Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection
Abstract
:1. Introduction
- To take full advantage of the differential excitation of the image, we propose an adaptive parameter setting method for Gabor filter banks.
2. Image Feature Extraction
2.1. Fingertip Blood Automatic Sampling Device
2.2. Adaptive Gabor Filter Parameter Setting
2.3. Image Feature Fusion
Algorithm 1 Adaptive Gabor filter and image feature fusion. |
Input: Original image of finger vein: I |
Step 1: Extract the region of interest of the image I, add 0 to the edge of the image to transform its size to 256 × 256. |
Step 2: Divide the image into 16 × 16 sub-blocks and then obtain the gabor function window width of each sub-block. |
for each row u∈1, 2, …, 16 do |
for each column v∈1, 2, …, 16 do |
Compute the gradient components in X and Y directions per Equation (3). |
Obtain the window width of Gabor filter per Equation 4. |
end |
end |
Step 3: Gabor transform for each sub-block image: and obtain Gabor transform of the whole image. |
Step 4: Fuse the Gabor image features in 8 orientations with the same gabor transform size per Equation (3). |
Output: Finger vein feature fusion image: |
3. Finger Vein Image Segmentation
4. Location of Blood Sampling Point
5. Result and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Huang, Z.; Xu, L. Path Planning of 6-DOF Venipuncture Robot Arm Based on Improved A-star and Collision Detection Algorithms. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2971–2976. [Google Scholar]
- Zhang, C. The Influence of Venous Blood and Peripheral Blood on the Results of Routine Blood Test in College Students. Contin. Med. Educ. China 2018, 010, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Xie, X. The stability of results of blood test in venous blood and peripheral bloodusing hematology analyzer. Clin. Lab. J. 2018, 7, 112–115. [Google Scholar]
- Lu, Z.; Ding, S.; Yin, J. Finger vein recognition based on finger crease location. J. Electron. Imaging 2016, 25, 043004. [Google Scholar] [CrossRef]
- Vásqucz-Villar, Z.; Choquehuanca-Zevallos, J.; Ludeña-Choez, J. Finger Vein Segmentation from Infrared Images Using Spectral Clustering: An Approach for User Indentification. In Proceedings of the IEEE 10th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 9 November 2020; pp. 245–249. [Google Scholar]
- Shen, C.; Liu, C.; Tan, H.; Wang, Z.; Xu, D.; Su, X. Hybrid-augmented device fingerprinting for intrusion detection in industrial con-trol system networks. IEEE Wirel. Commun. 2018, 25, 26–31. [Google Scholar] [CrossRef]
- Liu, H.; Yang, G.; Yang, L.; Su, K.; Yin, Y. Anchor-based manifold binary pattern for finger vein recognition. Sci. China Inf. Sci. 2019, 62, 52104. [Google Scholar] [CrossRef] [Green Version]
- Ezhilmaran, D.; Rose, P. Finger vein image enhancement using interval type-2 fuzzy sets. In Proceedings of the IEEE International Conference on I-SMAC, Palladam, India, 10–11 February 2017; pp. 271–274. [Google Scholar]
- Hajian, A.; Ramli, D.A. Sharpness Enhancement of Finger-Vein Image Based on Modified Un-sharp Mask with Log-Gabor Filter. Procedia Comput. Sci. 2018, 126, 431–440. [Google Scholar] [CrossRef]
- Shaheed, K.; Yang, L.; Yang, G. Novel Image Quality Assessment and Enhancement Techniques for Finger Vein Recognition. In Proceedings of the IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Jinan, China, 14–17 December 2020. [Google Scholar]
- Cao, W.; Wang, H.; Shi, J. Enhancement Algorithm of Finger Vein Image Based on Weighted Guided Filter with Edge Detection. Laser Optoelectron. Prog. 2017, 54, 021007. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Z.; Li, M. Finger-vein image segmentation based on KFCM and active contour model. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Auckland, New Zealand, 20–23 May 2019; pp. 1–6. [Google Scholar]
- Vasilopoulos, C.; Skodras, A. A Novel Finger Vein Recognition System Based on Enhanced Maximum Curvature Points. In Proceedings of the IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Zagorochoria, Greece, 10–12 June 2018. [Google Scholar]
- Wang, H.; Du, M.; Zhou, J.; Tao, L. Weber local descriptors with variable curvature gabor filter for finger vein recognition. IEEE Access 2019, 7, 108261–108277. [Google Scholar] [CrossRef]
- Reza, S.; Amin, O.B.; Hashem, M. TransResUNet: Improving U-Net Architecture for Robust Lungs Segmentation in Chest X-rays. In Proceedings of the IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1592–1595. [Google Scholar]
- Hou, B.; Yan, R. Convolutional Autoencoder Model for Finger-Vein Verification. IEEE Trans. Instrum. Meas. 2019, 69, 2067–2074. [Google Scholar] [CrossRef]
- Qin, H.; El-Yacoubi, M.A. Deep Representation-Based Feature Extraction and Recovering for Finger-Vein Verification. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1816–1829. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Li, X.; Gao, J. Deep Attention-Based Spatially Recursive Networks for Fine-Grained Visual Recognition. IEEE Trans. Cybern. 2019, 49, 1791–1802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, W.; Zhang, L. Adaptive learning Gabor filter for finger-vein recognition. IEEE Access 2019, 7, 159821–159830. [Google Scholar] [CrossRef]
