Determining the Online Measurable Input Variables in Human Joint Moment Intelligent Prediction Based on the Hill Muscle Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.2. Determination of Online Measurable Variables
2.3. The Designed ANN
2.4. Prediction Evaluation
3. Results
4. Discussion and Conclusions
Author Contributions
Founding
Acknowledgments
Conflicts of Interest
References
- Park, H.S.; Peng, Q.; Zhang, L.Q. A Portable telerehabilitation system for remote evaluations of impaired elbows in neurological disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Guo, S.; Gao, B.; Hirata, H.; Ishihara, H. Design of a novel telerehabilitation system with a force-sensing mechanism. Sensors 2015, 15, 11511–11527. [Google Scholar] [CrossRef]
- Song, Z.; Guo, S.; Pang, M.; Zhang, S.; Xiao, N.; Gao, B.; Shi, L. Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. J. Med. Biol. Eng. 2014, 34, 188–196. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Hohmann, A. Applications of neural networks in training science. Hum. Mov. Sci. 2012, 31, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.R.; Sharda, R. Prediction of athletes performance using neural networks: An application in cricket team selection. Expert Syst. Appl. 2009, 36, 5510–5522. [Google Scholar] [CrossRef]
- Schmidt, A. Movement pattern recognition in basketball free-throw shooting. Hum. Mov. Sci. 2012, 31, 360–382. [Google Scholar] [CrossRef]
- Au, S.; Berniker, M.; Herr, H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008, 21, 654–666. [Google Scholar] [CrossRef]
- Rupérez, M.J.; Martín-Guerrero, J.D.; Monserrat, C.; Alcañiz, M. Artificial neural networks for predicting dorsal pressures on the foot surface while walking. Expert Syst. Appl. 2012, 39, 5349–5357. [Google Scholar] [CrossRef]
- Joshi, D.; Mishra, A.; Anand, S. ANFIS based knee angle prediction: An approach to design speed adaptive contra lateral controlled AK prosthesis. Appl. Soft Comput. 2011, 11, 4757–4765. [Google Scholar] [CrossRef]
- Schoen, M.; Rotter, R.; Schattner, S.; Mittlmeier, T.; Claes, L.; Vollmar, B.; Gradl, G. Introduction of a new interlocked intramedullary nailing device for stabilization of critically sized femoral defects in the rat: A combined biomechanical and animal experimental study. J. Orthop. Res. 2008, 26, 184–189. [Google Scholar] [CrossRef]
- Sanders, D.; Bryant, D.; Tieszer, C.; Lawendy, A.; Macleod, M.; Papp, S.; Allan, L.; Darius, V.; Chad, C.; Kevin, G. A multi-centre randomized control trial comparing a novel intramedullary device (InterTAN) versus conventional treatment (sliding hip screw) of geriatric hip fractures. J. Orthop. Trauma 2016, 31, 1. [Google Scholar] [CrossRef]
- Pascoletti, G.; Cianetti, F.; Putame, G.; Terzini, M.; Zanetti, E.M. Numerical simulation of an intramedullary elastic nail: Expansion phase and load-bearing behavior. Front. Bioeng. Biotechnol. 2018, 6, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, S.S.; Yeung, E.W. Acute effects of kinesio taping on knee extensor peak torque and stretch reflex in healthy adults. Medicine 2016, 95, e2615. [Google Scholar] [CrossRef]
- Ajoudani, A.; Tsagarakis, N.G.; Bicchi, A. Choosing poses for force and stiffness control. IEEE Trans. Robot. 2017, 33, 1483–1490. [Google Scholar] [CrossRef]
- Al-Quraishi, M.S.; Ishak, A.J.; Ahmad, S.A.; Hasan, M.K.; Al-Qurishi, M.; Ghapanchizadeh, H.; Alamri, A. Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications. Med. Biol. Eng. Comput. 2016, 55, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B.; Asseldonk, E.H.F.V.; Kooij, H.V.D. Estimation of human hip and knee multi-joint dynamics using the LOPES gait trainer. IEEE Trans. Robot. 2016, 32, 920–932. [Google Scholar] [CrossRef]
