly imprinted titania. Food Chem. 2014, 165, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Mishra, S.; Song, X.; Lasanajak, Y.; Bradley, K.C.; Tappert, M.M.; Air, G.M.; Steinhauer, D.A.; Halder, S.; Cotmore, S.; et al. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 2012, 287, 44784–44799. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, H.; Zhang, W.; Wei, L.; Yu, H.; Yang, P. Multiplex profiling of glycoproteins using a novel bead-based lectin array. Proteomics 2014, 14, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, X.; He, G.; Zhang, Z.; Zheng, X.; Li, P.; Li, C.M. Sensitive competitive immunoassay of multiple mycotoxins with non-fouling antigen microarray. Biosens. Bioelectron. 2013, 50, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Cardall, A.; Haasnoot, W.; Nielen, M.W. 6-Plex microsphere immunoassay with imaging planar array detection for mycotoxins in barley. Analyst 2014, 139, 3968–3976. [Google Scholar] [CrossRef] [PubMed]
- Priest, C. Surface patterning of bonded microfluidic channels. Biomicrofluidics 2010, 30, 32206. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, C.; Yamaguchi, N.; Nasu, M. Rapid and simple quantification of bacterial cells by using a microfluidic device. Appl. Environ. Microbiol. 2005, 71, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Yamaguchi, N.; Tani, K.; Nasu, M. Rapid and simple detection of food poisoning bacteria by bead assay with a microfluidic chip-based system. J. Microbiol. Methods 2006, 67, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Le, N.C.; Gel, M.; Zhu, Y.; Dacres, H.; Anderson, A.; Trowell, S.C. Real-time, continuous detection of maltose using bioluminescence resonance energy transfer (BRET) on a microfluidic system. Biosens. Bioelectron. 2014, 62, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Chau, H.W.; Goh, Y.K.; Si, B.C.; Vujanovic, V. An innovative brilliant blue FCF method for fluorescent staining of fungi and bacteria. Biotechnol. Histochem. 2011, 86, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Stroot, J.M.; Leach, K.M.; Stroot, P.G.; Lim, D.V. Capture antibody targeted fluorescence in situ hybridization (CAT-FISH): dual labeling allows for increased specificity in complex samples. J. Microbiol. Methods 2012, 88, 275–284. [Google Scholar] [CrossRef]
- Han, X.; Wang, H.; Chen, H.; Mei, L.; Wu, S.; Jia, G.; Cheng, T.; Zhu, S.; Lin, X. Development and primary application of a fluorescent liquid bead array for the simultaneous identification of multiple genetically modified maize. Biosens. Bioelectron. 2013, 49, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Xu, K.; Sun, Y.; Chen, Y.; Zheng, T.; Li, J. High sensitive immunoassay for multiplex mycotoxin detection with photonic crystal microsphere suspension array. Anal. Chem. 2013, 85, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Khandurina, J.; Anderson, A.A.; Olson, N.A.; Stege, J.T.; Guttman, A. Large-scale carbohydrate analysis by capillary array electrophoresis: Part 2. Data normalization and quantification. Electrophoresis 2004, 25, 3122–3127. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Volokhov, D.V.; George, J.; Ikonomi, P.; Chandler, D.; Anderson, C.; Chizhikov, V. Application of cell culture enrichment for improving the sensitivity of mycoplasma detection methods based on nucleic acid amplification technology (NAT). Appl. Microbiol. Biotechnol. 2007, 77, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Fushimi, H.; Komatsu, K. Development of a DNA microarray for authentication of ginseng drugs based on 18S rRNA gene sequence. J. Agric Food Chem. 2008, 56, 3953–3959. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, C.; Minami, I.; Oda, K. Hypoxia-inducible genes encoding small EF-hand proteins in rice and tomato. Biosci. Biotechnol. Biochem. 2010, 74, 2463–2469. [Google Scholar] [CrossRef] [PubMed]
- Reverter, A.; Henshall, J.M.; McCulloch, R.; Sasazaki, S.; Hawken, R.; Lehnert, S.A. Numerical analysis of intensity signals resulting from genotyping pooled DNA samples in beef cattle and broiler chicken. J. Anim. Sci. 2014, 92, 1874–1885. [Google Scholar] [CrossRef] [PubMed]
