Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors
Abstract
:1. Introduction
2. Corona Effect and Arc Tracking
3. The Effect of Pressure and the Paschen’s Curve
3.1. The Standard Atmosphere
3.2. Paschen’s Law
4. Experimental Setup
4.1. The Low-Pressure Chamber and the Faraday Cage
4.2. The Sphere-Plane Electrode and the Supporting Structure
4.3. The High-Voltage DC Sources
4.4. The Low-Cost 8 MP CMOS Imaging Sensor
4.5. The Wireless Communication through the Raspberry Pi Computer
4.6. The Image Processing Step
5. Results and Discussion
- Increase the voltage from 0 V to some kV at a rate of 1 kV/s in order ensure stabilized corona conditions. Next, decrease the voltage in some extent while ensuring the corona is still present and take a long exposure photograph (exposure time = 10 s, ISO = 800). It is possible to check the corona effect by previsualizing the video image provided by the Sony IMX29 camera.
- Decrease the voltage once again to some extent, and take a long exposure photo to ensure there is corona.
- If there is still corona in Step 2, decrease the voltage again and take another long exposure photograph, otherwise, the CEV is the average value of the voltages recorded in Steps 1 and 2.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rui, R.; Cotton, I. Impact of low pressure aerospace environment on machine winding insulation. In Proceedings of the 2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, 6–9 June 2010; pp. 1–5. [Google Scholar]
- Esfahani, A.N.; Shahabi, S.; Stone, G.; Kordi, B. Investigation of Corona Partial Discharge Characteristics Under Variable Frequency and Air Pressure. In Proceedings of the 2018 IEEE Electrical Insulation Conference (EIC), San Antonio, TX, USA, 17–20 June 2018; pp. 31–34. [Google Scholar]
- Capineri, L.; Dainelli, G.; Materassi, M.; Dunn, B.D. Partial discharge testing of solder fillets on PCBs in a partial vacuum: New experimental results. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 294–304. [Google Scholar] [CrossRef]
- CleanSky 9th Call for Proposals (CFP09)—List and Full Description of Topics 2018. Available online: https://ec.europa.eu/research/participants/portal/doc/call/h2020/jti-cs2-2018-cfp09-air-01-40/1837622-cfp09_call_text_-_list_and_full_description_of_topics_r1_en.pdf (accessed on 9 January 2020).
- Riba, J.-R.; Abomailek, C.; Casals-Torrens, P.; Capelli, F. Simplification and cost reduction of visual corona tests. IET Gener. Transm. Distrib. 2018, 12, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.L.; Lopes, I.J.S. Experimental investigation of corona onset in contaminated polymer surfaces. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1321–1331. [Google Scholar] [CrossRef]
- Chai, H.; Phung, B.T.; Mitchell, S. Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review. Sensors 2019, 19, 1029. [Google Scholar] [CrossRef] [Green Version]
- Kozioł, M.; Nagi, Ł.; Kunicki, M.; Urbaniec, I. Radiation in the Optical and UHF Range Emitted by Partial Discharges. Energies 2019, 12, 4334. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; MacAlpine, J.M.K.; Bian, X.; Wang, L.; Guan, Z. Comparison of methods for determining corona inception voltages of transmission line conductors. J. Electrostat. 2013, 71, 269–275. [Google Scholar] [CrossRef]
