A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Pure SnO2 Nanoparticles
2.3. Synthesis of Pt-Loaded SnO2 Nanoparticles
Sample | Atmosphere | SnO2 Solution | Surfactant OA (mmol) | PtCl2 Powder (mmol) | Temperature/Time (°C/h) | Average Crystal Size (nm) |
---|---|---|---|---|---|---|
(a) | Air | 1 | 0 | 0 | 340/2 | 5.5 |
(b) | Air | 1 | 10 | 0.05 | 290/1 | 5.1 |
(c) | Air | 1 | 10 | 0.1 | 290/1 | 6.3 |
(d) | Air | 1 | 10 | 0.15 | 290/1 | 5.7 |
2.4. Sensor Fabrication and Measurements
2.5. Structural and Morphological Characterization
3. Results and Discussion
3.1. Pure SnO2 Nanoparticle Based Sensor
3.2. Pt-Loaded SnO2 Nanoparticle Based Sensor
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, J.; Guo, J.; Xu, H.; Cao, B. Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance. ACS Appl. Mater. Interfaces 2013, 5, 7893–7898. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.M.; Mao, S.; Wen, Z.; Chang, J.; Zhang, Y.; Chen, J. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 2013, 138, 2877. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.Y.; Korgel, B.A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem Int. Ed. 2011, 123, 2790–2793. [Google Scholar] [CrossRef]
- Cadena-Pereda, R.O.; Eric, M.R.; Herrera-Ruiz, G.; Gomez-Melendez, D.J.; Anaya-Rivera, E.K. Automatic carbon dioxide-methane gas sensor based on the solubility of gas in water. Sensors 2012, 12, 10742–10758. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, Y.; Ma, J. Fe3+ facilitating the response of NiO towards H2S. RSC Adv. 2014, 4, 14201–14205. [Google Scholar] [CrossRef]
- Xu, X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527–12535. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Q.; Lao, C.S.; Li, Z.; Liu, Y.Z.; Xie, Z.X.; Zheng, L.S.; Wang, Z.L. Enhancing the photon-and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. 2008, 112, 11539–11544. [Google Scholar] [CrossRef]
- Huang, J.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N.; Kunitake, T. Nanotubular SnO2 templated by cellulose fibres: Synthesis and gas sensing. Chem. Mater. 2005, 17, 3513–3518. [Google Scholar] [CrossRef]
- Chiu, H.C.; Yeh, C.S. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. 2007, 111, 7256–7259. [Google Scholar] [CrossRef]
- Ma, J.M.; Zhang, J.; Wang, S.; Wang, Q.; Jiao, L.; Yang, J.; Duan, X.; Liu, Z.; Zheng, W. Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method. CrystEngComm 2011, 13, 6077–6081. [Google Scholar] [CrossRef]
- Liu, Y.A.; Koep, E.; Liu, M. Highly sensitive and fast responding SnO2 sensor fabricated by combustion chemical vapour desposition. Chem. Mater. 2005, 17, 3997–40004. [Google Scholar] [CrossRef]
- Ge, J.P.; Wang, J.; Zhang, H.X.; Wang, X.; Peng, Q.; Li, D.Y. High ethanol sensitive SnO2 microspheres. Sens. Actuators B Chem. 2006, 113, 937–943. [Google Scholar] [CrossRef]
- Murakami, K.; Nakajima, K.; Kaneko, S. Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique. Thin Solid Films 2007, 515, 8632–8636. [Google Scholar] [CrossRef]
- Okuno, T.; Oshima, T.; Lee, S.D.; Fujia, S. Growth of SnO2 crystalline thin films by mist chemical vapour deposition method. Physics. Status Solidi 2011, 8, 540–542. [Google Scholar] [CrossRef]
- Randhawa, H.S.; Matthews, M.D.; Bunshah, R.F. SnO2 films prepared by activated reactive evaporation. Thin Solid Films 1981, 83, 267–271. [Google Scholar] [CrossRef]
- Gui, T.; Hao, L.; Wang, J.; Yuan, L.; Jai, W.; Dong, X. Structure and features of SnO2 thin films prepared by RF reactive sputtering. Chin. Opt. Lett. 2010, 8, 10134–10136. [Google Scholar]
- Ryzhikov, A.S.; Shatokin, N.; Putilin, F.N.; Rumyantseva, M.N.; Gaskov, A.M.; Labeau, M. Hydrogen sensitivity of SnO2 thin films doped with Pt by laser ablation. Sens. Actuators B Chem. 2005, 107, 387–391. [Google Scholar] [CrossRef]
- Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T. Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires. J. Alloy. Compd. 2009, 488, L21–L25. [Google Scholar] [CrossRef]
- Liewhiran, C.; Tamaekong, N.; Wisitsoraat, A.; Phanichphant, S. Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles. Sens. Actuators B Chem. 2012, 163, 51–60. [Google Scholar] [CrossRef]
