Gold and ZnO-Based Metal-Semiconductor Network for Highly Sensitive Room-Temperature Gas Sensing
Abstract
:1. Introduction
2. Experimental Section
2.1. Growth of a Gold Nanobelt Pattern
2.2. Growth of the (M-S)n Network of Au–ZnO
2.3. Characterizations
2.4. Gas Sensing
3. Results and Discussion
3.1. Growth of the Au–ZnO (M-S)n Film on SiO2 Wafer
3.2. Sensing Ethanol and Acetone Gases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rhoderick, E.H. Metal-semiconductor contacts. IEE Proc. I Solid State Electron Dev. 1982, 129, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Raju, S.; Li, B.; Chan, M.; Chai, Y.; Yang, C.Y. Self-Driven Metal-Semiconductor-Metal WSe 2 Photodetector with Asymmetric Contact Geometries. Adv. Funct. Mater. 2018, 28, 1802954. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, J.; Lv, S.; Zhu, L.; Dong, J.; Wu, H.; Xiao, Y.; Luo, Y.; Wang, S.; Li, D.; et al. Simple Way to Engineer Metal-Semiconductor Interface for Enhanced Performance of Perovskite Organic Lead Iodide Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 5651–5656. [Google Scholar] [CrossRef]
- Vilan, A.; Shanzer, A.; Cahen, D. Molecular control over Au/GaAs diodes. Nature 2000, 404, 166–168. [Google Scholar] [CrossRef]
- Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C.M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65. [Google Scholar] [CrossRef]
- Pan, Y.; Li, S.; Ye, M.; Quhe, R.; Song, Z.; Wang, Y.; Zheng, J.; Pan, F.; Guo, W.; Yang, J.; et al. Interfacial Properties of Monolayer MoSe2–Metal Contacts. J. Phys. Chem. C 2016, 120, 13063–13070. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, J.; Yang, Y.; Huang, Y.; Li, X.; Zhang, Y. Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure. Appl. Phys. Lett. 2010, 96, 253112. [Google Scholar] [CrossRef]
- Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Nevius, M.S.; Wang, F.; Shepperd, K.; Palmer, J.; Bertran, F.; Le Fèvre, P.; Kunc, J.; et al. A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 2012, 9, 49–54. [Google Scholar] [CrossRef]
- Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T.F.; et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474. [Google Scholar] [CrossRef]
- Zhang, R.; Hummelgård, M.; Olin, H. Simple Fabrication of Gold Nanobelts and Patterns. PLoS ONE 2012, 7, e30469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Hummelgård, M.; Olin, H. Single layer porous gold films grown at different temperatures. Phys. B 2010, 405, 4517–4522. [Google Scholar] [CrossRef]
- Zhang, R.; Hummelgård, M.; Olin, H. Size and concentration controlled growth of porous gold nanofilm. Phys. Status Solidi 2012, 209, 519–523. [Google Scholar] [CrossRef]
- Zhang, R.; Hummelgård, M.; Olin, H. Large area porous gold films deposited by evaporation-induced colloidal crystal growth. J. Colloid Interface Sci. 2009, 340, 58–61. [Google Scholar] [CrossRef]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Zhan, J. Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Adv. Mater. 2008, 20, 4547–4551. [Google Scholar] [CrossRef]
- Cheng, X.L.; Zhao, H.; Huo, L.H.; Gao, S.; Zhao, J.G. ZnO nanoparticulate thin film: Preparation, characterization and gas-sensing property. Sens. Actuators B Chem. 2004, 102, 248–252. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, T.; Yuan, M.; Kang, M.; Lu, G.; Wang, R.; Fan, H.; He, Y.; Yang, H. Growth and selective acetone detection based on ZnO nanorod arrays. Sens. Actuators B Chem. 2009, 143, 93–98. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, T.; Liu, L.; Zheng, X.; Yu, Q.; Zeng, Y.; Yang, H. Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery. Sens. Actuators B Chem. 2008, 134, 166–170. [Google Scholar] [CrossRef]