- Du, B.X.; Liu, Y.; Wang, R.L. Effects of corona discharge on surface deterioration of silicone rubber insulator under reduced pressures. In Proceedings of the 2008 International Symposium on Electrical Insulating Materials (ISEIM 2008), Mie, Japan, 7–11 September 2008; pp. 271–274. [Google Scholar]
- Riba, J.-R.; Larzelere, W.; Rickmann, J.; Riba, J.-R.; Larzelere, W.; Rickmann, J. Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review. Energies 2018, 11, 1908. [Google Scholar] [CrossRef] [Green Version]
- Rickmann, J.; Elg, A.-P.; Fan, J.; Li, Q.; Liao, Y.; Pigini, A.; Tabakovic, D.; Wu, D.; Yujian, D. Current State of Analysis and Comparison of Atmospheric and Altitude Correction Methods for Air Gaps and Clean Insulators. In Proceedings of the 19th International Symposium on High Voltage Engineering, Pilsen, Czech Republic, 23–28 August 2015; pp. 1–6. [Google Scholar]
- Hu, Q.; Shu, L.; Jiang, X.; Sun, C.; Qiu, Z.; Lin, R. Influence of air pressure and humidity on positive direct current corona discharge performances of the conductor in a corona cage. Int. Trans. Electr. Energy Syst. 2014, 24, 723–735. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, P.; Krek, J.; Verboncoeur, J.P. Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions. Appl. Phys. Lett. 2019, 114, 014102. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Xia, Y.; Yuan, C. External characteristics of long gap AC and DC streamer discharges under low pressure. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3381–3387. [Google Scholar] [CrossRef]
- Zivanovic, E. Analysis of low-pressure DC breakdown in air. In Proceedings of the 2017 IEEE 30th International Conference on Microelectronics (MIEL), Nis, Serbia, 9–11 October 2017; pp. 191–194. [Google Scholar]
- Tanarro, I.; Herrero, V.J. Large effects of small pressure changes in the kinetics of low pressure glow discharges. Plasma Sources Sci. Technol. 2011, 20, 024006. [Google Scholar] [CrossRef]
- Čech, J.; Bonaventura, Z.; Sťahel, P.; Zemánek, M.; Dvořáková, H.; Černák, M. Wide-pressure-range coplanar dielectric barrier discharge: Operational characterisation of a versatile plasma source. Phys. Plasmas 2017, 24, 013504. [Google Scholar] [CrossRef]
- Tabrizchi, M.; Rouholahnejad, F. Corona discharge ion mobility spectrometry at reduced pressures. Rev. Sci. Instrum. 2004, 75, 4656–4661. [Google Scholar] [CrossRef]
- Li, Z.-X.; Li, G.-F.; Fan, J.-B.; Yin, Y. Numerical calculation of the corona onset voltage for bundle conductors for HVDC transmission line. Eur. Trans. Electr. Power 2011, 21, 11–17. [Google Scholar] [CrossRef]
- Lu, T.; Xiong, G.; Cui, X.; Rao, H.; Wang, Q. Analysis of Corona Onset Electric Field Considering the Effect of Space Charges. IEEE Trans. Magn. 2011, 47, 1390–1393. [Google Scholar] [CrossRef]
- Riba, J.-R.; Morosini, A.; Capelli, F.; Riba, J.-R.; Morosini, A.; Capelli, F. Comparative Study of AC and Positive and Negative DC Visual Corona for Sphere-Plane Gaps in Atmospheric Air. Energies 2018, 11, 2671. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Davidson, J.H. Model of the Negative DC Corona Plasma: Comparison to the Positive DC Corona Plasma. Plasma Chem. Plasma Process. 2003, 23, 83–102. [Google Scholar] [CrossRef]
- Neutron Flux Calculation. Available online: http://www.seutest.com/cgi-bin/FluxCalculator.cgi (accessed on 11 June 2019).
