Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (182)

Search Parameters:
Keywords = CdZnTe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 68239 KB  
Article
Spatial Distribution of Geochemical Anomalies in Soils of River Basins of the Northeastern Caucasus
by Ekaterina Kashirina, Roman Gorbunov, Ibragim Kerimov, Tatiana Gorbunova, Polina Drygval, Ekaterina Chuprina, Aleksandra Nikiforova, Nastasia Lineva, Anna Drygval, Andrey Kelip, Cam Nhung Pham and Nikolai Bratanov
Geosciences 2025, 15(10), 380; https://doi.org/10.3390/geosciences15100380 - 1 Oct 2025
Abstract
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was [...] Read more.
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was measured using inductively coupled plasma mass spectrometry (ICP-MS). Petrogenic elements commonly found in the Earth’s crust (Al, Na, Ca, Fe, Mg) showed high concentrations (Na up to 306,600.70 mg/kg). Conversely, concentrations of Ag, Cd, Sn, Sb, and Te at many sampling sites were extremely low, falling below the detection limits of analytical instruments. The geochemical indicators Cf (contamination factor) and Igeo (geoaccumulation index) indicate that the regional characteristics of the territory, such as lithological conditions, hydrochemical schedules, and the history of geological development of the territory, affect the concentration of elements. Anomalous concentrations were found for seven elements (Ba, Na, Zn, Ag, Li, Sc, As), whereas no anomalies were identified for Be, Mg, Al, Mn, Fe, Co, Ni, Cu, Pb, Te, and Cs. For the most part (8 of 10), the sampling sites with anomalous chemical element content are located in the basin of the Sunzha River. Two sites with anomalous chemical element content have been identified in the Sulak River Basin. Anomalous values in the Sulak River Basin are noted for two chemical elements—Ba and Na. Natural features such as geological structure, parent rock composition, vertical climatic zonation, and landscape diversity play a major role in forming geochemical anomalies. The role of anthropogenic factors increases in localized areas near settlements, industrial facilities, and roads. The spatial distribution of geochemical anomalies must be considered in agricultural management, the use of water sources for drinking supply, the development of tourist routes, and comprehensive spatial planning. Full article
(This article belongs to the Special Issue Soil Geochemistry)
16 pages, 2062 KB  
Article
The Feedback of Stress Phytohormones in Avena sativa (L.) on Soil Multi-Contamination
by Veronika Zemanová, Milan Pavlík, Milan Novák and Daniela Pavlíková
Plants 2025, 14(16), 2554; https://doi.org/10.3390/plants14162554 - 16 Aug 2025
Viewed by 447
Abstract
As chemical messengers, phytohormones can enhance the tolerance of plants to stress caused by toxic elements (TEs) such as cadmium (Cd), lead (Pb), and zinc (Zn). This study investigated the combined toxicity of Cd, Pb, and Zn, and its impact on stress phytohormones [...] Read more.
As chemical messengers, phytohormones can enhance the tolerance of plants to stress caused by toxic elements (TEs) such as cadmium (Cd), lead (Pb), and zinc (Zn). This study investigated the combined toxicity of Cd, Pb, and Zn, and its impact on stress phytohormones (jasmonates, salicylic acid, and abscisic acid), in oat (Avena sativa L.) using anthropogenically contaminated soil in a 4-week pot experiment. The uptake of TEs by the roots increased in the multi-contaminated soil, while Zn was the only TE to be translocated to the leaves. The toxic effect of the TEs was assessed in terms of plant growth, revealing a decline in leaf dry biomass, whereas the impact on the roots was insignificant. These findings align with the levels of stress phytohormones. An increase in bioactive forms of stress phytohormones in leaves due to TEs indicates TE toxicity and leaf sensitivity. Conversely, low levels of these phytohormones, along with crosstalk between them, suggest reduced defense against TEs in the roots. The abundance of stress phytohormones declined in the following order: salicylic acid > jasmonates > abscisic acid. These results help to understand the mechanism by which plants respond to TEs, particularly their combined toxicity. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

