Reliability and Validity of the SHFT Running Power Meter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outdoor Track Running
2.2. Indoor Treadmill
2.3. Statistics
3. Results
3.1. Test Retest Reliability
3.1.1. Power Output
3.1.2. Secondary Metrics
3.2. Validity
4. Discussion
4.1. Reliability
4.2. Validity
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, D.W. Energy system contributions in middle-distance running events. J. Sports Sci. 1999, 17, 477–483. [Google Scholar] [CrossRef]
- Duffield, R.; Dawson, B.; Goodman, C. Energy system contribution to 400-metre and 800-metre track running. J. Sports Sci. 2005, 23, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bülow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P.; et al. High-Intensity Training versus Traditional Exercise Interventions for Promoting Health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, M.L.; Broida, J.; Kendrick, Z.; Miller, H.S.; Janeway, R.; Linnerud, A.C. Effects of training two days per week at different intensities on middle-aged men. Med. Sci. Sports 1972, 4, 192–197. [Google Scholar]
- Cunningham, D.A.; Hill, J.S. Effect of training on cardiovascular response to exercise in women. J. Appl. Physiol. 1975, 39, 891–895. [Google Scholar] [CrossRef]
- Saltin, B.; Hartley, L.H.; Kilbom, Å.; Åstrand, I. Physical Training in Sedentary Middle-aged and Older Men II. Oxygen Uptake, Heart Rate, and Blood Lactate Concentration at Submaximal and Maximal Exercise. Scand. J. Clin. Lab. Investig. 1969, 24, 323–334. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Haykowsky, M.J.; Quinney, H.A.; Blackmore, D.; Teo, K.K.; Taylor, D.A.; McGavock, J.; Humen, D.P. Blood Volume Expansion and Cardiorespiratory Function: Effects of Training Modality. Med. Sci. Sports Exerc. 2004, 36, 991–1000. [Google Scholar] [CrossRef]
- Conley, D.L.; Krahenbuhl, G.S.; Burkett, L.N. Training for Aerobic Capacity and Running Economy. Physician Sportsmed. 1981, 9, 107–146. [Google Scholar] [CrossRef]
- Bangsbo, J.; Gunnarsson, T.P.; Wendell, J.; Nybo, L.; Thomassen, M. Reduced volume and increased training intensity elevate muscle Na+-K+pump α2-subunit expression as well as short- and long-term work capacity in humans. J. Appl. Physiol. 2009, 107, 1771–1780. [Google Scholar] [CrossRef]
- Franch, J.; Madsen, K.; Djurhuus, M.S.; Pedersen, P.K. Improved running economy following intensified training correlates with reduced ventilatory demands. Med. Sci. Sports Exerc. 1998, 30, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Skovgaard, C.; Christiansen, D.; Christensen, P.M.; Almquist, N.W.; Thomassen, M.; Bangsbo, J. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners. Physiol. Rep. 2018, 6, e13601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helgerud, J.; Engen, L.C.; Wisløff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Matsuura, Y.; Matsuzaka, A.; Hirakoba, K.; Kumagai, S.; Sun, S.O.; Asano, K. A longitudinal assessment of anaerobic threshold and distance-running performance. Med. Sci. Sports Exerc. 1984, 16, 278–282. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2013, 24, 603–612. [Google Scholar] [CrossRef]
- Williams, K.R.; Cavanagh, P.R. A model for the calculation of mechanical power during distance running. J. Biomech. 1983, 16, 115–128. [Google Scholar] [CrossRef]
- SHFT.run. Available online: http://shft.run/ (accessed on 30 September 2021).
- Stryd. Available online: https://www.stryd.com/ (accessed on 30 September 2021).
- RunScribe. Available online: https://runscribe.com/ (accessed on 30 September 2021).
- Garmin. Available online: https://apps.garmin.com/us/apps/741afa11-0250-48e2-86b5-14bd47e29391 (accessed on 30 September 2021).
- Polar. Available online: https://www.polar.com/en/smart-coaching/running-power (accessed on 30 September 2021).
- RPM2. Available online: https://rpm2.com/ (accessed on 30 September 2021).
- FeetMe. Available online: https://feetmesport.com/en/index.php (accessed on 30 September 2021).
- Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Mora-Rodríguez, R.; Pallares, J.G. Are we ready to measure running power? Repeatability and concurrent validity of five commercial technologies. Eur. J. Sport Sci. 2021, 21, 341–350. [Google Scholar] [CrossRef]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Aguilar, C.D.; Radzak, K.; Manning, J.W.; DeBeliso, M. Reliability of Trail Walking and Running Tasks Using the Stryd Power Meter. Int. J. Sports Med. 2019, 40, 498–502. [Google Scholar] [CrossRef]
- Imbach, F.; Candau, R.; Chailan, R.; Perrey, S. Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal Speeds. Sports 2020, 8, 103. [Google Scholar] [CrossRef]
- Austin, C.L.; Hokanson, J.F.; McGinnis, P.M.; Patrick, S. The Relationship between Running Power and Running Economy in Well-Trained Distance Runners. Sports 2018, 6, 142. [Google Scholar] [CrossRef] [Green Version]
- Aubry, R.L.; Power, G.A.; Burr, J.F. An Assessment of Running Power as a Training Metric for Elite and Recreational Runners. J. Strength Cond. Res. 2018, 32, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- SHFT.run. Available online: https://www.kickstarter.com/projects/1213180982/shft-iq-become-a-better-runner-with-your-virtual-c/description (accessed on 25 October 2021).
- IAAF. IAAF Track and Field Facilities Manual; IAAF: Stockholm, Sweden, 2008. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistics notes: Calculating correlation coefficients with repeated observations: Part 1--correlation within subjects. BMJ 1995, 310, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, D.C.; Richardson, R.S. Determinants of Oxygen Uptake. Sports Med. 1997, 24, 308–320. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics Notes: Correlation, regression, and repeated data. BMJ 1994, 308, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, K.L.; Mohrman, W.P.; Williamson, J.A.; Li, K. Methodological Flaws in Aubry, RL, Power, GA, and Burr, JF. An Assessment of Running Power as a Training Metric for Elite and Recreational Runners. J Strength Cond Res 32: 2258-2264, 2018. J. Strength Cond Res. 2018, 32, e61. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
Indoor Treadmill | Speed 1 (n = 11) | Speed 2 (n = 11) | ||
---|---|---|---|---|
Mean | CV (%) | Mean | CV (%) | |
Power (W) | 188.6 | 4.6 | 199.6 | 5.1 |
Outdoor Track | 10.5 km/h (n = 11) | 12 km/h (n = 12) | ||
Power (W) | 191.3 | 1.8 | 207.9 | 2.4 |
Stride Rate (Stride·min−1) | 163.1 | 2.2 | 166.8 | 1.0 |
Step Length (cm) | 107.7 | 2.8 | 120.9 | 1.7 |
Landing (G) | −9.7 | −22.3 | −9.7 | −20.1 |
Landing Angle (°) | −19.5 | −20.0 | −21.2 | −15.4 |
Landing Position (Num) | 5.3 | 17.1 | 5.7 | 12.6 |
Toe Off Angle (°) | 47.4 | 9.2 | 49.0 | 14.5 |
Contact Time (ms) | 303.2 | 3.1 | 290.1 | 4.5 |
Time in Air (ms) | 420.4 | 4.1 | 427.8 | 3.9 |
Deceleration (G) | 13.2 | 23.1 | 16.9 | 15.1 |
Body Bounce (cm) | 6.2 | 1.8 | 6.2 | 1.2 |
Running Efficiency (%) | 25.1 | 8.2 | 25.1 | 4.0 |
Running Effect (W) | 47.7 | 6.8 | 51.7 | 5.9 |
Pace (km·h−1) | 10.7 | 2.2 | 12.2 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linkis, J.E.; Bonne, T.C.; Bejder, J.; Rasmussen, E.K.; Breenfeldt Andersen, A.; Nordsborg, N.B. Reliability and Validity of the SHFT Running Power Meter. Sensors 2021, 21, 7516. https://doi.org/10.3390/s21227516
Linkis JE, Bonne TC, Bejder J, Rasmussen EK, Breenfeldt Andersen A, Nordsborg NB. Reliability and Validity of the SHFT Running Power Meter. Sensors. 2021; 21(22):7516. https://doi.org/10.3390/s21227516
Chicago/Turabian StyleLinkis, Jesper Emil, Thomas Christian Bonne, Jacob Bejder, Esben Krogh Rasmussen, Andreas Breenfeldt Andersen, and Nikolai Baastrup Nordsborg. 2021. "Reliability and Validity of the SHFT Running Power Meter" Sensors 21, no. 22: 7516. https://doi.org/10.3390/s21227516
APA StyleLinkis, J. E., Bonne, T. C., Bejder, J., Rasmussen, E. K., Breenfeldt Andersen, A., & Nordsborg, N. B. (2021). Reliability and Validity of the SHFT Running Power Meter. Sensors, 21(22), 7516. https://doi.org/10.3390/s21227516