Application of Sparse Representation to Bartlett Spectra for Improved Direction of Arrival Estimation
Abstract
:1. Introduction
2. Signal Model and Bartlett’s Method
3. Proposed Method
4. Regularization Parameter Selection
5. Results
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartlett, M.S. Smoothing Periodograms from Time-Series with Continuous Spectra. Nature 1948, 161, 686–687. [Google Scholar] [CrossRef]
- Godara, L.C. Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proc. IEEE 1997, 85, 1195–1245. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, H.; Vaccaro, R.J. Performance analysis for DOA estimation algorithms: Unification, simplification, and observations. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 1170–1184. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.S.; Yan, S. Sparse Representation for Computer Vision and Pattern Recognition. Proc. IEEE 2010, 98, 1031–1044. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.M.; Chellappa, R. Sparse Representations, Compressive Sensing and dictionaries for pattern recognition. In Proceedings of the First Asian Conference on Pattern Recognition, Beijing, China, 26–29 November 2011; pp. 325–329. [Google Scholar]
- Hyder, M.M.; Mahata, K. Direction-of-Arrival Estimation Using a Mixed ℓ2,0 Norm Approximation. IEEE Trans. Signal Process. 2010, 58, 4646–4655. [Google Scholar] [CrossRef]
- Yin, J.; Chen, T. Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors. IEEE Trans. Signal Process. 2011, 59, 4489–4493. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Zhou, Y. Direction-of-Arrival Estimation of Wideband Signals via Covariance Matrix Sparse Representation. IEEE Trans. Signal Process. 2011, 59, 4256–4270. [Google Scholar] [CrossRef]
- Jisheng, D.; Zhen, W.; Zheng, T. Real-valued sparse representation method for DOA estimation with uniform linear array. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 3794–3797. [Google Scholar]
- Stoica, P.; Babu, P.; Li, J. SPICE: A Sparse Covariance-Based Estimation Method for Array Processing. IEEE Trans. Signal Process. 2011, 59, 629–638. [Google Scholar] [CrossRef]
- Xu, X.; Wei, X.; Ye, Z. DOA Estimation Based on Sparse Signal Recovery Utilizing Weighted l1-Norm Penalty. IEEE Signal Process. Lett. 2012, 19, 155–158. [Google Scholar] [CrossRef]
- Zhao, G.; Shi, G.; Shen, F.; Luo, X.; Niu, Y. A Sparse Representation-Based DOA Estimation Algorithm with Separable Observation Model. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1586–1589. [Google Scholar] [CrossRef]
- He, Z.Q.; Liu, Q.H.; Jin, L.N.; Ouyang, S. Low complexity method for DOA estimation using array covariance matrix sparse representation. Electron. Lett. 2013, 49, 228–230. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhao, Y.; Zhu, Y.; Shui, P.; Li, H. Sparse representation based two-dimensional direction-of-arrival estimation method with L-shaped array. IET Radar, Sonar Navig. 2016, 10, 976–982. [Google Scholar] [CrossRef]
- Cui, W.; Qian, T.; Tian, J. Enhanced covariances matrix sparse representation method for DOA estimation. Electron. Lett. 2015, 51, 1288–1290. [Google Scholar] [CrossRef]
- Si, W.; Wang, Y.; Zhang, C. 2D-DOA and Polarization Estimation Using a Novel Sparse Representation of Covariance Matrix with COLD Array. IEEE Access 2018, 6, 66385–66395. [Google Scholar] [CrossRef]
- Cai, J.; Bao, D.; Li, P.; Cai, J.; Bao, D.; Li, P. DOA estimation via sparse recovering from the smoothed covariance vector. J. Syst. Eng. Electron. 2016, 27, 555–561. [Google Scholar] [CrossRef]
- Carlin, M.; Rocca, P.; Oliveri, G.; Viani, F.; Massa, A. Directions-of-Arrival Estimation Through Bayesian Compressive Sensing Strategies. IEEE Trans. Antennas Propag. 2013, 61, 3828–3838. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, W.; Yan, J. Direction of Arrival Estimation for Off-Grid Signals Based on Sparse Bayesian Learning. IEEE Sensors J. 2016, 16, 2004–2016. [Google Scholar] [CrossRef]
- Dai, J.; Bao, X.; Xu, W.; Chang, C. Root Sparse Bayesian Learning for Off-Grid DOA Estimation. IEEE Signal Process. Lett. 2017, 24, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; So, H.C. Sparse Bayesian Learning Approach for Outlier-Resistant Direction-of-Arrival Estimation. IEEE Trans. Signal Process. 2018, 66, 744–756. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, W.; Cui, W.; Wu, S. Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review. IEEE Access 2016, 4, 8865–8878. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Zhang, X.; Sun, F.; Zhou, H. Sparsity-Based Two-Dimensional DOA Estimation for Coprime Array: From Sum–Difference Coarray Viewpoint. IEEE Trans. Signal Process. 2017, 65, 5591–5604. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Zhang, X.; Sun, F.; Zheng, W.; Xiao, Y. Generalized Co-Prime MIMO Radar for DOA Estimation with Enhanced Degrees of Freedom. IEEE Sens. J. 2018, 18, 1203–1212. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhao, Y.; Li, H.; Shui, P. Two-dimensional DOA estimation algorithm with co-prime array via sparse representation. Electron. Lett. 2015, 51, 2084–2086. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, X. Two-Dimensional Off-Grid DOA Estimation Using Unfolded Parallel Coprime Array. IEEE Commun. Lett. 2018, 22, 2495–2498. [Google Scholar] [CrossRef]
- Shi, Y.; Mao, X.; Zhao, C.; Liu, Y. A Block Alternating Optimization Method for Direction-of-Arrival Estimation with Nested Array. IEEE Access 2019, 7, 76659–76668. [Google Scholar] [CrossRef]
- Huang, H.; Liao, B.; Guo, C.; Huang, J. Sparse representation based DOA estimation using a modified nested linear array. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Per Christian Hansen and Dianne Prost O’Leary. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 1993, 14, 1487–1503. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Tchorowski, L.; Gupta, I.J. Antenna Modeling on Complex Platforms Via Sparse Constrained Equivalent Distributions. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 939–940. [Google Scholar]
- Compaleo, J.; Gupta, I.J. Application of Sparse Representation to Beamforming for Direction of Arrival Estimation. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 47–48. [Google Scholar]
- Stoica, P.; Nehorai, A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1783–1795. [Google Scholar] [CrossRef]
- Malioutov, D.M. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, July 2003. [Google Scholar]
- Fu, W.J. Penalized regressions: The bridge versus the LASSO. J. Comput. Graph. Stat. 1998, 7, 397–416. [Google Scholar]
- SeDuMi. Available online: http://sedumi.ie.lehigh.edu (accessed on 15 November 2018).
