Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation and Cooking Treatment
2.2. Traditional and Spectroscopic Measurements
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wold, J.P. On-line and non-destructive measurement of core temperature in heat treated fish cakes by NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2016, 33, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. A non-invasive approach to assess texture changes in sous-vide cooked Atlantic mackerel during chilled storage by fluorescence imaging. Food Control. 2018, 92, 216–224. [Google Scholar] [CrossRef]
- Llave, Y.; Shibata-Ishiwatari, N.; Watanabe, M.; Fukuoka, M.; Hamada-Sato, N.; Sakai, N. Analysis of the effects of thermal protein denaturation on the quality attributes of sous-vide cooked tuna. J. Food Process. Preserv. 2017, 42, e13347. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Sun, X.; Du, M.; Chen, H.; Tan, M.; Sun, H.; Zhu, B. Effects of muscle protein denaturation and water distribution on the quality of false abalone (Volutharpa ampullacea perryi) during wet heating. J. Food Process. Eng. 2018, 42, e12932. [Google Scholar] [CrossRef] [Green Version]
- Skipnes, D.; Johnsen, S.O.; Skåra, T.; Sivertsvik, M.; Lekang, O. Optimization of Heat Processing of Farmed Atlantic Cod (Gadus morhua) Muscle with Respect to Cook Loss, Water Holding Capacity, Color, and Texture. J. Aquat. Food Prod. Technol. 2011, 20, 331–340. [Google Scholar] [CrossRef]
- Tavares, W.P.S.; Dong, S.; Bu, X.; Zeng, M.; Zhao, Y. Influence of cooking methods on protein modification and in vitro digestibility of hairtail (Thichiurus lepturus) fillets. LWT 2018, 96, 476–481. [Google Scholar] [CrossRef]
- Hu, L.; Ren, S.; Shen, Q.; Ye, X.; Chen, J.; Ling, J. Protein oxidation and proteolysis during roasting and in vitro digestion of fish (Acipenser gueldenstaedtii). J. Sci. Food Agric. 2018, 98, 5344–5351. [Google Scholar] [CrossRef]
- Elmasry, G.; Nakauchi, S. Noninvasive sensing of thermal treatments of Japanese seafood products using imaging spectroscopy. Int. J. Food Sci. Technol. 2015, 50, 1960–1971. [Google Scholar] [CrossRef]
- Stormo, S.K.; Skipnes, D.; Sone, I.; Skuland, A.; Heia, K.; Skåra, T. Modeling-assisted minimal heat processing of Atlantic cod (Gadus morhua). J. Food Process. Eng. 2017, 40, e12555. [Google Scholar] [CrossRef]
- Stormo, S.K.; Skåra, T.; Skipnes, D.; Sone, I.; Carlehög, M.; Heia, K.; Skjelvareid, M.H. In-Pack Surface Pasteurization of Capture-Based, Pre-Rigor Filleted Atlantic Cod (Gadus morhua). J. Aquat. Food Prod. Technol. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Stormo, S.K.; Sivertsen, A.H.; Heia, K.; Skipnes, D. Endpoint temperature of heat-treated surimi can be measured by visible spectroscopy. Food Control. 2012, 26, 92–97. [Google Scholar] [CrossRef]
- Skåra, T.; Stormo, S.K.; Skipnes, D.; Kondjoyan, A.; Sivertsen, A.; Gins, G.; Van Derlinden, E.; Valdramidis, V.P.; Van Impe, J.F. Estimation of surface temperature and thermal load in short-time heat treatment of surimi through reflectance spectroscopy and heat transfer modeling. J. Food Eng. 2014, 120, 75–80. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Rasco, B.; Sablani, S.S.; Ovissipour, M.; Qu, Z. Kinetics of Quality Changes of Shrimp (Litopenaeus setiferus) During Pasteurization. Food Bioprocess Technol. 2018, 11, 1027–1038. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. The influence of cooking parameters and chilled storage time on quality of sous-vide Atlantic mckerel (Scomber scombrus). J. Aquat. Food Prod. Technol. 2019, 28, 1–14. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Grøvlen, M.S.; Rustad, T. Superchilled, chilled and frozen storage of Atlantic mackerel (Scomber scombrus) fillets—Changes in texture, drip loss, protein solubility and oxidation. Int. J. Food Sci. Technol. 2019, 54, 2228–2235. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.; Bett-Garber, K.; Li, C.H.; Brashear, S.S.; Lea, J.M.; Bechtel, P.J. Comparison of sensory and instrumental methods for the analysis of texture of cooked individually quick frozen and fresh-frozen catfish fillets. Food Sci. Nutr. 2018, 6, 1692–1705. [Google Scholar] [CrossRef]