25 pages, 10677 KB  
Article
Synthesis of Sm-Doped CuO–SnO2:FSprayed Thin Film: An Eco-Friendly Dual-Function Solution for the Buffer Layer and an Effective Photocatalyst for Ampicillin Degradation
by Ghofrane Charrada, Bechir Yahmadi, Badriyah Alhalaili, Moez Hajji, Sarra Gam Derouich, Ruxandra Vidu and Najoua Turki Kamoun
Technologies 2025, 13(5), 197; https://doi.org/10.3390/technologies13050197 - 13 May 2025
Cited by 1 | Viewed by 1210
Abstract
Synthesis and characterization of undoped and samarium-doped CuO–SnO2:F thin films using the spray pyrolysis technique are presented. The effect of the samarium doping level on the physical properties of these films was thoroughly analyzed. X-ray diffraction patterns proved the successful synthesis [...] Read more.
Synthesis and characterization of undoped and samarium-doped CuO–SnO2:F thin films using the spray pyrolysis technique are presented. The effect of the samarium doping level on the physical properties of these films was thoroughly analyzed. X-ray diffraction patterns proved the successful synthesis of pure CuO–SnO2:F thin films, free from detectable impurities. The smallest crystallite size was observed in 6% Sm-doped CuO–SnO2:F thin films. The 6% Sm-doped CuO–SnO2films demonstrated an increasedsurface area of 40.6 m2/g, highlighting improved textural properties, which was further validated by XPS analysis.The bandgap energy was found to increase from 1.90 eV for undoped CuO–SnO2:F to 2.52 eV for 4% Sm-doped CuO–SnO2:F, before decreasing to 2.03 eV for 6% Sm-doped CuO–SnO2:F thin films. Photoluminescence spectra revealed various emission peaks, suggesting a quenching effect. A numerical simulation of a new solar cell based on FTO/ZnO/Sm–CuO–SnO2:F/X/Mo was carried out using Silvaco Atlas software, where X represented the absorber layer CIGS, CdTe, and CZTS. The results showed that the solar cell with CIGS as the absorber layer achieved the highest efficiency of 15.98. Additionally, the thin films demonstrated strong photocatalytic performance, with 6% Sm-doped CuO–SnO2:F showing 86% degradation of ampicillin after two hours. This comprehensive investigation provided valuable insights into the synthesis, properties, and potential applications of Sm-doped CuO–SnO2 thin films, particularly for solar energy and pharmaceutical applications. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Figure 1

14 pages, 2007 KB  
Article
The Role of Organic Materials in Shaping the Content of Trace Elements in Iron-Contaminated Soil
by Mirosław Wyszkowski and Natalia Kordala
Materials 2025, 18(7), 1522; https://doi.org/10.3390/ma18071522 - 28 Mar 2025
Cited by 2 | Viewed by 579
Abstract
Iron contamination negatively affects how plants grow and develop, and it has an analogous influence on the health of other organisms. The use of different types of organic soil amendments can be a strategy to reduce the effects of excess iron stress and [...] Read more.
Iron contamination negatively affects how plants grow and develop, and it has an analogous influence on the health of other organisms. The use of different types of organic soil amendments can be a strategy to reduce the effects of excess iron stress and limit its assimilation by plants. The aim of this experiment was to investigate the possibility of using organic material in the form of humic acids (HAs) to reduce the influence of iron contamination on the content of trace elements (TEs) in the soil. The content of iron in the soil increased linearly (by 14%) as more iron was added. The addition of humic acids to the soil also promoted an increase in soil Fe content (by 12%) in comparison to the series without HAs. The highest dose of iron resulted in a decrease in Cd (by 49%), Pb (by 29%), Cr (by 13%), and Zn (by 10%) and an increase in Mn (by 6%), Cu (by 16%), and Co (by 33%) in the soil in comparison to the object without Fe. However, the first dose of iron increased the lead content, and the first and second dose of Fe also increased the Zn content in the soil. The nickel content in the soil also increased to 500 mg Fe kg−1 of soil. Thereafter, a decline was observed in the nickel content. The addition of organic material had a different influence on the content of individual TEs in the iron-contaminated soils. The most evident constraining impact of HAs pertained to the level of Cd (reducing it by 14%) and Zn in the soil (only for two of its doses). The content of other TEs in the soil after the addition of organic material was found to be higher than in the series without HAs. This was especially evident for elements such as cobalt (Co) and lead (Pb). Full article
Show Figures