- Wang, Z.; Lu, T.; Cui, X.; Li, X.; Hiziroglu, H. Influence of AC voltage on the positive DC corona current pulses in a wire-cylinder gap View Documen. CSEE J. Power Energy Syst. 2016, 2, 58–65. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.T. Effect of AC corona discharge on aging of silicone rubber nanocomposites at high altitude. In Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA, 7–10 June 2015; pp. 488–491. [Google Scholar]
- Nagi, Ł.; Kozioł, M.; Wotzka, D. Analysis of the spectrum of electromagnetic radiation generated by electrical discharges. IET Sci. Meas. Technol. 2019, 13, 812–817. [Google Scholar] [CrossRef]
- Azizian Fard, M.; Farrag, M.E.; Reid, A.; Al-Naemi, F. Electrical Treeing in Power Cable Insulation under Harmonics Superimposed on Unfiltered HVDC Voltages. Energies 2019, 12, 3113. [Google Scholar] [CrossRef] [Green Version]
- Achillides, Z.; Kyriakides, E.; Danikas, M.G. Partial discharge modeling: An advanced capacitive model of void. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1805–1813. [Google Scholar] [CrossRef]
- Cotton, I.; Nelms, A. Higher voltage aircraft power systems. IEEE Aerosp. Electron. Syst. Mag. 2008, 23, 25–32. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, B.; He, J. Onset conditions for positive direct current corona discharges in air under the action of photoionization. Phys. Plasmas 2011, 18, 123503. [Google Scholar] [CrossRef]
- Meng, X.; Hui, J.; Mei, H.; Wang, L.; Guan, Z. Influence of pressure and humidity on the amplitude—Phase distribution of AC corona pulse. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 20–23 October 2013; pp. 838–841. [Google Scholar]
- Xu, H.; Wang, L.; Zhao, G.; Zhang, W.; Zhan, Z.; Cao, Y. Huidong Jia Research on environmental factors of positive DC corona inception voltage of overhead transmission lines. In Proceedings of the 2012 China International Conference on Electricity Distribution, Shanghai, China, 10–14 September 2012; pp. 1–7. [Google Scholar]
- Yu, D.; Farzaneh, M.; Zhang, J.; Shu, L.; Sima, W.; Sun, C. Properties of Corona Discharge under Positive DC Voltage at Low Atmospheric Pressure. In Proceedings of the 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 15–18 October 2006; pp. 393–396. [Google Scholar]
- Degardin, V.; Kone, L.; Laly, P.; Lienard, M.; Degauque, P.; Valensi, F. Measurement and analysis of arc tracking characteristics in the high frequency band. In Proceedings of the 2016 IEEE AUTOTESTCON, Anaheim, CA, USA, 12–15 September 2016. [Google Scholar]
- El Bayda, H.; Valensi, F.; Masquere, M.; Gleizes, A. Energy losses from an arc tracking in aeronautic cables in DC circuits. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 19–27. [Google Scholar] [CrossRef]
- Degardin, V.; Kone, L.; Valensi, F.; Laly, P.; Lienard, M.; Degauque, P. Characterization of the High-Frequency Conducted Electromagnetic Noise Generated by an Arc Tracking between DC wires. IEEE Trans. Electromagn. Compat. 2016, 58, 1228–1235. [Google Scholar] [CrossRef]
- Arroyo, A.; Castro, P.; Martinez, R.; Manana, M.; Madrazo, A.; Lecuna, R.; Gonzalez, A. Comparison between IEEE and CIGRE Thermal Behaviour Standards and Measured Temperature on a 132-kV Overhead Power Line. Energies 2015, 8, 13660–13671. [Google Scholar] [CrossRef] [Green Version]
- Electric Power Research Institute. Transmission Line Reference Book 345 kV and Above, 2014 ed.; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2014. [Google Scholar]
- Bian, X.; Zhu, J.; Wei, Y.; Wan, S.; Lei, Q.; Li, X.; Li, H. The role of low air pressure in the variation of negative corona-generated space charge in a rod to plane electrode. High Volt. 2018, 3, 126–132. [Google Scholar]