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
Location Emitter 2 [deg] | MUSIC | Proposed Method |
---|---|---|
61 | 500 | 13 |
62 | 497 | 0 |
63 | 30 | 0 |
64 | 2 | 0 |
65 | 0 | 0 |
Location Emitter 2 [deg] | ||
---|---|---|
61 | 0.0491 | 0.0638 |
62 | 0.0517 | 0.0670 |
63 | 0.0518 | 0.0674 |
64 | 0.0570 | 0.0743 |
65 | 0.0569 | 0.0740 |
66 | 0.0592 | 0.0769 |
67 | 0.0624 | 0.0808 |
68 | 0.0640 | 0.0830 |
69 | 0.0659 | 0.0852 |
70 | 0.0681 | 0.0878 |
SNR [dB] | MUSIC | L1-SVD | Proposed Method |
---|---|---|---|
0 | 473 | 0 | 0 |
1 | 396 | 0 | 0 |
2 | 338 | 0 | 0 |
3 | 221 | 0 | 0 |
4 | 118 | 0 | 0 |
5 | 44 | 0 | 0 |
6 | 6 | 0 | 0 |
7 | 3 | 0 | 0 |
8 | 3 | 0 | 0 |
9 | 2 | 0 | 0 |
10 | 2 | 0 | 0 |
SNR [dB] | ||
---|---|---|
0 | 0.1543 | 0.2006 |
1 | 0.1287 | 0.1672 |
2 | 0.1002 | 0.1304 |
3 | 0.0834 | 0.1084 |
4 | 0.0651 | 0.0847 |
5 | 0.0518 | 0.0674 |
6 | 0.0427 | 0.0558 |
7 | 0.0334 | 0.0434 |
8 | 0.0270 | 0.0352 |
9 | 0.0209 | 0.0272 |
10 | 0.0170 | 0.0225 |
Snapshots | MUSIC | L1-SVD | Proposed Method |
---|---|---|---|
40 | 362 | 17 | 0 |
50 | 288 | 6 | 0 |
60 | 219 | 0 | 0 |
70 | 152 | 0 | 0 |
80 | 105 | 0 | 0 |
90 | 57 | 0 | 0 |
100 | 41 | 0 | 0 |
110 | 23 | 0 | 0 |
120 | 12 | 0 | 0 |
130 | 8 | 0 | 0 |
140 | 5 | 0 | 0 |
150 | 3 | 0 | 0 |
160 | 3 | 0 | 0 |
170 | 2 | 0 | 0 |
180 | 0 | 0 | 0 |
190 | 0 | 0 | 0 |
200 | 0 | 0 | 0 |
Snapshots | ||
---|---|---|
40 | 0.0531 | 0.0690 |
50 | 0.0595 | 0.0772 |
60 | 0.0528 | 0.0688 |
70 | 0.0566 | 0.0740 |
80 | 0.0534 | 0.0692 |
90 | 0.0563 | 0.0729 |
100 | 0.0518 | 0.0674 |
110 | 0.0569 | 0.0745 |
120 | 0.0536 | 0.0694 |
130 | 0.0544 | 0.0704 |
140 | 0.0533 | 0.0690 |
150 | 0.0557 | 0.0725 |
160 | 0.0529 | 0.0686 |
170 | 0.0540 | 0.0702 |
180 | 0.0528 | 0.0685 |
190 | 0.0551 | 0.0717 |
200 | 0.0531 | 0.0689 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Compaleo, J.; Gupta, I.J. Application of Sparse Representation to Bartlett Spectra for Improved Direction of Arrival Estimation. Sensors 2021, 21, 77. https://doi.org/10.3390/s21010077
Compaleo J, Gupta IJ. Application of Sparse Representation to Bartlett Spectra for Improved Direction of Arrival Estimation. Sensors. 2021; 21(1):77. https://doi.org/10.3390/s21010077
Chicago/Turabian StyleCompaleo, Jacob, and Inder J. Gupta. 2021. "Application of Sparse Representation to Bartlett Spectra for Improved Direction of Arrival Estimation" Sensors 21, no. 1: 77. https://doi.org/10.3390/s21010077
APA StyleCompaleo, J., & Gupta, I. J. (2021). Application of Sparse Representation to Bartlett Spectra for Improved Direction of Arrival Estimation. Sensors, 21(1), 77. https://doi.org/10.3390/s21010077