Figure 1

50 pages, 16380 KB  
Review
Progress in Thin-Film Photovoltaics: A Review of Key Strategies to Enhance the Efficiency of CIGS, CdTe, and CZTSSe Solar Cells
by Sivabalan Maniam Sivasankar, Carlos de Oliveira Amorim and António F. da Cunha
J. Compos. Sci. 2025, 9(3), 143; https://doi.org/10.3390/jcs9030143 - 20 Mar 2025
Cited by 14 | Viewed by 2104
Abstract
Thin-film solar cells (TFSCs) represent a promising frontier in renewable energy technologies due to their potential for cost reduction, material efficiency, and adaptability. This literature review examines the key materials and advancements that make up TFSC technologies, with a focus on Cu(In,Ga)Se2 [...] Read more.
Thin-film solar cells (TFSCs) represent a promising frontier in renewable energy technologies due to their potential for cost reduction, material efficiency, and adaptability. This literature review examines the key materials and advancements that make up TFSC technologies, with a focus on Cu(In,Ga)Se2 (CIGS), cadmium telluride (CdTe), and Cu2ZnSnS4 (CZTS) and its sulfo-selenide counterpart Cu2ZnSn(S,Se)4 (CZTSSe). Each material’s unique properties—including tuneable bandgaps, high absorption coefficients, and low-cost scalability—make them viable candidates for a wide range of applications, from building-integrated photovoltaics (BIPV) to portable energy solutions. This review explores recent progress in the enhancement of power conversion efficiency (PCE), particularly through bandgap engineering, alkali metal doping, and interface optimization. Key innovations such as silver (Ag) alloying in CIGS, selenium (Se) alloying in CdTe, and sulfur (S) to Se ratio optimization in CZTSSe have driven PCE improvements and expanded the range of practical uses. Additionally, the adaptability of TFSCs for roll-to-roll manufacturing on flexible substrates has further cemented their role in advancing renewable energy adoption. Challenges remain, including environmental concerns, but ongoing research addresses these limitations, paving the way for TFSCs to become a crucial technology for transitioning to sustainable energy systems. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

14 pages, 1362 KB  
Article
Distinctive Patterns of Trace Elements in Chronic Kidney Disease of Uncertain Etiology: Comparative Analysis Across Multiple Control Groups
by Buddhi N. T. Fernando, Nishantha Nanayakkara, Rohana Chandrajith, Hemalika T. K. Abeysundara and Dulanjali Herath
Kidney Dial. 2025, 5(1), 11; https://doi.org/10.3390/kidneydial5010011 - 19 Mar 2025
Viewed by 656
Abstract
Chronic kidney disease of uncertain etiology (CKDu) has emerged with growing evidence linking it to environmental exposures. This case–control study aimed to evaluate serum and urine trace elements (TEs) in CKDu patients, comparing them with those from control groups from endemic and non-endemic [...] Read more.
Chronic kidney disease of uncertain etiology (CKDu) has emerged with growing evidence linking it to environmental exposures. This case–control study aimed to evaluate serum and urine trace elements (TEs) in CKDu patients, comparing them with those from control groups from endemic and non-endemic regions. TEs were analyzed in 406 participants (CKDu = 75, endemic CKD (ECKD) = 82, non-endemic CKD (NECKD) = 85, endemic control (EC) = 79, non-endemic control (NEC) = 85 using Inductively Coupled Plasma Mass Spectrometry. Means ± standard deviations were compared via the t-test and categorical variables by the chi-square test. Compared to non-endemic groups, Al, Mn, Ni, Cu, Cd, and Ba in serum and urine were significantly higher in endemic areas. CKDu patients showed elevated serum V, Cr, Zn, As, and U and urinary Cr, Mn, Fe, Co, Ni, and Rb compared to ECKD. Compared to NEC, CKDu patients had higher serum Zn, As, and Ba and urinary Al, Cr, Mn, Fe, Co, Ni, and Cu. Significant increases in serum V, Zn, As, Cd, Ba, and U and urinary V, Cr, Mn, Co, Ni, Rb, and Sr were noted in CKDu vs. NECKD. Elevated serum Al, Cr, Mn, Fe, Co, etc., and urinary Be, V, Zn, Se, etc., were observed in EC vs. CKDu. Urinary TEs positively correlated with eGFR, suggesting tubular dysfunction or prolonged exposure. Serum Se, a known reno-protective TE, was low in CKDu and ECKD. This study highlights that TE levels were high not only due to exposure but also depending on kidney health. Identified group-specific TEs may be causative in CKDu, having adverse health outcomes in some groups while potentially being protective in healthy groups. Full article
Show Figures