- Brunner, C.; Hoffmann, K.; Thiele, T.; Schedler, U.; Jehle, H.; Resch-Genger, U. Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control. Anal. Bioanal. Chem. 2015, 407, 3181–3191. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Coughlan, S.; Crane, E.; Beatty, M.; Duvick, J. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol. Plant Microbe Interact. 2006, 19, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Bidzhieva, B.; Laassri, M.; Chumakov, K. MAPREC assay for quantitation of mutants in a recombinant flavivirus vaccine strain using near-infrared fluorescent dyes. J. Virol. Methods 2011, 175, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Morisset, D.; Dobnik, D.; Hamels, S.; Zel, J.; Gruden, K. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs. Nucleic Acids Res. 2008, 36, e118. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Qiu, Z.; Jin, M.; Shen, Z.; Chen, Z.; Wang, X.; Li, J.W. High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels. Int. J. Food Microbiol. 2014, 185, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.; Gryshan, Y.; Rott, M. Amplification-free detection of grapevine viruses using an oligonucleotide microarray. J. Virol. Methods 2011, 178, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H. Hexaplex PCR assay and liquid bead array for detection of stacked genetically modified cotton event 281-24-236 × 3006-210-23. Anal. Bioanal. Chem. 2011, 401, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Panicker, G.; Call, D.R.; Krug, M.J.; Bej, A.K. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 2004, 70, 7436–7444. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yu, S.; Zhang, C.; Zhang, J.; Shi, C.; Hu, Y.; Suo, B.; Cao, H.; Shi, X. Development of a single base extension-tag microarray for the detection of pathogenic Vibrio species in seafood. Appl. Microbiol. Biotechnol. 2011, 89, 1979–1990. [Google Scholar] [CrossRef] [PubMed]
- Germini, A.; Mezzelani, A.; Lesignoli, F.; Corradini, R.; Marchelli, R.; Bordoni, R.; Consolandi, C.; de Bellis, G. Detection of genetically modified soybean using peptide nucleic acids (PNAs) and microarray technology. J. Agric. Food Chem. 2004, 52, 4535–4540. [Google Scholar] [CrossRef] [PubMed]
- Ngundi, M.M.; Shriver-Lake, L.C.; Moore, M.H.; Lassman, M.E.; Ligler, F.S.; Taitt, C.R. Array biosensor for detection of ochratoxin A in cereals and beverages. Anal. Chem. 2005, 77, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Veres, T.; Tabrizian, M. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Lab Chip 2006, 6, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Kim, H.J.; Sudheendra, L.; Gee, S.J.; Hammock, B.D.; Kennedy, I.M. Photonic crystal lab-on-a-chip for detecting staphylococcal enterotoxin B at low attomolar concentration. Anal. Chem. 2013, 85, 3104–3109. [Google Scholar] [CrossRef] [PubMed]
- Shriver-Lake, L.C.; Taitt, C.R.; Ligler, F.S. Applications of array biosensor for detection of food allergens. J. AOAC Int. 2004, 87, 1498–1502. [Google Scholar] [PubMed]
- Ngundi, M.M.; Shriver-Lake, L.C.; Moore, M.H.; Ligler, F.S.; Taitt, C.R. Multiplexed detection of mycotoxins in foods with a regenerable array. J. Food Prot. 2006, 69, 3047–3051. [Google Scholar] [PubMed]
- Weingart, O.G.; Gao, H.; Crevoisier, F.; Heitger, F.; Avondet, M.A.; Sigrist, H. A bioanalytical platform for simultaneous detection and quantification of biological toxins. Sensors 2012, 12, 2324–2339. [Google Scholar] [CrossRef] [PubMed]
- Ngundi, M.M.; Taitt, C.R. An array biosensor for detection of bacterial and toxic contaminants of foods. Methods Mol. Biol. 2006, 345, 53–68. [Google Scholar] [PubMed]
- Zhang, X.; Liu, F.; Yan, R.; Xue, P.; Li, Y.; Chen, L.; Song, C.; Liu, C.; Jin, B.; Zhang, Z.; Yang, K. An ultrasensitive immunosensor array for determination of staphylococcal enterotoxin B. Talanta 2011, 85, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fan, Y.; Chen, J.; Guo, Y.; Wu, W.; He, Y.; Xu, L.; Fu, F. A microfluidic chip-based fluorescent biosensor for the sensitive and specific detection of label-free single-base mismatch via magnetic beads-based “sandwich” hybridization strategy. Electrophoresis 2013, 34, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.; Ab Mutalib, N.S.; Chan, K.G.; Lee, L.H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef] [PubMed]
- Josefsen, M.H.; Bhunia, A.K.; Engvall, E.O.; Fachmann, M.S.; Hoorfar, J. Monitoring Campylobacter in the poultry production chain—From culture to genes and beyond. J. Microbiol. Methods 2015, 112, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Patel, I.R. Recent advances in molecular technologies and their application in pathogen detection in foods with particular reference to yersinia. J. Pathog. 2011, 2011, 310135. [Google Scholar] [CrossRef] [PubMed]