- Galdikas, A.; Kaciulis, S.; Mattogono, G.; Mironas, A.; Napoli, A.; Senuliene, D.; Setkus, A. Thickness effect of constituent layers on gas sensitivity in SnO2/[metal]/metal multi-layers. Sens. Actuators B Chem. 1999, 58, 478–485. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wu, X.H.; Su, Q.; Li, Y.F.; Zhou, Z.L. Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials. Solid-State Electron. 2001, 45, 347–350. [Google Scholar] [CrossRef]
- Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Selectivity towards H2 gas by flame-made Pt-loaded WO3 sensing films. Sens. Actuators B Chem. 2011, 157, 290–297. [Google Scholar] [CrossRef]
- Tamaekong, N.; Liewhiran, C.; Wisitsiraat, A.; Phanichphant, S. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor. Sensors 2009, 9, 6652–6669. [Google Scholar] [CrossRef] [PubMed]
- Sysoev, V.V.; Strelcov, E.; Kar, S.; Kolmakov, A. The electrical characterization of a multi-electrode odor detection sensor array based on the single SnO2 nanowire. Thin Solid Films 2011, 520, 898–903. [Google Scholar] [CrossRef]
- Kocemba, I.; Rynkowski, J. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens. Actuators B Chem. 2011, 155, 659–666. [Google Scholar] [CrossRef]
- Wang, S.C.; Chiang, R.K.; Hu, P.J. Morphological and phase control of tin oxide single-crystals synthesized by dissolution and recrystallization of bulk SnO powders. J. Eur. Ceram. Soc. 2011, 31, 2447–2451. [Google Scholar] [CrossRef]
- Buchel, R.; Pratsinia, S.E.; Baiker, A. Influence of controlled spatial deposition of Pt and Pd in NOx storage-reduction catalysts on their efficiency. Appl. Catal. B Environ. 2011, 101, 682–689. [Google Scholar] [CrossRef]
- Strobel, R.; Krumeich, F.; Stark, W.J.; Pratsinis, S.E.; Baiker, A. Flame spray synthesis of Pd/Al2O3 catalysts and their behaviour in enantioselective hydrogenation. J. Catal. 2004, 222, 307–314. [Google Scholar] [CrossRef]
- Tamaekong, N.; Liewhiran, C.; Wisitsoraat, A.; Phanichphanta, S. Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens. Actuators B Chem. 2011, 152, 155–161. [Google Scholar] [CrossRef]
- Strobel, R.; Grunwaldt, J.D.; Camenzind, A.; Pratsinis, S.E.; Baiker, A. Flame-made alumina supported Pd–Pt nanoparticles: Structural properties and catalytic behavior in methane combustion. Catal. Lett. 2005, 104, 9–16. [Google Scholar] [CrossRef]
- Pratsinis, S.E. Flame aerosol synthesis of ceramic powders. Prog. Energ. Combust. 1998, 24, 197–219. [Google Scholar] [CrossRef]
- Epifani, M.; Forleo, A.; Capone, S.; Quaranta, F.; Rella, R.; Siciliano, P.; Vasanelli, L. Hall effect measurements in gas sensors based on nanosized Os-doped sol-gel derived SnO2 thin films. IEEE Sens. J. 2003, 3, 827–834. [Google Scholar] [CrossRef]
- Oprea, A.; Barsan, N.; Weimar, U. Characterization of granular metal oxide semi-conductor gas sensitive layers by using Hall effect based approaches. J. Phys. D Appl. Phys. 2007, 40, 7217. [Google Scholar] [CrossRef]
- Orton, J.W.; Powell, M.J. The Hall Effect in polycrystalline and powdered semi-conductors. Rep. Prog. Phys. 1980, 43, 1263. [Google Scholar] [CrossRef]
- Schierbaum, K.D.; Kirner, U.K.; Geiger, J.F.; Gopel, W. Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2. Sens. Actuators B Chem. 1991, 4, 87–94. [Google Scholar] [CrossRef]
- Morris, L.; Williams, D.E. Pt(II) as an Electronically Active Surface Site in the Room Temperature CO Response of Pt Modified Gas Sensitive Resistors. J. Phys. Chem. B 2001, 105, 7272–7279. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-C.; Shaikh, M.O. A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles. Sensors 2015, 15, 14286-14297. https://doi.org/10.3390/s150614286
Wang S-C, Shaikh MO. A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles. Sensors. 2015; 15(6):14286-14297. https://doi.org/10.3390/s150614286
Chicago/Turabian StyleWang, Sheng-Chang, and Muhammad Omar Shaikh. 2015. "A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles" Sensors 15, no. 6: 14286-14297. https://doi.org/10.3390/s150614286
APA StyleWang, S. -C., & Shaikh, M. O. (2015). A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles. Sensors, 15(6), 14286-14297. https://doi.org/10.3390/s150614286