Figure 1

28 pages, 1881 KB  
Review
Applications of Cd(Zn)Te Radiation Detectors in Non-Destructive Testing and Evaluation
by Anthony R. Whittemore and Elena Maria Zannoni
Sensors 2025, 25(6), 1776; https://doi.org/10.3390/s25061776 - 13 Mar 2025
Cited by 1 | Viewed by 1775
Abstract
This review explores the applications of room temperature semiconductor detectors, with a focus on Cd(Zn)Te based detection systems, in non-destructive testing and evaluation (NDT&E). Cd(Zn)Te detectors, which operate efficiently at ambient temperatures, eliminate the need for cryogenic cooling systems and offer high energy [...] Read more.
This review explores the applications of room temperature semiconductor detectors, with a focus on Cd(Zn)Te based detection systems, in non-destructive testing and evaluation (NDT&E). Cd(Zn)Te detectors, which operate efficiently at ambient temperatures, eliminate the need for cryogenic cooling systems and offer high energy and spatial resolution, making them ideal for a wide range of NDT&E applications. Key performance parameters such as energy resolution, spatial resolution, time resolution, detector efficiency, and form factor are discussed. The paper highlights the utilization of Cd(Zn)Te detectors in various imaging and spectroscopic applications, including nuclear threat detection and non-proliferation, archaeological NDT, and Unmanned Aerial Vehicle radiological surveying. Cd(Zn)Te detectors hold significant promise in NDT&E due to their high-resolution imaging, superior spectroscopic capabilities, versatility, and portability. Full article
Show Figures

Figure 1

11 pages, 2572 KB  
Article
Preliminary Investigation of a Cd0.9Zn0.1Te Detector for Small-Field Dosimetry Applications Using Therapeutic MV Beams
by Sangsu Kim, Ju-Young Song, Yong-Hyub Kim, Jae-Uk Jeong, Mee Sun Yoon, Taek-Keun Nam, Sung-Ja Ahn and Shinhaeng Cho
Appl. Sci. 2025, 15(4), 1693; https://doi.org/10.3390/app15041693 - 7 Feb 2025
Viewed by 965
Abstract
Stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) require precise small-field dosimetry, verified through patient-specific quality assurance (PSQA). This study evaluated the feasibility of using a single-crystal cadmium–zinc–telluride (Cd0.9Zn0.1Te, CZT) detector for PSQA in SRS and SBRT. We [...] Read more.
Stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) require precise small-field dosimetry, verified through patient-specific quality assurance (PSQA). This study evaluated the feasibility of using a single-crystal cadmium–zinc–telluride (Cd0.9Zn0.1Te, CZT) detector for PSQA in SRS and SBRT. We fabricated a CZT detector with Au electrodes and examined its fundamental characteristics, including dose linearity, dose rate dependence, energy dependence, angular dependence, source-to-surface distance (SSD) dependence, field size dependence, depth dependence, and reproducibility, under 6 and 10 MV LINAC beam irradiation and compared the results with those from a standard ionization chamber. The results revealed that the CZT detector demonstrated excellent linearity across 0–1000 cGy with minimal deviation in the low-dose region, negligible dose rate dependence, and minimal energy dependence, exhibiting a 2.2% drop at 15 MV relative to 6 MV. Its angular and SSD dependencies deviated slightly from the ionization chamber, consistent with the expected physical behaviors and correctable in clinical practice. The detector also revealed consistent performance over time with excellent reproducibility, and its depth dependence results were consistent with those of the ionization chamber. Thus, the CZT detector provides consistent performance in small-field measurements under varying conditions, satisfying the requirements for SRS and SBRT. Full article
Show Figures