- Gupta, P.; Tiwari, K.; Arora, G. Fingerprint indexing schemes—A survey. Neurocomputing 2019, 335, 352–365. [Google Scholar] [CrossRef]
- Chen, W.; Yang, L.; Yang, G.; Yin, Y. Geometric shape analysis based finger vein deformation detection and correction. Neurocomputing 2018, 311, 112–125. [Google Scholar] [CrossRef]
- Fandos, R.; Sadamori, L.; Zoubir, A.M. High quality segmentation of synthetic aperture sonar images using the min-cut/max-flow algorithm. In Proceedings of the 19th European Signal Processing Conference, Barcelona, Spain, 29 August–2 September 2011. [Google Scholar]
- Yang, J.; Wei, J.; Shi, Y. Accurate ROI localization and hierarchi-cal hyper-sphere model for finger-vein recognition. Neurocomputing 2019, 328, 171–181. [Google Scholar] [CrossRef]
- Wiu, S.; Liu, Y.; Zhou, Y.; Huang, J.; Nie, Y. Finger-vein recognition based on dual-sliding window localization and pseudo-elliptical trans-former. Expert Syst. 2016, 64, 618–632. [Google Scholar]
- Win, H.; He, X.; Yao, X.; Li, H. Finger-vein verification based on the curvature in Radon space. Expert Syst. 2017, 82, 151–161. [Google Scholar]
- Jia, S.; Deng, B.; Xie, H.; Deng, L. A Gabor feature fusion framework for hyperspectral imagery classification. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017. [Google Scholar]
- Li, L.; Ying, Z.; Yang, T. Facial expression recognition by fusion of gabor texture features and local phase quantization. In Proceedings of the 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 19–23 October 2014. [Google Scholar]
- Isa, N.; Salamah, S.; Ngah, U. Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Trans. Consum. Electron. 2019, 55, 2145–2153. [Google Scholar]
- Liu, Z.; Yin, Y.; Wang, H.; Song, S.; Li, Q. Finger vein recognition with manifold learning. J. Netw. Comput. Appl. 2010, 33, 275–282. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Z.; Li, M. Active contour based method for finger-vein image segmentation. IEEE Trans. Instrum. Meas. 2020, 69, 8656–8665. [Google Scholar] [CrossRef]
- Snelick, R.; Uludag, U.; Mink, A.; Indovina, M.; Jain, A. Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Zhou, Y. Human identification using finger images. IEEE Trans. Image Process. 2012, 21, 2228–2244. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shi, Y. Finger-vein segmentation based on multi-channel even-symmetric gabor filters. In Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009; pp. 500–503. [Google Scholar]
- Yang, J.; Shi, Y. Fingercvein roi localization and vein ridge enhancement. Pattern Recognit. Lett. 2012, 33, 1569–1579. [Google Scholar] [CrossRef]
- Han, M.; Wang, J.T.; Meng, J.Y.; Liu, J.M. Energy Functional of Local Entropy Combined with Non-Convex Regularization for Image Segmentation. Comput. Eng. Appl. 2019, 55, 160–167. [Google Scholar]
- Li, L.; Way, A.; Liu, Q. Graph-Based Translation Via Graph Segmentation. Meet. Assoc. Comput. Linguist. 2016, 1, 97–107. [Google Scholar]
- Chan, T.F.; Vese, L.A. Active contour without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xu, C.; Gui, C.; Fox, M.D. Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Proces. A Publ. IEEE Signal Process. Soc. 2010, 19, 3243–3254. [Google Scholar]
- Shi, G.M.; Suo, J.D. Multi-scale Harris corner detection algorithm based on canny edge-detection. In Proceedings of the International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 18–20 August 2018. [Google Scholar]
- Wang, H.; Li, M.; Zhou, J.; Tao, L. Double Gabor Orientation Weber Local Descriptor for Palmprint Recognition. J. Electron. Inf. Technol. 2018, 40, 936–943. [Google Scholar]
- Ismail, B.; Zmirli, M.O. Enhancement of Finger Vein Patterns Extracted by Maximum Curvature Method. In Proceedings of the International Conference on Applied Smart Systems, Medea, Algeria, 24–25 November 2018. [Google Scholar]
Methods | Accuracy | Processing Time |
---|---|---|
WLD | 0.885 | 1.24 s |
DGWLD | 0.894 | 1.75 s |
MC | 0.901 | 1.62 s |
Method of this article | 0.916 | 1.86 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, Z.; Yang, D.; Zhong, L.; Huang, L.; Lin, J. Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection. Sensors 2021, 21, 132. https://doi.org/10.3390/s21010132
Li X, Li Z, Yang D, Zhong L, Huang L, Lin J. Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection. Sensors. 2021; 21(1):132. https://doi.org/10.3390/s21010132
Chicago/Turabian StyleLi, Xi, Zhangyong Li, Dewei Yang, Lisha Zhong, Lian Huang, and Jinzhao Lin. 2021. "Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection" Sensors 21, no. 1: 132. https://doi.org/10.3390/s21010132
APA StyleLi, X., Li, Z., Yang, D., Zhong, L., Huang, L., & Lin, J. (2021). Research on Finger Vein Image Segmentation and Blood Sampling Point Location in Automatic Blood Collection. Sensors, 21(1), 132. https://doi.org/10.3390/s21010132