- Acharyya, D.; Bhattacharyya, P. Alcohol sensing performance of ZnO hexagonal nanotubes at low temperatures: A qualitative understanding. Sens. Actuators B Chem. 2016, 228, 373–386. [Google Scholar] [CrossRef]
- Chen, J.; Pan, X.; Boussaid, F.; McKinley, A.; Fan, Z.; Bermak, A. Breath Level Acetone Discrimination Through Temperature Modulation of a Hierarchical ZnO Gas Sensor. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Hazra, A.; Bhattacharyya, P. Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron Dev. 2014, 61, 3483–3489. [Google Scholar] [CrossRef]
- Galstyan, V.; Comini, E.; Ponzoni, A.; Sberveglieri, V.; Sberveglieri, G. ZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric Chemical Sensors. Chemosensors 2016, 4, 6. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Kaur, M.; Sharma, P.K.; Datta, N.; Kailasaganapathi, S.; Bhattacharya, S.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Ethanol sensing properties of pure and Au modified ZnO nanowires. Sens. Actuators B Chem. 2013, 187, 313–318. [Google Scholar] [CrossRef]
- Galstyan, V.; Comini, E.; Kholmanov, I.; Ponzoni, A.; Sberveglieri, V.; Poli, N.; Faglia, G.; Sberveglieri, G. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors. Beilstein, J. Nanotechnol. 2016, 7, 1421–1427. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Sun, G.J.; Jin, C.; Kim, H.W.; Lee, S.; Lee, C. Synergistic Effects of a Combination of Cr2O3-Functionalization and UV-Irradiation Techniques on the Ethanol Gas Sensing Performance of ZnO Nanorod Gas Sensors. ACS Appl. Mater. Interfaces 2016, 8, 2805–2811. [Google Scholar] [CrossRef]
- Sudha, M.; Radha, S.; Kirubaveni, S.; Kiruthika, R.; Govindaraj, R.; Santhosh, N. Experimental study on structural, optoelectronic and room temperature sensing performance of Nickel doped ZnO based ethanol sensors. Solid State Sci. 2018, 78, 30–39. [Google Scholar] [CrossRef]
- Zou, A.L.; Qiu, Y.; Yu, J.J.; Yin, B.; Cao, G.Y.; Zhang, H.Q.; Hu, L.Z. Ethanol sensing with Au-modified ZnO microwires. Sens. Actuators B Chem. 2016, 227, 65–72. [Google Scholar] [CrossRef]
- Muthukrishnan, K.; Vanaraja, M.; Boomadevi, S.; Karn, R.K.; Singh, V.; Singh, P.K.; Pandiyan, K. Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating. J. Alloys Compd. 2016, 673, 138–143. [Google Scholar] [CrossRef]
Morphology | Gas | Concentration (ppm) | Response* | Response Time | Recovery Time | Ref. |
---|---|---|---|---|---|---|
Nanorods | Ethanol | 200 | 111% | NA | NA | [26] |
Nanorods | Ethanol | 100 | 102% | 45 s | 50 s | [27] |
Nanowires | Ethanol | 20 | 110% | NA | 15 | [28] |
Nanotubes | Ethanol | 10 | 131% | NA | NA | [20] |
(M-S)n network | Ethanol | 28 | 100.7% | 19 s | 280 s | This work |
Thin film | Acetone | 100 | 760% | 34 s | 40 s | [29] |
Hierarchical | Acetone | 1 | 102% | 190 s | 298 s | [21] |
(M-S)n network | Acetone | 22 | 101% | 51 s | 130 s | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Hummelgård, M.; Ljunggren, J.; Olin, H. Gold and ZnO-Based Metal-Semiconductor Network for Highly Sensitive Room-Temperature Gas Sensing. Sensors 2019, 19, 3815. https://doi.org/10.3390/s19183815
Zhang R, Hummelgård M, Ljunggren J, Olin H. Gold and ZnO-Based Metal-Semiconductor Network for Highly Sensitive Room-Temperature Gas Sensing. Sensors. 2019; 19(18):3815. https://doi.org/10.3390/s19183815
Chicago/Turabian StyleZhang, Renyun, Magnus Hummelgård, Joel Ljunggren, and Håkan Olin. 2019. "Gold and ZnO-Based Metal-Semiconductor Network for Highly Sensitive Room-Temperature Gas Sensing" Sensors 19, no. 18: 3815. https://doi.org/10.3390/s19183815
APA StyleZhang, R., Hummelgård, M., Ljunggren, J., & Olin, H. (2019). Gold and ZnO-Based Metal-Semiconductor Network for Highly Sensitive Room-Temperature Gas Sensing. Sensors, 19(18), 3815. https://doi.org/10.3390/s19183815