Figure 1

25 pages, 1355 KB  
Article
Association of Trace Elements with Polycystic Ovary Syndrome in Women—A Case-Control Study
by Tinkara Srnovršnik, Bojana Pinter, Milena Horvat, Janja Snoj Tratnik, Ingrid Falnoga, Darja Mazej, Ivan Verdenik and Irma Virant-Klun
Metabolites 2025, 15(2), 79; https://doi.org/10.3390/metabo15020079 - 29 Jan 2025
Viewed by 1696
Abstract
Objectives: There are still limited or lacking data on the association of trace elements (TEs) with polycystic ovary syndrome (PCOS). This case–control study aimed to determine levels of essential TEs (manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo)) and non-essential TEs [...] Read more.
Objectives: There are still limited or lacking data on the association of trace elements (TEs) with polycystic ovary syndrome (PCOS). This case–control study aimed to determine levels of essential TEs (manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo)) and non-essential TEs (arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb)) in urine, whole blood, and serum to investigate a possible association with kidney and liver function, endocrine and metabolic parameters, and environmental and lifestyle sources of potential exposure and provide possible recommendations. Methods: In our case–control study, women with PCOS (n = 35) and healthy controls (n = 35) underwent clinical and ultrasonographic examination, filled in questionnaires targeting general, lifestyle, and environmental information, and provided fasting venous blood samples and first morning urine for biochemical, hormonal, and TE analysis. Multiple linear regression models were used to evaluate the association between TE levels and data obtained through questionnaires. Results: In women with PCOS, lower Mo levels in whole blood (p = 0.024) and serum (p = 0.011) and higher serum Cu levels (p = 0.026) were detected when compared to healthy controls. Results of this study show that amendments in Cu and Mo levels might be related to altered kidney and liver function and disrupted hormonal balance in PCOS women. Cu levels positively correlated with leukocyte count. There was a negative correlation of Mo levels with proteinuria and luteinizing hormone levels. Regarding liver function, Mo negatively correlated with urinary bilirubin levels, and there was a positive association with alanine and aspartate aminotransferase, respectively. Dietary supplement consumption and certain diet habits appeared to be important predictors of exposure to Cu (beef consumption) or Mo (cereal and boiled vegetable consumption) and modify Mo and Cu levels in women. Conclusions: Concentrations of the chemical elements Mo and Cu in biological samples of women appear to be related to PCOS and nutrition. To our knowledge, this is a novel finding for Mo. Additional research is needed to provide more insights into the causality of the PCOS relationship with Mo and Cu in humans. Full article
(This article belongs to the Special Issue Trace Metal Element Metabolism in Biological Systems)
Show Figures