- Li, C.H.; Bland, J.; Bechtel, P.J. Effect of precooking and polyphosphate treatment on the quality of catfish fillets cooked in pouch in boiling water. Int. J. Food Sci. Technol. 2017, 52, 1844–1851. [Google Scholar] [CrossRef]
- Yuan, L.; Dang, Q.; Mu, J.; Feng, X.; Gao, R. Mobility and redistribution of waters within bighead carp (Aristichthys nobilis) heat-induced myosin gels. Int. J. Food Prop. 2018, 21, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Feng, X.; Li, W.; Yuan, L.; Ge, J.; Lu, D.; Chen, B.; Yu, G. Changes in properties of white shrimp (Litopenaeus vannamei) protein during thermal denaturation. Food Sci. Biotechnol. 2016, 25, 21–26. [Google Scholar] [CrossRef]
- Xia, K.; Xu, W.; Huang, L.; Song, Y.; Zhu, B.-W.; Tan, M. Water dynamics of turbot flesh during frying, boiling, and stewing processes and its relationship with color and texture properties: Low-field NMR and MRI studies. J. Food Process. Preserv. 2017, 42, e13338. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Ren, S.; Shen, Q.; Chen, J.; Ye, X.; Ling, J. Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. RSC Adv. 2017, 7, 27496–27505. [Google Scholar] [CrossRef] [Green Version]
- Cropotova, J.; Rustad, T. A novel fluorimetric assay for visualization and quantification of protein carbonyls in muscle foods. Food Chem. 2019, 297, 125006. [Google Scholar] [CrossRef]
- Hultmann, L.; Rustad, T. Textural Changes During Iced Storage of Salmon (Salmo salar)and Cod (Gadus morhua). J. Aquat. Food Prod. Technol. 2002, 11, 105–123. [Google Scholar] [CrossRef]
- Buss, H.; Chan, T.P.; Sluis, K.B.; Domigan, N.M.; Winterbourn, C.C. Protein Carbonyl Measurement by a Sensitive ELISA Method. Free Radic. Biol. Med. 1997, 23, 361–366. [Google Scholar] [CrossRef]
- Skjelvareid, M.; Heia, K.; Olsen, S.-H.; Stormo, S.K. Detection of blood in fish muscle by constrained spectral unmixing of hyperspectral images. J. Food Eng. 2017, 212, 252–261. [Google Scholar] [CrossRef]
- Ma, J.; Pu, H.; Sun, D.-W. Predicting intramuscular fat content variations in boiled pork muscles by hyperspectral imaging using a novel spectral pre-processing technique. LWT 2018, 94, 119–128. [Google Scholar] [CrossRef]
- Yu, X.; Wang, J.; Wen, S.; Yang, J.; Zhang, F. A deep learning based feature extraction method on hyperspectral images for nondestructive prediction of TVB-N content in Pacific white shrimp (Litopenaeus vannamei). Biosyst. Eng. 2019, 178, 244–255. [Google Scholar] [CrossRef]
- Xu, J.; Riccioli, C.; Sun, D.-W. Comparison of hyperspectral imaging and computer vision for automatic differentiation of organically and conventionally farmed salmon. J. Food Eng. 2017, 196, 170–182. [Google Scholar] [CrossRef]
- Garrido-Novell, C.; Garrido-Varo, A.; Perez-Marin, D.; Guerrero, J.E. Using spectral and textural data extracted from hyperspectral near infrared spectroscopy imaging to discriminate between processed pork, poultry and fish proteins. Chemom. Intell. Lab. Syst. 2018, 172, 90–99. [Google Scholar] [CrossRef]
- Skipnes, D.; Østby, M.L.; Hendrickx, M. A method for characterising cook loss and water holding capacity in heat treated cod (Gadus morhua) muscle. J. Food Eng. 2007, 80, 1078–1085. [Google Scholar] [CrossRef]