- Peschot, A.; Bonifaci, N.; Lesaint, O.; Valadares, C.; Poulain, C. Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen. Appl. Phys. Lett. 2014, 105, 123109. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Allan, J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley-Interscienc: Hoboken, NJ, USA, 2005; ISBN 978-0471005773. [Google Scholar]
- Babich, L.; Loiko, T.V. Generalized Paschen’s Law for Overvoltage Conditions. IEEE Trans. Plasma Sci. 2016, 44, 3243–3248. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, S.; Zou, X.; Luo, H.; Wang, X. Effect of distribution of electric field on low-pressure gas breakdown. Phys. Plasmas 2017, 24, 023508. [Google Scholar] [CrossRef]
- Pang, H.L.; Atten, P.; Reboud, J.-L. Corona Discharge and Electrostatic Precipitation in Carbon Dioxide Under Reduced Pressure Simulating Mars Atmosphere. IEEE Trans. Ind. Appl. 2009, 45, 50–58. [Google Scholar] [CrossRef]
- Brusso, B.C. History of Aircraft Wiring Arc-Fault Protection. IEEE Ind. Appl. Mag. 2017, 23, 6–11. [Google Scholar] [CrossRef]
- Stanger, L.; Wilkes, T.; Boone, N.; McGonigle, A.; Willmott, J. Thermal Imaging Metrology with a Smartphone Sensor. Sensors 2018, 18, 2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkes, T.; McGonigle, A.; Pering, T.; Taggart, A.; White, B.; Bryant, R.; Willmott, J. Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera. Sensors 2016, 16, 1649. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Igoe, D.; Parisi, A.V.; McGonigle, A.J.; Amar, A.; Wainwright, L. A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes. Sci. Total Environ. 2020, 706, 135873. [Google Scholar] [CrossRef]
- Pi-Camera Spectral Response Curves by Khufkens. Available online: https://khufkens.github.io/pi-camera-response-curves/ (accessed on 17 December 2019).
Characteristics | Source 1 (Positive DC) | Source 2 (Negative DC) |
---|---|---|
Manufacturer | Phenix Technologies | Phenix Technologies |
Model number | 4120-10 | 4120-10 |
Output voltage | 0–120 kV | 0 to −120 kV |
Output current | 0–10 mA | 0–10 mA |
Voltage ripple | <2% RMS (40 MΩ resistive) | <2% RMS (40 MΩ resistive) |
Leakage current measurement | 0.02 μA–10 mA | 0.02 μA–10 mA |
Characteristics | 20 mm | 30 mm | 40 mm | |
---|---|---|---|---|
Positive DC | Slope (kV/kPa) | 0.1293 | 0.1425 | 0.1410 |
Intercept (kV) | 1.2966 | 1.4502 | 1.6067 | |
R2 | 0.9991 | 0.9986 | 0.9988 | |
Negative DC | Slope (kV/kPa) | 0.1190 | 0.1244 | 0.1334 |
Intercept (kV) | 1.6941 | 1.9747 | 1.9813 | |
R2 | 0.9968 | 0.9984 | 0.9948 |
Characteristics | 20 mm | 30 mm | 40 mm | |
---|---|---|---|---|
Positive DC | Slope (mA/kPa) | 0.0063 | 0.0070 | 0.0069 |
Intercept (mA) | 0.0730 | 0.0798 | 0.0880 | |
R2 | 0.9987 | 0.9988 | 0.9990 | |
Negative DC | Slope (mA/kPa) | 0.0057 | 0.0059 | 0.0064 |
Intercept (mA) | 0.0957 | 0.1149 | 0.1063 | |
R2 | 0.9959 | 0.9989 | 0.9953 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors. Sensors 2020, 20, 411. https://doi.org/10.3390/s20020411
Riba J-R, Gómez-Pau Á, Moreno-Eguilaz M. Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors. Sensors. 2020; 20(2):411. https://doi.org/10.3390/s20020411
Chicago/Turabian StyleRiba, Jordi-Roger, Álvaro Gómez-Pau, and Manuel Moreno-Eguilaz. 2020. "Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors" Sensors 20, no. 2: 411. https://doi.org/10.3390/s20020411
APA StyleRiba, J.-R., Gómez-Pau, Á., & Moreno-Eguilaz, M. (2020). Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors. Sensors, 20(2), 411. https://doi.org/10.3390/s20020411