- Huo, W.; Mohammed, S.; Amirat, Y.; Kong, K. Fast gait mode detection and assistive torque control of an exoskeletal robotic orthosis for walking assistance. IEEE Trans. Robot. 2018, 34, 1035–1052. [Google Scholar] [CrossRef]
- Focchi, M.; Prete, A.; Havoutis, I.; Featherstone, R.; Caldwell, D.G.; Semini, C. High-Slope terrain locomotion for torque-controlled quadruped robots. Auton. Robot. 2017, 41, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Prete, A.D.; Mansard, N. Robustness to joint-torque-tracking errors in task-space inverse dynamics. IEEE Trans. Robot. 2016, 32, 1091–1105. [Google Scholar] [CrossRef]
- Souron, R.; Bordat, F.; Farabet, A.; Belli, A.; Feasson, L.; Nordez, A.; Lapole, T. Sex differences in active tibialis anterior stiffness evaluated using supersonic shear imaging. J. Biomech. 2016, 49, 3534–3537. [Google Scholar] [CrossRef]
- Zhang, H.; Ahmad, S.; Liu, G. Torque estimation for robotic joint with harmonic drive transmission based on position measurements. IEEE Trans. Robot. 2017, 31, 322–330. [Google Scholar] [CrossRef]
- Fregly, B.J.; Besier, T.F.; Lloyd, D.G.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D.D. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 2012, 30, 503–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Zhang, Y.-D. Chinese sign language fingerspelling recognition via six-layer convolutional neural network with leaky rectified linear units for therapy and rehabilitation. J. Med. Imaging Health Inform. 2019, 9, 2031–2038. [Google Scholar] [CrossRef]
- Wang, S.; Sun, J.; Mehmood, I.; Pan, C.; Chen, Y.; Zhang, Y.-D. Cerebral micro-bleeding identification based on a nine-layer convolutional neural network with stochastic pooling. Concurr. Comput. Pract. Exp. 2019, 32, e5130. [Google Scholar] [CrossRef]
- Zeng, N.; Wang, Z.; Zhang, H.; Kim, K.-E.; Li, Y.; Liu, X. An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips. IEEE Trans. Nanotechnol. 2019, 18, 819–829. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Govindaraj, V.V.; Tang, C.; Zhu, W.; Sun, J. High performance multiple sclerosis classification by data augmentation and AlexNet transfer learning model. J. Med. Imaging Health Inform. 2019, 9, 2012–2021. [Google Scholar] [CrossRef]
- Wasserman, P.D. Neural Computing: Theory and Practice; Van Nostrand Reinhold: New York, NY, USA, 1989. [Google Scholar]
- Wang, S.-H.; Xie, S.; Chen, X.; Guttery, D.S.; Tang, C.; Sun, J.; Zhang, Y.-D. Alcoholism identification based on an AlexNet transfer learning model. Front. Psychiatry 2019, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, T.; Bessho, T.; Akazawa, K. Static torque-angle relation of human elbow joint estimated with artificial neural network technique. J. Biomech. 1998, 31, 545–554. [Google Scholar] [CrossRef]
- Luh, J.-J.; Chang, G.-C.; Cheng, C.-K.; Lai, J.-S.; Kuo, T.-S. Isokinetic elbow joint torques estimation from surface EMG and joint kinematic data: Using an artificial neural network model. J. Electromyogr. Kinesiol. 1999, 9, 173–183. [Google Scholar] [CrossRef]
- Song, R.; Tong, K.Y. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations. Med. Biol. Eng. Comput. 2005, 43, 473–480. [Google Scholar] [CrossRef]
- Hahn, M.E. Feasibility of estimating isokinetic knee torque using a neural network model. J. Biomech. 2007, 40, 1107–1114. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Zhang, X.; Wang, L.; Lian, Q.; Liu, Y.; He, J.; Li, D.; Jin, Z. Human lower extremity joint moment prediction: A wavelet neural network approach. Expert Syst. Appl. 2014, 41, 4422–4433. [Google Scholar] [CrossRef]
- Xiong, B.; Zeng, N.; Li, H.; Yang, Y.; Li, Y.; Huang, M.; Shi, W.; Du, M.; Zhang, Y. Intelligent prediction of human lower extremity joint moment: An artificial network approach. IEEE Access. 2019, 7, 29973–29980. [Google Scholar] [CrossRef]
- Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Putame, G.; Terzini, M.; Bignardi, C.; Beale, B.; Hulse, D.; Zanetti, E.; Audenino, A. Surgical treatments for canine anterior cruciate ligament rupture: assessing functional recovery through multibody comparative analysis. Front. Bioeng. Biotechnol. 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, A.V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1938, 126, 136–195. [Google Scholar]
- Zajac, F.E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar]
- Meyer, A.J.; Patten, C.; Fregly, B.J. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry. PLoS ONE 2017, 12, e0179698. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.M.J.; Wang, Y. Autoencoder with invertible functions for dimension reduction and image reconstruction. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 1065–1079. [Google Scholar] [CrossRef]
- Kasun, L.L.C.; Yang, Y.; Huang, G.B.; Zhang, Z. Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 2016, 25, 3906–3918. [Google Scholar] [CrossRef]
- Huang, G.-B.; Chen, L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71, 3460–3468. [Google Scholar] [CrossRef]
- Hamner, S.R.; Delp, S.L. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 2013, 46, 780–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, M.A.; Seth, A.; Delp, S.L. Simbody: Multibody dynamics for biomedical research. Procedia Iutam 2011, 2, 241–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, D.G.; Besier, T.F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments In Vivo. J. Biomech. 2003, 36, 765–776. [Google Scholar] [CrossRef]
- Li, L.; Tong, K.Y.; Hu, X.L.; Hung, L.K.; Koo, T.K.K. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke. Clin. Biomech. 2009, 24, 101–109. [Google Scholar] [CrossRef]
- Nikooyan, A.A.; Veeger, H.E.J.; Westerhoff, P.; Bolsterlee, B.; Graichen, F.; Bergmann, G.; van der Helm, F.C.T. An EMG-driven musculoskeletal model of the shoulder. Hum. Mov. Sci. 2012, 31, 429–447. [Google Scholar] [CrossRef]
- Corcos, D.M.; Gottlieb, G.L.; Latash, M.L.; Almeida, G.L.; Agarwal, G.C. Electromechanical delay: An experimental artifact. J. Electromyogr. Kinesiol. 1992, 2, 59–68. [Google Scholar] [CrossRef]
- Tanzil, S.M.S.; Hoiles, W.; Krishnamurthy, V. Adaptive scheme for caching YouTube content in a cellular network: Machine learning approach. IEEE Access 2017, 5, 5870–5881. [Google Scholar] [CrossRef]
- Filatova, O.G.; Yang, Y.; Dewald, J.P.A.; Tian, R.; Maceira-Elvira, P.; Takeda, Y.; Kwakkel, G.; Yamashita, O.; van der Helm, F.C.T. Dynamic information flow based on EEG and diffusion MRI in stroke: A Proof-of-Principle Study. Front. Neural Circuits 2018, 12, 79. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Magnussen, S.; Tomppo, E.O.; Chirici, G. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data. Remote Sens. Environ. 2011, 115, 3165–3174. [Google Scholar] [CrossRef]
- Schöllhorn, W.I. Applications of artificial neural nets in clinical biomechanics. Clin. Biomech. 2004, 19, 876–898. [Google Scholar] [CrossRef] [PubMed]
- Kipp, K.; Giordanelli, M.; Geiser, C. Predicting net joint moments during a weightlifting exercise with a neural network model. J. Biomech. 2018, 74, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Buchanan, T.S. Prediction of joint moments using a neural network model of muscle activations from EMG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 30–37. [Google Scholar] [CrossRef]