- Hassoun, A.; Karoui, R. Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques. Food Chem. 2016, 200, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, J.; Wang, J.; Lv, W. Applying Different Methods To Evaluate the Freshness of Large Yellow Croacker (Pseudosciaena crocea) Fillets during Chilled Storage. J. Agric. Food Chem. 2012, 60, 11387–11394. [Google Scholar] [CrossRef] [PubMed]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Ojha, S.; Rustad, T.; Tiwari, B. Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof. Innov. Food Sci. Emerg. Technol. 2020, 59, 102236. [Google Scholar] [CrossRef]
- Hassoun, A.; Sahar, A.; Lakhal, L.; Aït-Kaddour, A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. LWT 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Airado, D.; Skaret, J.; Wold, J.P. Assessment of the Quality Attributes of Cod Caviar Paste by Means of Front-Face Fluorescence Spectroscopy. J. Agric. Food Chem. 2010, 58, 5276–5285. [Google Scholar] [CrossRef]
- Shibata, M.; Elmasry, G.; Moriya, K.; Rahman, M.; Miyamoto, Y.; Ito, K.; Nakazawa, N.; Nakauchi, S.; Okazaki, E. Smart technique for accurate monitoring of ATP content in frozen fish fillets using fluorescence fingerprint. LWT 2018, 92, 258–264. [Google Scholar] [CrossRef]
- Veberg, A.; Sørheim, O.; Moan, J.; Iani, V.; Juzenas, P.; Nilsen, A.; Wold, J. Measurement of lipid oxidation and porphyrins in high oxygen modified atmosphere and vacuum-packed minced turkey and pork meat by fluorescence spectra and images. Meat Sci. 2006, 73, 511–520. [Google Scholar] [CrossRef]
- Hassoun, A.; Karoui, R. Front-face fluorescence spectroscopy coupled with chemometric tools for monitoring fish freshness stored under different refrigerated conditions. Food Control. 2015, 54, 240–249. [Google Scholar] [CrossRef]
- Airado, D.; Høy, M.; Skaret, J.; Wold, J.P. From multispectral imaging of autofluorescence to chemical and sensory images of lipid oxidation in cod caviar paste. Talanta 2014, 122, 70–79. [Google Scholar] [CrossRef]
- Gatellier, P.; Santé-Lhoutellier, V.; Portanguen, S.; Kondjoyan, A. Use of meat fluorescence emission as a marker of oxidation promoted by cooking. Meat Sci. 2009, 83, 651–656. [Google Scholar] [CrossRef]
- Skipnes, D.; Van Der Plancken, I.; Van Loey, A.; Hendrickx, M. Kinetics of heat denaturation of proteins from farmed Atlantic cod (Gadus morhua). J. Food Eng. 2008, 85, 51–58. [Google Scholar] [CrossRef]
- Liu, H.; Saito, Y.; Al Riza, D.F.; Kondo, N.; Yang, X.; Han, D. Rapid evaluation of quality deterioration and freshness of beef during low temperature storage using three-dimensional fluorescence spectroscopy. Food Chem. 2019, 287, 369–374. [Google Scholar] [CrossRef]
- Egelandsdal, B.; Dingstad, G.; Tøgersen, G.; Lundby, F.; Langsrud, Ø. Autofluorescence quantifies collagen in sausage batters with a large variation in myoglobin content. Meat Sci. 2005, 69, 35–46. [Google Scholar] [CrossRef]
- Boldrini, B.; Kessler, W.; Rebner, K.; Kessler, R. Hyperspectral imaging: A review of best practice, performance and pitfalls for inline and online applications. J. Near Infrared Spectrosc. 2012, 20, 438. [Google Scholar] [CrossRef]
- Uddin, M.; Okazaki, E.; Ahmad, M.U.; Fukuda, Y.; Tanaka, M. NIR spectroscopy: A non-destructive fast technique to verify heat treatment of fish-meat gel. Food Control. 2006, 17, 660–664. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh. Talanta 2013, 116, 266–276. [Google Scholar] [CrossRef]
- Risso, S.J.; Crovetto, C.; Ávila, A.; Gutiérrez, M.I. Fluorescence of Extracts from Argentine Hake (Merluccius hubbsi) Muscle and Its Correlation with Quality Indices During Chilled Storage. J. Aquat. Food Prod. Technol. 2017, 28, 1–9. [Google Scholar] [CrossRef]
- Bui, M.V.; Rahman, M.; Nakazawa, N.; Okazaki, E.; Nakauchi, S. Visualize the quality of frozen fish using fluorescence imaging aided with excitation-emission matrix. Opt. Express 2018, 26, 22954–22964. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Pu, H.; Cheng, J.-H.; Wei, Q. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Callejón, R.M.; Savorani, F.; Amigo, J.M.; Cocchi, M. Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegars. Talanta 2019, 198, 560–572. [Google Scholar] [CrossRef] [Green Version]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
