Characterization of the Uniformity of High-Flux CdZnTe Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. High Flux CdZnTe Detectors
2.2. The HEXITEC Detector System
2.3. Energy Calibration Procedure
3. Results
3.1. Spectroscopic Performance
3.2. Charge Sharing
3.3. Detector Defects
3.4. Temporal Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mat. Sci. Eng. Rep. 2001, 32, 103–189. [Google Scholar] [CrossRef]
- Bale, D.S.; Soldner, S.A.; Szeles, C. A mechanism for dynamic lateral polarization in CdZnTe under high flux x-ray irradiation. Appl. Phys. Lett. 2008, 92, 082101. [Google Scholar] [CrossRef]
- Streicher, M.; Brown, S.; Zhu, Y.; Goodman, D.; He, Z. Special Nuclear Material Characterization Using Digital 3-D Position Sensitive CdZnTe Detectors and High Purity Germanium Spectrometers. Tran. Nucl. Sci. 2016, 63, 2649–2656. [Google Scholar] [CrossRef]
- Iniewski, K. CZT sensors for Computed Tomography: From crystal growth to image quality. J. Inst. 2016, 11, C12034. [Google Scholar] [CrossRef]
- Thomas, B.; Veale, M.C.; Wilson, M.D.; Seller, P.; Schneider, A.; Iniewski, K. Characterisation of Redlen high-flux CdZnTe. J. Inst. 2017, 12, C12045. [Google Scholar]
- Veale, M.C.; Angelsen, C.; Booker, P.; Coughlan, J.; French, M.J.; Hardie, A.; Hart, M.; Lipp, J.; Nicholls, T.; Schneider, A.; et al. Cadmium zinc telluride pixel detectors for high-intensity x-ray imaging at free electron lasers. J. Phys. D Appl. Phys. 2018, 12, 085106. [Google Scholar] [CrossRef]
- Tsigaridas, S.; Ponchut, C. X-ray imaging with high-Z sensors for the ESRF-EBS Upgrade. J. Inst. 2019, 14, C04009. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.D.; Dummott, L.; Duarte, D.D.; Green, F.H.; Pani, S.; Schneider, A.; Scuffham, J.W.; Seller, P.; Veale, M.C. A 10 cm × 10 cm CdTe Spectroscopic Imaging Detector based on the HEXITEC ASIC. J. Inst. 2015, 10, P10011. [Google Scholar] [CrossRef]
- Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C. Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 892, 106–113. [Google Scholar] [CrossRef]
- Jones, L.; Seller, P.; Wilson, M.; Hardie, A. HEXITEC ASIC – A pixelated readout chip for CZT detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 604, 34–37. [Google Scholar] [CrossRef]
- Schneider, A.; Veale, M.C.; Duarte, D.D.; Bell, S.J.; Wilson, M.D.; Lipp, J.D.; Seller, P. Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors. J. Inst. 2015, 10, C02010. [Google Scholar] [CrossRef]
- Liotti, E.; Lui, A.; Connolley, T.; Dolbnya, I.P.; Sawhney, K.J.S.; Malandain, A.; Wilson, M.D.; Veale, M.C.; Seller, P.; Grant, P.S. Mapping of multi-elements during melting and solidification using synchrotron X-rays and pixel-based spectroscopy. Sci. Rep. 2015, 5, 15988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, C.K.; Jacques, S.D.M.; Wilson, M.D.; Veale, M.C.; Seller, P.; Beale, A.M.; Pattrick, R.A.D.; Withers, P.J.; Cernik, R.J. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography. Sci. Rep. 2015, 5, 15979. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, W.H.; Christe, S.D.; Ryan, D.F.; Inglis, A.R.; Shih, A.Y.; Gregory, K.; Wilson, M.D.; Seller, P.; Gaskin, J.; Wilson-Hodge, C. The HEXITC hard x-ray pixelated CdTe imager for fast solar observation. Proc. SPIE 2016, 9915, 99151D. [Google Scholar]
- Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; et al. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging. Sci. Rep. 2016, 6, 24622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veale, M.C.; Seller, P.; Wilson, M.; Liotti, E. HEXITEC: A High-Energy X-ray Spectroscopic Imaging Detector for Synchrotron Applications. Sync. Rad. News 2018, 31, 28–32. [Google Scholar] [CrossRef]
- Veale, M.C.; Bell, S.J.; Duarte, D.D.; Schneider, A.; Seller, P.; Wilson, M.D.; Iniewski, K. Measurements of charge sharing in small pixel CdTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 767, 218–226. [Google Scholar] [CrossRef]
- Owens, A.; Peacock, A. Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 2004, 531, 18–37. [Google Scholar] [CrossRef]
- Maier, D.; Blondel, C.; Delisle, C.; Limousin, O.; Martignac, J.; Meuris, A.; Visticot, F.; Daniel, G.; Bausson, P.-A.; Gevin, O.; et al. Second generation of portable gamma camera based on Caliste CdTe hybrid technology. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 892, 106–113. [Google Scholar]
- Watanabe, S.; Ishikawa, S.-N.; Aono, H.; Takeda, S.; Odaka, H.; Kokubun, M.; Takahashi, T.; Nakazawa, K.; Tajima, H.; Onishi, M.; et al. High Energy Resolution Hard X-Ray and Gamma-Ray Imagers Using CdTe Diode Devices. IEEE Trans. Nucl. Sci. 2009, 56, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Duarte, D.D.; Bell, S.J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M.C.; Wilson, M.D.; Beaker, M.A.; Sellin, P.J.; Kachkanov, V. Edge effects in a small pixel CdTe for X-ray imaging. J. Inst. 2013, 8, P10018. [Google Scholar] [CrossRef]
- Iniewski, K.; Chen, H.; Bindley, G.; Kuvvetli, I.; Budtz-Jorgensen, C. Modeling charge-sharing effects in pixelated CZT detectors. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October−3 November 2007; pp. 4608–4611. [Google Scholar]
- Veale, M.C.; Bell, S.J.; Duarte, D.D.; Schneider, A.; Seller, P.; Wilson, M.D.; Kachkanov, V.; Sawhney, K.J.S. Synchrotron characterization of non-uniformities in a small pixel cadmium zinc telluride detector. Nucl. Instrum. Methods Phys. Res. Sect. A 2013, 729, 265–272. [Google Scholar] [CrossRef]
- Bugby, S.L.; Koch-Mehrin, K.A.; Veale, M.C.; Wilson, M.D.; Lees, J.E. Energy-loss correction in charge sharing events for improved performance of pixelated compound semiconductors. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 940, 142–151. [Google Scholar] [CrossRef]
- Veale, M.C.; Jones, L.L.; Thomas, B.; Seller, P.; Wilson, M.D.; Iniewski, I. Improved spectroscopic performance in compound semiconductors for high rate X-ray and gamma-ray imagig applications: A novel depth of interaction correction technique. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 927, 37–45. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Principato, F.; Bettelli, M.; Seller, P.; Veale, M.C.; Fox, O.; Sawhney, K.; Zambelli, N.; Benassi, G.; et al. Dual-polarity pulse processing and analysis for charge-loss correction in cadmium-zinc-telluride pixel detectors. J. Sync. Rad. 2018, 25, 1078–1092. [Google Scholar] [CrossRef]
- Veale, M.C.; Bell, S.J.; Seller, P.; Wilson, M.D.; Kachkanov, V. X-ray micro-beam characterization of a small pixel CdTe detector. J. Inst. 2012, 7, P07017. [Google Scholar] [CrossRef]
- Buis, C.; Marrakchi, G.; Lafford, T.A.; Brambilla, A.; Verger, L.; Gros d’Aillon, E. Effects of Dislocation Walls on Image Quality When Using Cadmium Telluride X-ray Detectors. Tran. Nucl. Sci. 2013, 60, 199–203. [Google Scholar] [CrossRef]