- Lauri, A.; Mariani, P.O. Potentials and limitations of molecular diagnostic methods in food safety. Genes Nutr. 2009, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vassioukovitch, O.; Orsini, M.; Paparini, A.; Gianfranceschi, G.; Cattarini, O.; di Michele, P.; Montuori, E.; Vanini, G.C.; Romano Spica, V. Detection of metazoan species as a public health issue: simple methods for the validation of food safety and quality. Biotechnol. Annu. Rev. 2005, 11, 335–354. [Google Scholar] [PubMed]
- Kiyama, R.; Zhu, Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell. Mol. Life Sci. 2014, 71, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Layer, F.; Stephan, R. Comparison of virulence and antibiotic resistance genes of food poisoning outbreak isolates of Staphylococcus aureus with isolates obtained from bovine mastitis milk and pig carcasses. J. Food Prot. 2011, 74, 1852–1859. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Weder, D.; Bridy, C.; Huguenin, M.C.; Robert, L.; Hummerjohann, J.; Stephan, R. Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. J. Dairy Sci. 2015, 9, 2944–2948. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Niederhauser, I.; Johler, S. Virulence and resistance gene profiles of Staphylococcus aureus strains isolated from ready-to-eat foods. J. Food Prot. 2014, 77, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, H.; Kitagawa, E.; Suzuki, Y.; Ueda, Y.; Ishizawa, Y.H.; Nobumasa, H.; Kuboki, Y.; Hosoda, H.; Iwahashi, Y. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics 2007, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Elsholz, B.; Enfors, S.O.; Gabig-Ciminska, M. Confirmative electric DNA array-based test for food poisoning Bacillus cereus. J. Microbiol. Methods 2007, 70, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Seitter, M.; Nerz, C.; Rosenstein, R.; Götz, F.; Hertel, C. DNA microarray based detection of genes involved in safety and technologically relevant properties of food associated coagulase-negative staphylococci. Int. J. Food Microbiol. 2011, 145, 449–458. [Google Scholar] [PubMed]
- Zou, W.; Al-Khaldi, S.F.; Branham, W.S.; Han, T.; Fuscoe, J.C.; Han, J.; Foley, S.L.; Xu, J.; Fang, H.; Cerniglia, C.E.; Nayak, R. Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. J. Infect. Dev. Ctries. 2011, 5, 94–105. [Google Scholar] [PubMed]
- Braun, S.D.; Ziegler, A.; Methner, U.; Slickers, P.; Keiling, S.; Monecke, S.; Ehricht, R. Fast DNA serotyping and antimicrobial resistance gene determination of Salmonella enterica with an oligonucleotide microarray-based assay. PLoS ONE 2012, 7, e46489. [Google Scholar] [CrossRef] [PubMed]
- Lahti, P.; Lindström, M.; Somervuo, P.; Heikinheimo, A.; Korkeala, H. Comparative genomic hybridization analysis shows different epidemiology of chromosomal and plasmid-borne cpe-carrying Clostridium perfringens type A. PLoS ONE 2012, 7, e46162. [Google Scholar] [CrossRef] [PubMed]
- Martino, D.J.; Bosco, A.; McKenna, K.L.; Hollams, E.; Mok, D.; Holt, P.G.; Prescott, S.L. T-cell activation genes differentially expressed at birth in CD4+ T-cells from children who develop IgE food allergy. Allergy 2012, 67, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Wattinger, L.; Stephan, R.; Layer, F.; Johler, S. Comparison of Staphylococcus aureus isolates associated with food intoxication with isolates from human nasal carriers and human infections. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, X.; Takemura, T.; Hanagata, N.; Wu, G.; Chou, L.L. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J. Nanobiotechnology 2012, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Liu, B.; Liu, F.; Cao, B.; Chen, M.; Hao, X.; Feng, L.; Wang, L. Development of a DNA microarray for molecular identification of all 46 Salmonella O serogroups. Appl. Environ. Microbiol. 2013, 79, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- Marotta, F.; Zilli, K.; Tonelli, A.; Sacchini, L.; Alessiani, A.; Migliorati, G.; di Giannatale, E. Detection and genotyping of Campylobacter jejuni and Campylobacter coli by use of DNA oligonucleotide arrays. Mol. Biotechnol. 2013, 53, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Vanhomwegen, J.; Berthet, N.; Mazuet, C.; Guigon, G.; Vallaeys, T.; Stamboliyska, R.; Dubois, P.; Kennedy, G.C.; Cole, S.T.; Caro, V.; et al. Application of high-density DNA resequencing microarray for detection and characterization of botulinum neurotoxin-producing clostridia. PLoS ONE 2013, 8, e67510. [Google Scholar] [CrossRef] [PubMed]