Figure 1

26 pages, 20145 KB  
Article
In Situ Compositional and Sulfur Isotopic Analysis of Sphalerite from the Erdaodianzi Gold Deposit in Southern Jilin Province, Northeast China
by Qingqing Shang, Fengdi Ren, Qun Yang and Bin Wang
Minerals 2025, 15(1), 57; https://doi.org/10.3390/min15010057 - 7 Jan 2025
Cited by 4 | Viewed by 994
Abstract
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization [...] Read more.
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization in the ore district primarily occurs in gold-bearing quartz–sulfide veins. The gold ore occurs mainly as vein, veinlet, crumby, and disseminated structures. The hydrothermal process can be divided into three stages: stage I, characterized by quartz, arsenopyrite, and pyrite; stage II, featuring quartz, arsenopyrite, pyrite, pyrrhotite, chalcopyrite, sphalerite, and native gold; and stage III, consisting of quartz, pyrite, sphalerite, galena, electrum (a naturally occurring Au–Ag alloy), and calcite. Electrum and native gold primarily occur within the fissures of the polymetallic sulfides. To determine the enrichment mechanism of the Au element and the genetic types of ore deposits in the Erdaodianzi deposit, sourcing in situ trace element data, element mapping and sulfur isotope analysis were carried out on sphalerites from different stages using LA-ICP-MS. Minor invisible gold, in the form of Au–Ag alloy inclusions, is present within sphalerites, as revealed by time-resolved depth profiles. The LA-ICP-MS trace element data and mapping results indicate that trivalent or quadrivalent cations, such as Sb3+ and Te4+, exhibit a strong correlation with Au. This correlation can be explained by a coupled substitution mechanism, where these cations (Sb3+ and Te4+) replace zinc ions within the mineral structure, resulting in a strong association with Au. Similarly, the element Pb exhibits a close relationship with Au, which can be attributed to the incorporation of tetravalent cations like Te4+ into the mineral structure. The positive correlation between Hg and Au can be attributed to the formation of vacancies and defects within sphalerite, caused by the aforementioned coupled substitution mechanism. A slight positive relationship between Au and other divalent cations, including Fe2+, Mn2+, and Cd2+, may result from these cations simply replacing Zn within the sphalerite lattice. The crystallization temperatures of the sphalerite, calculated via the Fe/Zn ratio, range from 238 °C to 320 °C. The δ34S values are divided into two intervals: one ranging from −1.99 to −1.12‰ and the other varying from 10.96 to 11.48‰. The sulfur isotopic analysis revealed that the ore-forming materials originated from magmatic rock, with some incorporation of metamorphic rock. Comparative studies of the Erdaodianzi gold deposit and other gold deposits in the Jiapigou–Haigou gold belt have confirmed that they are all mesothermal magmatic–hydrothermal lode gold deposits formed at the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate during the Middle Jurassic. The Jiapigou–Haigou gold belt extends northwest to the Huadian area of Jilin province. This suggests potential for research on gold mineralization in the northwest of the belt and indicates a new direction for further gold prospecting in the region. Full article
Show Figures

Figure 1

21 pages, 3180 KB  
Article
Nutritional Risks of Heavy Metals in the Human Diet—Multi-Elemental Analysis of Energy Drinks
by Katarzyna Czarnek, Małgorzata Tatarczak-Michalewska, Grzegorz Wójcik, Agnieszka Szopa, Dariusz Majerek, Karolina Fila, Muhammed Hamitoglu, Marek Gogacz and Eliza Blicharska
Nutrients 2024, 16(24), 4306; https://doi.org/10.3390/nu16244306 - 13 Dec 2024
Cited by 2 | Viewed by 2631
Abstract
Background: In recent years, the consumption of energy drinks (EDs) by adolescents and young adults has increased significantly, so concerns have been raised about the potential health risks associated with excessive ED consumption. Most analyses on EDs focus on the caffeine content. Research [...] Read more.
Background: In recent years, the consumption of energy drinks (EDs) by adolescents and young adults has increased significantly, so concerns have been raised about the potential health risks associated with excessive ED consumption. Most analyses on EDs focus on the caffeine content. Research on the content of minerals (essential and toxic) in energy drinks can be considered scarce. Therefore, there is a need for research stating the actual status of heavy metal content in commercially available energy drinks. Methods: This research presents the determination of the total concentrations of macro-elements and trace elements (TEs), such as Na, K, Mg, Ca, Al, Cr, Co, Cu, Fe, Mn, Ni, B, Zn, V, Sr, Ba, Pb, Cd, and As in nine samples of energy drinks using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) techniques. Results: The order in the content of macro-minerals in the EDs was as follows: Na > K > Mg > Ca. The results showed that ED 1, ED 3, and ED 7 samples had the highest micro-mineral concentrations. All the samples had a hazard quotient and hazard index < 1, indicating no non-carcinogenic risk from exposure to single or multiple heavy metals in both the adolescent and adult age groups. Some samples exceeded the threshold limit of acceptable cancer risk for As, Ni, and Cr in both adolescents and adults. Conclusions: This assessment showed that in addition to health implications based on the caffeine content of EDs, there might be a carcinogenic risk associated with the toxic element content of these beverages. This research also highlights notable differences in the TE levels among various ED brands, which may have important implications for consumer well-being and health. Full article
(This article belongs to the Special Issue Nutrition and Food Security for All: A Step towards the Future)
Show Figures