- de Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T. Can shoulder joint reaction forces be estimated by neural networks? J. Biomech. 2016, 49, 73–79. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Phuong, B.T.T. Estimation of joint moment and muscle force in lower extremity during sit-to-stand movement by inverse dynamics analysis and by electromyography. Trans. Korean Soc. Mech. Eng. A 2010, 34, 1345–1350. [Google Scholar] [CrossRef]
- Happee, R.; Van der Helm, F.C.T. The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. J. Biomech. 1995, 28, 1179–1191. [Google Scholar] [CrossRef]
- Gardinier, E.S.; Manal, K.; Buchanan, T.S.; Snydermackler, L. Minimum detectable change for knee joint contact force estimates using an EMG-driven model. Gait Posture 2013, 38, 1051–1053. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, M.; Aaboe, J.; Bliddal, H.; Langberg, H. Biomechanical characteristics of the eccentric Achilles tendon exercise. J. Biomech. 2009, 42, 2702–2707. [Google Scholar] [CrossRef]
EMG Signal Source | Actuates |
---|---|
Gluteus maximus | Hip AA, Hip FE, |
Gluteus medius | Hip AA, Hip FE |
Biceps femoris long head | Knee FE, Hip AA, Hip FE |
Rectus femoris | Knee FE, Hip AA, Hip FE |
Vastus medialis | Knee FE |
Vastus lateralis | Knee FE |
Gastrocnemius lateral | Knee FE, Ankle PDF, Ankle IE |
Gastrocnemius medial | Knee FE, Ankle PDF, Ankle IE |
Tibialis anterior | Ankle PDF, Ankle IE |
Soleus | Ankle PDF, Ankle IE |
Participants | Hip FE | Hip AA | Knee FE | Ankle PDF |
---|---|---|---|---|
subject 1 | 97 | 94.50 | 96.47 | 98.11 |
subject 2 | 96.98 | 95.80 | 96.90 | 97.61 |
subject 3 | 94.85 | 87.02 | 86.69 | 73.89 |
subject 4 | 97.69 | 96.17 | 98.20 | 98.27 |
subject 5 | 96.86 | 92.15 | 95.12 | 96.94 |
subject 6 | 96.37 | 93.58 | 94.65 | 96.40 |
subject 7 | 97.78 | 96.74 | 95.46 | 96.65 |
subject 8 | 97.88 | 96.54 | 97.62 | 98.42 |
subject 9 | 98.15 | 96.46 | 98.02 | 96.22 |
subject 10 | 97.94 | 93.37 | 95.73 | 97.62 |
mean | 97.15 | 94.23 | 95.39 | 95.01 |
Std | 0.99 | 2.99 | 3.62 | 7.46 |
Participants | Hip FE | Hip AA | Knee FE | Ankle PDF |
---|---|---|---|---|
subject 1 | 88.31 | 94.06 | 93.04 | 97.50 |
subject 2 | 88.09 | 94.26 | 93.48 | 96.82 |
subject 3 | 89.80 | 86.52 | 84.55 | 74.20 |
subject 4 | 92.07 | 94.84 | 97.58 | 98.06 |
subject 5 | 85.36 | 89.84 | 92.40 | 95.92 |
subject 6 | 89.17 | 90.44 | 92.73 | 95.66 |
subject 7 | 92.14 | 94.56 | 92.68 | 95.85 |
subject 8 | 92.81 | 94 | 96.20 | 97.72 |
subject 9 | 91.67 | 93.43 | 96.49 | 94.89 |
subject 10 | 90.08 | 88.81 | 91.32 | 96.51 |
mean | 89.95 | 92.08 | 93.04 | 94.31 |
Std | 2.31 | 2.93 | 3.62 | 7.13 |
Participants | Hip FE | Hip AA | Knee FE | Ankle PDF |
---|---|---|---|---|
mean | 81.07 | 91.88 | 92.68 | 93.09 |
Std | 16.37 | 14.10 | 13.67 | 13.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, B.; Zeng, N.; Li, Y.; Du, M.; Huang, M.; Shi, W.; Mao, G.; Yang, Y. Determining the Online Measurable Input Variables in Human Joint Moment Intelligent Prediction Based on the Hill Muscle Model. Sensors 2020, 20, 1185. https://doi.org/10.3390/s20041185
Xiong B, Zeng N, Li Y, Du M, Huang M, Shi W, Mao G, Yang Y. Determining the Online Measurable Input Variables in Human Joint Moment Intelligent Prediction Based on the Hill Muscle Model. Sensors. 2020; 20(4):1185. https://doi.org/10.3390/s20041185
Chicago/Turabian StyleXiong, Baoping, Nianyin Zeng, Yurong Li, Min Du, Meilan Huang, Wuxiang Shi, Guojun Mao, and Yuan Yang. 2020. "Determining the Online Measurable Input Variables in Human Joint Moment Intelligent Prediction Based on the Hill Muscle Model" Sensors 20, no. 4: 1185. https://doi.org/10.3390/s20041185
APA StyleXiong, B., Zeng, N., Li, Y., Du, M., Huang, M., Shi, W., Mao, G., & Yang, Y. (2020). Determining the Online Measurable Input Variables in Human Joint Moment Intelligent Prediction Based on the Hill Muscle Model. Sensors, 20(4), 1185. https://doi.org/10.3390/s20041185