- Strauss, C.; Endimiani, A.; Perreten, V. A novel universal DNA labeling and amplification system for rapid microarray-based detection of 117 antibiotic resistance genes in Gram-positive bacteria. J. Microbiol. Methods 2015, 108, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Stierum, R.; Conesa, A.; Heijne, W.; van Ommen, B.; Junker, K.; Scott, M.P.; Price, R.J.; Meredith, C.; Lake, B.G.; Groten, J. Transcriptome analysis provides new insights into liver changes induced in the rat upon dietary administration of the food additives butylated hydroxytoluene, curcumin, propyl gallate and thiabendazole. Food Chem. Toxicol. 2008, 46, 2616–2628. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, T.H.; Bragason, S.K.; Phipps, R.K.; Christensen, L.D.; van Gennip, M.; Alhede, M.; Skindersoe, M.; Larsen, T.O.; Høiby, N.; Bjarnsholt, T.; et al. Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2012, 78, 2410–2421. [Google Scholar] [CrossRef] [PubMed]
- Miko, A.; Rivas, M.; Bentancor, A.; Delannoy, S.; Fach, P.; Beutin, L. Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany. Front. Cell. Infect. Microbiol. 2014, 4, 78. [Google Scholar] [CrossRef] [PubMed]
- Vogt, D.; Overesch, G.; Endimiani, A.; Collaud, A.; Thomann, A.; Perreten, V. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb. Drug Resist. 2014, 20, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Even, S.; Leroy, S.; Charlier, C.; Zakour, N.B.; Chacornac, J.P.; Lebert, I.; Jamet, E.; Desmonts, M.H.; Coton, E.; Pochet, S.; et al. Low occurrence of safety hazards in coagulase negative staphylococci isolated from fermented foodstuffs. Int. J. Food Microbiol. 2010, 139, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Tichaczek-Dischinger, P.S.; Rau, J.; Sihto, H.M.; Lehner, A.; Adam, M.; Stephan, R. Outbreak of Staphylococcal food poisoning due to SEA-producing Staphylococcus aureus. Foodborne Pathog. Dis. 2013, 10, 777–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, E.; Hebner, F.; Tietze, E.; Helmuth, R.; Junker, E.; Prager, R.; Schroeter, A.; Rabsch, W.; Fruth, A.; Malorny, B. Diversity of Salmonella enterica serovar Derby isolated from pig, pork and humans in Germany. Int. J. Food Microbiol. 2011, 151, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Feroudj, H.; Matsumoto, T.; Kurosu, Y.; Kaneko, G.; Ushio, H.; Suzuki, K.; Kondo, H.; Hirono, I.; Nagashima, Y.; Akimoto, S.; et al. DNA microarray analysis on gene candidates possibly related to tetrodotoxin accumulation in pufferfish. Toxicon 2014, 77, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, X.; Yuan, L.; Wu, K.; Duan, J.; Wang, X.; Yang, L. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol. Biochem. 2012, 50, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Saulnier, N.; Nucera, E.; Altomonte, G.; Rizzi, A.; Pecora, V.; Aruanno, A.; Buonomo, A.; Gasbarrini, A.; Patriarca, G.; Schiavino, D. Gene expression profiling of patients with latex and/or vegetable food allergy. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1197–1210. [Google Scholar] [PubMed]
- Siddique, N.; Sharma, D.; Al-Khaldi, S.F. Detection of Yersinia enterocolitica in alfalfa, mung bean, cilantro, and mamey sapote (Pouteria sapota) food matrices using DNA microarray chip hybridization. Curr. Microbiol. 2009, 59, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Fratamico, P.M.; Wang, S.; Yan, X.; Zhang, W.; Li, Y. Differential gene expression of E. coli O157:H7 in ground beef extract compared to tryptic soy broth. J. Food Sci. 2011, 76, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.G.; Sahm, K.; Polen, T.; Wendisch, V.F.; Antranikian, G. Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. J. Appl. Microbiol. 2008, 105, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Zhang, L.; Jin, L.Q.; Jin, M.; Shen, Z.Q.; An, S.; Chao, F.H.; Li, J.W. Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens. Appl. Microbiol. Biotechnol. 2007, 76, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Lappi, J.; Salojärvi, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K.; de Vos, W.M.; Salonen, A. Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in Finnish adults with metabolic syndrome. J. Nutr. 2013, 143, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Laksanalamai, P.; Joseph, L.A.; Silk, B.J.; Burall, L.S.; Tarr, C.L.; Gerner-Smidt, P.; Datta, A.R. Genomic characterization of Listeria monocytogenes strains involved in a multistate listeriosis outbreak associated with cantaloupe in US. PLoS ONE 2012, 7, e42448. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, B.; Parker, C.T.; Janda, J.M., Jr.; Miller, W.G.; Mandrell, R.E. Detection and genotyping of Arcobacter and Campylobacter isolates from retail chicken samples by use of DNA oligonucleotide arrays. Appl. Environ. Microbiol. 2007, 73, 3645–3655. [Google Scholar] [CrossRef] [PubMed]
- Hauser, E.; Tietze, E.; Helmuth, R.; Junker, E.; Prager, R.; Schroeter, A.; Rabsch, W.; Fruth, A.; Toboldt, A.; Malorny, B. Clonal dissemination of Salmonella enterica serovar Infantis in Germany. Foodborne Pathog. Dis. 2012, 9, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Franke-Whittle, I.H.; Confalonieri, A.; Insam, H.; Schlegelmilch, M.; Körner, I. Changes in the microbial communities during co-composting of digestates. Waste Manag. 2014, 34, 632–641. [Google Scholar] [CrossRef]
- Hmaïed, F.; Helel, S.; le Berre, V.; François, J.M.; Leclercq, A.; Lecuit, M.; Smaoui, H.; Kechrid, A.; Boudabous, A.; Barkallah, I. Prevalence, identification by a DNA microarray-based assay of human and food isolates Listeria spp. from Tunisia. Pathol. Biol. 2014, 62, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.H.; Shin, H.H.; Seo, J.H.; Cha, H.J. Specific multiplex analysis of pathogens using a direct 16S rRNA hybridization in microarray system. Anal. Chem. 2012, 84, 4873–4879. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, S.H.; Lee, T.H.; Nahm, B.H.; Kim, Y.R.; Kim, H.Y. Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosens. Bioelectron. 2008, 24, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, B.K.; Kim, Y.D.; Rhee, S.K.; Kim, Y.C. Detection of representative enteropathogenic bacteria, Vibrio spp., pathogenic Escherichia coli, Salmonella spp., Shigella spp., and Yersinia enterocolitica, using a virulence factor gene-based oligonucleotide microarray. J. Microbiol. 2010, 48, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Donhauser, S.C.; Niessner, R.; Seidel, M. Sensitive quantification of Escherichia coli O157:H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal. Chem. 2011, 83, 3153–3160. [Google Scholar] [CrossRef] [PubMed]
- Goji, N.; Macmillan, T.; Amoako, K.K. A New Generation Microarray for the Simultaneous Detection and Identification of Yersinia pestis and Bacillus anthracis in Food. J. Pathog. 2012, 2012, 627036. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, B.C.; Chang, K.J.; Ahn, J.M.; Ryu, J.H.; Chang, H.I.; Gu, M.B. A subtractively optimized DNA microarray using non-sequenced genomic probes for the detection of food-borne pathogens. Appl. Biochem. Biotechnol. 2011, 164, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Merga, J.Y.; Williams, N.J.; Miller, W.G.; Leatherbarrow, A.J.; Bennett, M.; Hall, N.; Ashelford, K.E.; Winstanley, C. Exploring the diversity of Arcobacter butzleri from cattle in the UK using MLST and whole genome sequencing. PLoS ONE 2013, 8, e55240. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Rodríguez, I.; Baumann, B.; Guiral, E.; Beutin, L.; Schroeter, A.; Kaesbohrer, A.; Pfeifer, Y.; Helmuth, R.; Guerra, B. blaCTX-M-15-carrying Escherichia coli and Salmonella isolates from livestock and food in Germany. J. Antimicrob. Chemother. 2014, 69, 2951–2958. [Google Scholar] [CrossRef] [PubMed]
- Kostić, T.; Stessl, B.; Wagner, M.; Sessitsch, A.; Bodrossy, L. Microbial diagnostic microarray for food- and water-borne pathogens. Microb. Biotechnol. 2010, 3, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Kim, S.J.; Yoon, B.H.; Ryu, J.H.; Gu, M.B.; Chang, H.I. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip. J. Food Prot. 2011, 74, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Lezar, S.; Barros, E. Oligonucleotide microarray for the identification of potential mycotoxigenic fungi. BMC Microbiol. 2010, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Suo, B.; He, Y.; Paoli, G.; Gehring, A.; Tu, S.I.; Shi, X. Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol. Cell. Probes 2010, 24, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.; Crowley, M.R.; Wang, C. Transcriptome analysis of Listeria monocytogenes grown on a ready-to-eat meat matrix. J. Food Prot. 2011, 74, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Dobnik, D.; Morisset, D.; Lenarčič, R.; Ravnikar, M. Simultaneous detection of RNA and DNA targets based on multiplex isothermal amplification. J. Agric. Food Chem. 2014, 62, 2989–2996. [Google Scholar] [CrossRef] [PubMed]