Figure 1

12 pages, 5121 KB  
Article
Considerations for Differences in Melt Growth Kinetics Between II–VI and III–V Compound Crystals
by Peter Rudolph
Crystals 2024, 14(12), 1067; https://doi.org/10.3390/cryst14121067 - 11 Dec 2024
Cited by 1 | Viewed by 1040
Abstract
The difference in the crystallization kinetics during growth from the melt between II–VIs (CdTe, Cd1−xZnxTe, ZnSe, and ZnTe) and III–Vs (GaAs and InP) is discussed. At the melt growth of II–VI crystals, the most important difference is the lack [...] Read more.
The difference in the crystallization kinetics during growth from the melt between II–VIs (CdTe, Cd1−xZnxTe, ZnSe, and ZnTe) and III–Vs (GaAs and InP) is discussed. At the melt growth of II–VI crystals, the most important difference is the lack of controllability of seeding and achievement of a desired growth orientation. A pronounced tendency of self-orientation toward <111>, <110>, and sometimes <112> and <122>, but almost never toward <100> direction, has been observed regardless of whether a seed has been used or not. The main reason proves to be the tetrahedral coordination due to the high binding ratio of ionicity remaining in the II–VI melts but not occurring in III–Vs. As a result, the general effect of pre-ordering into density layers, forced by the solid surface, is in the II–VI liquids superimposed by a {111} self-orientation via tetrahedral in-plane alignment. Fitting growth kinetics seem to only be possible when this melt configuration conforms to the crystal structure, like the {111} but hardly the {100}. Otherwise, the liquid self-orientation determines the continuing crystal orientation. Additionally, an <100>-oriented seed abruptly changed into an <122> direction via a congruent twin plane. Although such considerations still need verifying atomistic simulations, they are helpful to optimize the growth methodology even for larger crystal diameters. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 1580 KB  
Article
Analysis of Environmental Contamination by Metals Using Wood Mouse Apodemus sylvaticus Hair as a Biomonitor: An Appraisal
by Luca Canova, Federica Maraschi, Antonella Profumo and Michela Sturini
Environments 2024, 11(12), 281; https://doi.org/10.3390/environments11120281 - 6 Dec 2024
Cited by 1 | Viewed by 1250
Abstract
This study assessed environmental metal and metalloids (TE) levels using hair of Apodemus sylvaticus as a non-lethal biomonitor. TE decreased as follows: Zn > Al > Fe > Cu > Pb > Cr > Ni > Mn > Cd > Se > As [...] Read more.
This study assessed environmental metal and metalloids (TE) levels using hair of Apodemus sylvaticus as a non-lethal biomonitor. TE decreased as follows: Zn > Al > Fe > Cu > Pb > Cr > Ni > Mn > Cd > Se > As > Hg; TE widely distributed in soils as Zn, Al, Fe, and Cu, are more abundant than those of ecotoxicological interest, such as Cd, Se, As and Hg. Cd, Pb, Cu, and Cr concentrations are highly variable, while Zn, Fe, and Mn are less variable. TE in hair are below the threshold levels in soil and decrease the same way in both sexes. Concentrations in soil and hair are significantly related, and their level can be modulated both by homeostatic control of essential metals and absorbance from the soil by keratin. Slight differences in Ni and Cr can be related to the differing behaviour of males and females during reproduction. A scarce tendency toward mercury bioaccumulation has been observed in both sex and age classes; from an ecological point of view, these data suggest that the species is a primary consumer, feeding more on the leaves and seeds than on small invertebrates. Full article
Show Figures