- Ponchut, C.; Cotte, M.; Lozinskaya, A.; Zarubin, A.; Tolbanov, O.; Tyazhev, A. Characterisation of GaAs:Cr pixel sensors coupled to Timepix chips in view of synchrotron applications. J. Inst. 2017, 12, C12023. [Google Scholar] [CrossRef]
- Rudolph, P. Dislocation cell structures in melt-grown semiconductor compound crystals. Cryst. Res. Technol. 2005, 40, 7–20. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Babalola, S.; Camarda, G.S.; Cui, Y.; Egarievwe, S.U.; Hawrami, R.; Hossain, A.; Yang, G.; James, R.B. Te Inclusions in CZT Detectors: New Method for Correcting Their Adverse Effects. Tran. Nucl. Sci. 2010, 57, 910–919. [Google Scholar] [CrossRef] [Green Version]
- Prokesch, M.; Soldner, S.A.; Sundaram, A.G.; Reed, M.D.; Li, H.; Eger, J.F.; Reiber, J.L.; Shanor, C.L.; Wray, C.L.; Emerick, A.J.; et al. CdZnTe Detectors Operating at X-ray Fluxes of 100 Million Photons/(mm2.sec). Tran. Nucl. Sci. 2016, 63, 1854–1859. [Google Scholar] [CrossRef]
- Cola, A.; Farella, I. The polarization mechanism in CdTe Schottky detectors. Appl. Phys. Lett. 2009, 94, 102113. [Google Scholar] [CrossRef]
- Astromskas, V.; Gimenez, E.N.; Lohstroh, A.; Tartoni, N. Evaluation of Polarization effects of e- Collection Schottky CdTe Medipix3RX Hybrid Pixel Detector. Tran. Nucl. Sci. 2016, 63, 252–258. [Google Scholar] [CrossRef]
- Gimenez, E.N.; Astomskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities. Nucl. Instrum. Methods Phys. Res. Sect. A 2016, 824, 101–103. [Google Scholar] [CrossRef]
Serial Number | Pixel Yield (%) | σcounts (%) | FWHM (keV) | Charge Sharing (%) |
---|---|---|---|---|
D180265 | 95.52 | 8.2 | 0.86 ± 0.22 | 56.8 |
D185734 | 99.93 | 5.9 | 0.79 ± 0.14 | 55.1 |
D185735 | 99.93 | 5.5 | 0.79 ± 0.15 | 55.9 |
D185736 | 99.98 | 6.6 | 0.87 ± 0.17 | 62.2 |
D185738 | 99.92 | 9.0 | 0.85 ± 0.17 | 60.0 |
D185739 | 99.98 | 8.7 | 0.84 ± 0.13 | 56.1 |
D185740 | 99.93 | 12.2 | 0.89 ± 0.19 | 59.1 |
D185745 | 99.93 | 7.1 | 0.78 ± 0.13 | 56.5 |
D186747 | 99.89 | 5.7 | 0.82 ± 0.16 | 61.3 |
D185749 | 99.98 | 7.7 | 0.80 ± 0.13 | 56.6 |
AVERAGE | 99.50 | 7.7 | 0.83 | 58.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veale, M.C.; Booker, P.; Cross, S.; Hart, M.D.; Jowitt, L.; Lipp, J.; Schneider, A.; Seller, P.; Wheater, R.M.; Wilson, M.D.; et al. Characterization of the Uniformity of High-Flux CdZnTe Material. Sensors 2020, 20, 2747. https://doi.org/10.3390/s20102747
Veale MC, Booker P, Cross S, Hart MD, Jowitt L, Lipp J, Schneider A, Seller P, Wheater RM, Wilson MD, et al. Characterization of the Uniformity of High-Flux CdZnTe Material. Sensors. 2020; 20(10):2747. https://doi.org/10.3390/s20102747
Chicago/Turabian StyleVeale, Matthew Charles, Paul Booker, Simon Cross, Matthew David Hart, Lydia Jowitt, John Lipp, Andreas Schneider, Paul Seller, Rhian Mair Wheater, Matthew David Wilson, and et al. 2020. "Characterization of the Uniformity of High-Flux CdZnTe Material" Sensors 20, no. 10: 2747. https://doi.org/10.3390/s20102747
APA StyleVeale, M. C., Booker, P., Cross, S., Hart, M. D., Jowitt, L., Lipp, J., Schneider, A., Seller, P., Wheater, R. M., Wilson, M. D., Hansson, C. C. T., Iniewski, K., Marthandam, P., & Prekas, G. (2020). Characterization of the Uniformity of High-Flux CdZnTe Material. Sensors, 20(10), 2747. https://doi.org/10.3390/s20102747