- Toboldt, A.; Tietze, E.; Helmuth, R.; Junker, E.; Fruth, A.; Malorny, B. Molecular epidemiology of Salmonella enterica serovar Kottbus isolated in Germany from humans, food and animals. Vet. Microbiol. 2014, 170, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Rungrassamee, W.; Tosukhowong, A.; Klanchui, A.; Maibunkaew, S.; Plengvidhya, V.; Karoonuthaisiri, N. Development of bacteria identification array to detect lactobacilli in Thai fermented sausage. J. Microbiol. Methods 2012, 91, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wen, S.; Liu, Y.; Li, R.; Zhong, X.; Feng, L.; Wang, L.; Cao, B. Development of a DNA microarray for detection and identification of Legionella pneumophila and ten other pathogens in drinking water. Int. J. Food Microbiol. 2011, 145, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Liu, X.; Yu, X.; Chen, M.; Feng, L.; Wang, L. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp. PLoS ONE 2014, 9, e113863. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.; Sieuwerts, S.; de Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures. Appl. Environ. Microbiol. 2013, 79, 5949–5961. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, Y.; Tanaka, M.; Morosawa, T.; Kurotani, A.; Yoshida, T.; Mochida, K.; Matsui, A.; Umemura, Y.; Ishitani, M.; Shinozaki, K.; et al. Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: An important tropical crop. DNA Res. 2012, 19, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.H.; Yang, H.P.; Chun, H.S. Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutr. Res. 2012, 32, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Yamanaka-Okumura, H.; Sakuma, M.; Mori, Y.; Adachi, C.; Matsumoto, Y.; Sato, T.; Yamamoto, H.; Taketani, Y.; Katayama, T.; et al. Gene expression profiling in peripheral white blood cells in response to the intake of food with different glycemic index using a DNA microarray. J. Nutrigenet. Nutrigenomics 2013, 6, 154–168. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Sheng, Z.Y.; Tang, C.L.; Chen, L.; Pan, L.; Chen, J.Y. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats. Acta Pharmacol. Sin. 2011, 32, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, J.; Liu, S.; Zhang, L.; Xiao, H.; Li, J.; Chen, H.; Petersen, R.B.; Huang, K.; Zheng, L. DNA hypomethylation of inflammation-associated genes in adipose tissue of female mice after multigenerational high fat diet feeding. Int. J. Obes. 2014, 38, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Noguchi, M.; Hayashi, O.; Makino, K.; Yamada, H. Hochuekkito, a Kampo (traditional Japanese herbal) Medicine, Enhances Mucosal IgA Antibody Response in Mice Immunized with Antigen-entrapped Biodegradable Microparticles. Evid. Based Complement. Altern. Med. 2010, 7, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Inoue, A.; Zhu, Y.; Tanji, M.; Kiyama, R. Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root. Food Chem. Toxicol. 2007, 45, 2470–2478. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Kamei, A.; Ueda, R.; Arai, S.; Mura, K. Characterization of the quality of imbibed soybean at an early stage of pre-germination for the development of a new protein food item. Biosci. Biotechnol. Biochem. 2014, 78, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.M.; Freire, P.F.; Daimiel, L.; Martínez-Botas, J.; Sánchez, C.M.; Lasunción, M.Á.; Peropadre, A.; Hazen, M.J. The antioxidant butylated hydroxyanisole potentiates the toxic effects of propylparaben in cultured mammalian cells. Food Chem. Toxicol. 2014, 72, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.J.; Zhu, C.Y. Genomic Study of the Absorption Mechanism of p-Coumaric Acid and Caffeic Acid of Extract of Ananas Comosus L. Leaves. J. Food Sci. 2015, 80, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Gutiérrez, E.; Moser, M.; García-Ródenas, C.; Raymond, F.; Mansourian, R.; Rubio-Aliaga, I.; Viguet-Carrin, S.; Metairon, S.; Ammon-Zufferey, C.; Avanti-Nigro, O.; et al. Effect of a mixture of bovine milk oligosaccharides, Lactobacillus rhamnosus NCC4007 and long-chain polyunsaturated fatty acids on catch-up growth of intra-uterine growth-restricted rats. Acta Physiol. 