Treatments | D1 | D4 | D8 | Total Number | |
---|---|---|---|---|---|
Control | V | D1TxtxV (n = 4) | D4TxtxV (n = 4) | D8TxtxV (n = 4) | n = 12 |
A | D1TxtxA (n = 4) | D4TxtxA (n = 4) | D8TxtxA (n = 4) | n = 12 | |
T50 | 5 min | D1T50t5 (n = 4) | D4T50t5 (n = 4) | D8T50t5 (n = 4) | n = 12 |
10 min | D1T50t10 (n = 4) | D4T50t10 (n = 4) | D8T50t10 (n = 4) | n = 12 | |
T60 | 5 min | D1T60t5 (n = 4) | D4T60t5 (n = 4) | D8T60t5 (n = 4) | n = 12 |
10 min | D1T60t10 (n = 4) | D4T60t10 (n = 4) | D8T60t10 (n = 4) | n = 12 | |
T70 | 5 min | D1T70t5 (n = 4) | D4T70t5 (n = 4) | D8T70t5 (n = 4) | n = 12 |
10 min | D1T70t10 (n = 4) | D4T70t10 (n = 4) | D8T70t10 (n = 4) | n = 12 | |
T80 | 5 min | D1T80t5 (n = 4) | D4T80t5 (n = 4) | D8T80t5 (n = 4) | n = 12 |
10 min | D1T80t10 (n = 4) | D4T80t10 (n = 4) | D8T80t10 (n = 4) | n = 12 |
Control | T50 | T60 | T70 | T80 | |
---|---|---|---|---|---|
Fluorescence | |||||
Sensitivity (Cal) | 0.95 | 0.92 | 0.96 | 0.92 | 0.96 |
Specificity (Cal) | 1.00 | 0.88 | 0.92 | 0.84 | 0.80 |
Sensitivity (CV) | 0.96 | 0.87 | 0.96 | 0.87 | 0.83 |
Specificity (CV) | 1.00 | 0.86 | 0.91 | 0.82 | 0.81 |
Predicted Control | 23 | 0 | 0 | 0 | 0 |
Predicted T50 | 0 | 20 | 1 | 0 | 0 |
Predicted T60 | 0 | 4 | 23 | 0 | 0 |
Predicted T70 | 0 | 0 | 0 | 18 | 7 |
Predicted T80 | 1 | 0 | 0 | 6 | 17 |
Diffuse reflectance | |||||
Sensitivity (Cal) | 1.00 | 1.00 | 0.96 | 0.88 | 0.96 |
Specificity (Cal) | 1.00 | 0.95 | 0.93 | 0.76 | 0.83 |
Sensitivity (CV) | 1.00 | 1.00 | 0.96 | 0.79 | 0.79 |
Specificity (CV) | 1.00 | 0.94 | 0.90 | 0.76 | 0.83 |
Predicted Control | 24 | 0 | 0 | 0 | 0 |
Predicted T50 | 0 | 23 | 2 | 1 | 0 |
Predicted T60 | 0 | 1 | 22 | 0 | 3 |
Predicted T70 | 0 | 0 | 1 | 10 | 4 |
Predicted T80 | 0 | 0 | 0 | 13 | 17 |
Control | T50 | T60 | T70 | T80 | |
---|---|---|---|---|---|
Fluorescence | |||||
Sensitivity (Cal) | 1.00 | 0.96 | 1.00 | 0.91 | 0.87 |
Specificity (Cal) | 1.00 | 1.00 | 0.99 | 0.97 | 0.98 |
Sensitivity (CV) | 0.96 | 0.96 | 1.00 | 0.83 | 0.87 |
Specificity (CV) | 1.00 | 0.99 | 0.99 | 0.97 | 0.96 |
Predicted Control | 23 | 0 | 0 | 0 | 0 |
Predicted T50 | 1 | 23 | 0 | 0 | 0 |
Predicted T60 | 0 | 1 | 24 | 0 | 0 |
Predicted T70 | 0 | 0 | 0 | 20 | 3 |
Predicted T80 | 0 | 0 | 0 | 4 | 21 |
Diffuse reflectance | |||||
Sensitivity (Cal) | 1.00 | 1.00 | 1.00 | 0.75 | 1.00 |
Specificity (Cal) | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 |
Sensitivity (CV) | 1.00 | 1.00 | 1.00 | 0.67 | 0.58 |
Specificity (CV) | 1.00 | 0.99 | 1.00 | 0.90 | 0.93 |
Predicted Control | 24 | 0 | 0 | 0 | 0 |
Predicted T50 | 0 | 24 | 0 | 1 | 0 |
Predicted T60 | 0 | 0 | 24 | 0 | 10 |
Predicted T70 | 0 | 0 | 0 | 16 | 14 |
Predicted T80 | 0 | 0 | 0 | 7 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassoun, A.; Cropotova, J.; Rustad, T.; Heia, K.; Lindberg, S.-K.; Nilsen, H. Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. Sensors 2020, 20, 2410. https://doi.org/10.3390/s20082410
Hassoun A, Cropotova J, Rustad T, Heia K, Lindberg S-K, Nilsen H. Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. Sensors. 2020; 20(8):2410. https://doi.org/10.3390/s20082410
Chicago/Turabian StyleHassoun, Abdo, Janna Cropotova, Turid Rustad, Karsten Heia, Stein-Kato Lindberg, and Heidi Nilsen. 2020. "Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets" Sensors 20, no. 8: 2410. https://doi.org/10.3390/s20082410
APA StyleHassoun, A., Cropotova, J., Rustad, T., Heia, K., Lindberg, S. -K., & Nilsen, H. (2020). Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. Sensors, 20(8), 2410. https://doi.org/10.3390/s20082410