Figure 1

16 pages, 2868 KB  
Article
First Stability Characterization for a CZT Detection System in an e+e Collider Environment
by Leonardo Abbene, Francesco Artibani, Manuele Bettelli, Antonino Buttacavoli, Fabio Principato, Andrea Zappettini, Massimiliano Bazzi, Giacomo Borghi, Mario Bragadireanu, Michael Cargnelli, Marco Carminati, Alberto Clozza, Francesco Clozza, Luca De Paolis, Raffaele Del Grande, Kamil Dulski, Laura Fabbietti, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Masahiko Iwasaki, Aleksander Khreptak, Simone Manti, Johann Marton, Pawel Moskal, Fabrizio Napolitano, Szymon Niedźwiecki, Hiroaki Ohnishi, Kristian Piscicchia, Yuta Sada, Francesco Sgaramella, Diana Laura Sirghi, Florin Sirghi, Magdalena Skurzok, Michal Silarski, Antonio Spallone, Kairo Toho, Lorenzo Toscano, Marlene Tüchler, Oton Vasquez Doce, Johann Zmeskal, Catalina Curceanu and Alessandro Scordoadd Show full author list remove Hide full author list
Sensors 2024, 24(23), 7562; https://doi.org/10.3390/s24237562 - 27 Nov 2024
Cited by 1 | Viewed by 1202
Abstract
The SIDDHARTA-2 collaboration has developed a novel X-ray detection system based on cadmium-zinc-telluride (CZT, CdZnTe), marking the first application of this technology at the DAΦNE electron-positron collider at INFN-LNF. This work aims to demonstrate the stability of the detectors’ performance in [...] Read more.
The SIDDHARTA-2 collaboration has developed a novel X-ray detection system based on cadmium-zinc-telluride (CZT, CdZnTe), marking the first application of this technology at the DAΦNE electron-positron collider at INFN-LNF. This work aims to demonstrate the stability of the detectors’ performance in terms of linearity and resolution over short and long periods, thereby establishing their suitability for precise spectroscopic measurements within a collider environment. A reference calibration spectrum is presented in association with findings from assessments of linearity and resolution stability. Additionally, this study introduces a validated model of the response function of the detector. The relative deviations from the nominal values for the source transitions, obtained by fitting the entire spectrum with a background function and the previously introduced response function, are reported. Finally, a comparison of the calibration performance with and without beams circulating in the collider’s rings is presented. These promising results pave the way for applying CZT detectors in kaonic atom studies and, more generally, in particle and nuclear physics spectroscopy. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

11 pages, 2792 KB  
Communication
Characterization of Crystal Properties and Defects in CdZnTe Radiation Detectors
by Manuel Ballester, Jaromir Kaspar, Francesc Massanés, Srutarshi Banerjee, Alexander Hans Vija and Aggelos K. Katsaggelos
Crystals 2024, 14(11), 935; https://doi.org/10.3390/cryst14110935 - 29 Oct 2024
Cited by 3 | Viewed by 1265
Abstract
CdZnTe-based detectors are highly valued because of their high spectral resolution, which is an essential feature for nuclear medical imaging. However, this resolution is compromised when there are substantial defects in the CdZnTe crystals. In this study, we present a learning-based approach to [...] Read more.
CdZnTe-based detectors are highly valued because of their high spectral resolution, which is an essential feature for nuclear medical imaging. However, this resolution is compromised when there are substantial defects in the CdZnTe crystals. In this study, we present a learning-based approach to determine the spatially dependent bulk properties and defects in semiconductor detectors. This characterization allows us to mitigate and compensate for the undesired effects caused by crystal impurities. We tested our model with computer-generated noise-free input data, where it showed excellent accuracy, achieving an average RMSE of 0.43% between the predicted and the ground truth crystal properties. In addition, a sensitivity analysis was performed to determine the effect of noisy data on the accuracy of the model. Full article
(This article belongs to the Special Issue II-VI and III-V Semiconductors for Optoelectronic Devices)
Show Figures

Figure 1

Back to TopTop