2014, 210, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Togawa, N.; Takahashi, R.; Hirai, S.; Fukushima, T.; Egashira, Y. Gene expression analysis of the liver and skeletal muscle of psyllium-treated mice. Br. J. Nutr. 2013, 109, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Kobori, M.; Masumoto, S.; Akimoto, Y.; Takahashi, Y. Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol. Nutr. Food Res. 2009, 53, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ream, A. Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk. Appl. Environ. Microbiol. 2008, 74, 6859–6866. [Google Scholar] [CrossRef] [PubMed]
- Tokuji, Y.; Akiyama, K.; Yunoki, K.; Kinoshita, M.; Sasaki, K.; Kobayashi, H.; Wada, M.; Ohnishi, M. Screening for beneficial effects of oral intake of sweet corn by DNA microarray analysis. J. Food Sci. 2009, 74, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Hiroi, T.; Araki, M.; Hirokawa, T.; Miyazawa, M.; Aoki, N.; Kojima, T.; Ohsawa, T. Facilitative effects of Eucommia ulmoides on fatty acid oxidation in hypertriglyceridaemic rats. J. Sci. Food Agric. 2012, 92, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Mayer, L.; Vendruscolo, C.T.; Silva, W.P.; Vorhölter, F.J.; Becker, A.; Pühler, A. Insights into the genome of the xanthan-producing phytopathogen Xanthomonas arboricola pv. pruni 109 by comparative genomic hybridization. J. Biotechnol. 2011, 155, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.M.; Sahota, R.; Pope, D.S.; Lawrence, T.S.; Belton, M.P.; Rott, M.E. Detection of genetically modified canola using multiplex PCR coupled with oligonucleotide microarray hybridization. J. Agric. Food Chem. 2008, 56, 6791–6800. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, S.Y.; Lee, H.; Kim, Y.R.; Kim, H.Y. An event-specific DNA microarray to identify genetically modified organisms in processed foods. J. Agric. Food Chem. 2010, 58, 6018–6026. [Google Scholar] [CrossRef] [PubMed]
- Rønning, S.B.; Rudi, K.; Berdal, K.G.; Holst-Jensen, A. Differentiation of important and closely related cereal plant species (Poaceae) in food by hybridization to an oligonucleotide array. J. Agric. Food Chem. 2005, 53, 8874–8880. [Google Scholar] [CrossRef] [PubMed]
- Voorhuijzen, M.M.; van Dijk, J.P.; Prins, T.W.; van Hoef, A.M.; Seyfarth, R.; Kok, E.J. Development of a multiplex DNA-based traceability tool for crop plant materials. Anal. Bioanal. Chem. 2012, 402, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Mantri, N.; Li, C.G.; Xue, C.; Wohlmuth, H.; Pang, E.C. Detection of Panax quinquefolius in Panax ginseng using “subtracted diversity array”. J. Sci. Food Agric. 2011, 91, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Im, R.; Mano, H.; Nakatani, S.; Shimizu, J.; Wada, M. Safety evaluation of the aqueous extract Kothala himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays. Biosci. Biotechnol. Biochem. 2008, 72, 3075–3083. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, J.P.; Leifert, C.; Barros, E.; Kok, E.J. Gene expression profiling for food safety assessment: examples in potato and maize. Regul. Toxicol. Pharmacol. 2010, 58, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Leimanis, S.; Hernández, M.; Fernández, S.; Boyer, F.; Burns, M.; Bruderer, S.; Glouden, T.; Harris, N.; Kaeppeli, O.; Philipp, P.; et al. A microarray-based detection system for genetically modified (GM) food ingredients. Plant Mol. Biol. 2006, 61, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Consoland, C.; Palmieri, L.; Doveri, S.; Maestri, E.; Marmiroli, N.; Reale, S.; Lee, D.; Baldoni, L.; Tosti, N.; Severgnini, M.; et al. Olive variety identification by ligation detection reaction in a universal array format. J. Biotechnol. 2007, 129, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, J.P.; Cankar, K.; Scheffer, S.J.; Beenen, H.G.; Shepherd, L.V.; Stewart, D.; Davies, H.V.; Wilkockson, S.J.; Leifert, C.; Gruden, K.; et al. Transcriptome analysis of potato tubers—Effects of different agricultural practices. J. Agric. Food Chem. 2009, 57, 1612–1623. [Google Scholar] [CrossRef] [PubMed]
- Kamakura, M.; Maebuchi, M.; Ozasa, S.; Komori, M.; Ogawa, T.; Sakaki, T.; Moriyama, T. Influence of royal jelly on mouse hepatic gene expression and safety assessment with a DNA microarray. J. Nutr. Sci. Vitaminol. 2005, 51, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Al-Khaldi, S.F.; Martin, S.A.; Rasooly, A.; Evans, J.D. DNA microarray technology used for studying foodborne pathogens and microbial habitats: Mini review. J. AOAC Int. 2002, 85, 906–910. [Google Scholar] [PubMed]
- Liu-Stratton, Y.; Roy, S.; Sen, C.K. DNA microarray technology in nutraceutical and food safety. Toxicol. Lett. 2004, 150, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Kostrzynska, M.; Bachand, A. Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Can. J. Microbiol. 2006, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sen, C.K. cDNA microarray screening in food safety. Toxicology 2006, 221, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Rasooly, A.; Herold, K.E. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog. Dis. 2008, 5, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, H.A.; Kok, E.J.; Engel, K.H. Exploitation of molecular profiling techniques for GM food safety assessment. Curr. Opin. Biotechnol. 2003, 14, 238–243. [Google Scholar] [CrossRef]
- Li, W.F.; Jiang, J.G.; Chen, J. Chinese medicine and its modernization demands. Arch. Med. Res. 2008, 39, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Kiyama, R. DNA microarray assay (DMA) for screening and characterization of traditional herbal medicine. In Applications of DNA Microarray to Drug Discovery and Development; Cheng, F., Ed.; CRC Press/Taylor and Francis: Boca Raton, FL, USA, in press.
- Afshari, C.A.; Nuwaysir, E.F.; Barrett, J.C. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res. 1999, 59, 4759–4760. [Google Scholar] [PubMed]
- Degenkolbe, T.; Hannah, M.A.; Freund, S.; Hincha, D.K.; Heyer, A.G.; Köhl, K.I. A quality-controlled microarray method for gene expression profiling. Anal. Biochem. 2005, 346, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Böhme, K.; Cremonesi, P.; Severgnini, M.; Villa, T.G.; Fernández-No, I.C.; Barros-Velázquez, J.; Castiglioni, B.; Calo-Mata, P. Detection of food spoilage and pathogenic bacteria based on ligation detection reaction coupled to flow-through hybridization on membranes. Biomed. Res. Int. 2014, 2014, 156323. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, L.; Druzhinina, I.S. Review: Global nutrient profiling by Phenotype MicroArrays: A tool complementing genomic and proteomic studies in conidial fungi. J. Zhejiang Univ. Sci. B 2010, 11, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Sakaida, I.; Tsuchiya, M.; Kawaguchi, K.; Kimura, T.; Terai, S.; Okita, K. Herbal medicine Inchin-ko-to (TJ-135) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient l-amino acid-defined diet. J. Hepatol. 2003, 38, 762–769. [Google Scholar] [CrossRef]
- Zheng, H.C.; Noguchi, A.; Kikuchi, K.; Ando, T.; Nakamura, T.; Takano, Y. Gene expression profiling of lens tumors, liver and spleen in α-crystallin/SV40 T antigen transgenic mice treated with Juzen-taiho-to. Mol. Med. Rep. 2014, 9, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.X.; Zhang, X.Z.; Wu, F.; He, L.Q. The effects of kangxianling on renal fibrosis as assessed with a customized gene chip. J. Tradit. Chin. Med. 2012, 32, 229–233. [Google Scholar] [CrossRef]
- Pan-Hammarström, Q.; Wen, S.; Hammarström, L. Cytokine gene expression profiles in human lymphocytes induced by a formula of traditional Chinese medicine, vigconic VI-28. J. Interferon Cytokine Res. 2006, 26, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Kiyama, R.; Wada-Kiyama, Y. Estrogenic endocrine disruptors: molecular mechanisms of action. Environ. Int. 2015, 83, 11–40. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, K.; Isobe, S.-I.; Zhu, Y.; Kiyama, R. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials. Sensors 2015, 15, 25831-25867. https://doi.org/10.3390/s151025831
Nishi K, Isobe S-I, Zhu Y, Kiyama R. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials. Sensors. 2015; 15(10):25831-25867. https://doi.org/10.3390/s151025831
Chicago/Turabian StyleNishi, Kentaro, Shin-Ichiro Isobe, Yun Zhu, and Ryoiti Kiyama. 2015. "Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials" Sensors 15, no. 10: 25831-25867. https://doi.org/10.3390/s151025831
APA StyleNishi, K., Isobe, S.-I., Zhu, Y., & Kiyama, R. (2015). Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials. Sensors, 15(10), 25831-25867. https://doi.org/10.3390/s151025831