FEM Analysis of Various Multilayer Structures for CMOS Compatible Wearable Acousto-Optic Devices
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Washburn, A.L.; Bailey, R.C. Photonics-on-a-chip: Recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. Analyst 2011, 136, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänsel, A.; Heck, M.J. Opportunities for photonic integrated circuits in optical gas sensors. J. Phys. Photonics 2020, 2, 012002. [Google Scholar] [CrossRef]
- Zinoviev, K.; Carrascosa, L.G.; Sánchez del Río, J.; Sepulveda, B.; Domínguez, C.; Lechuga, L.M. Silicon photonic biosensors for lab-on-a-chip applications. Adv. Opt. Technol. 2008, 2008, 1–6. [Google Scholar] [CrossRef]
- Zhu, H.; Goi, K.; Ishikura, N.; Omichi, K. Silicon Photonics Based System-On-Chip Gas Sensor. In Proceedings of the Optical Fiber Sensors, Zurich, Switzerland, 2–5 July 2018; Optical Society of America: Washington, DC, USA, 2018; p. ThE46. [Google Scholar]
- Micó, G.; Gargallo, B.; Pastor, D.; Muñoz, P. Integrated optic sensing spectrometer: Concept and design. Sensors 2019, 19, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munk, D.; Katzman, M.; Hen, M.; Priel, M.; Feldberg, M.; Sharabani, T.; Levy, S.; Bergman, A.; Zadok, A. Surface acoustic wave photonic devices in silicon on insulator. Nat. Commun. 2019, 10, 4214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poveda, A.C.; Bühler, D.D.; Sáez, A.C.; Santos, P.V.; Lima, M.M.d., Jr. Optical waveguide devices modulated by surface acoustic waves. arXiv 2018, arXiv:1811.03051. [Google Scholar] [CrossRef] [Green Version]
- Van Der Slot, P.J.; Porcel, M.A.; Boller, K.-J. Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides. Opt. Express 2019, 27, 1433–1452. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gui, Y.; Xu, R.; Zhang, Z.; Liu, W.; Lv, G.; Wang, M.; Li, C.; He, Z. Applications of AOTF Spectrometers in In Situ Lunar Measurements. Materials 2021, 14, 3454. [Google Scholar] [CrossRef]
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371. [Google Scholar] [CrossRef] [PubMed]
- Govindaraj, R.; Ganesh, G. Development and integration of an AOTF based NIR spectrophotometer. J. Opt. 2018, 47, 132–142. [Google Scholar] [CrossRef]
- Fernandes, M.E. Acousto-Optic Effect and Its Use in Signal Processing. Available online: https://www.semanticscholar.org/paper/Acousto-Optic-Effect-and-Its-use-in-Signal-Fernandes/9ce8b3947de1e06d1f7e83066244098cf10145b6 (accessed on 21 November 2021).
- Honardoost, A. Thin-Film Lithium Niobate Integrated Photonics on Silicon for Electro-and Nonlinear-Optic Applications. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, May 2020. [Google Scholar]
- Muralt, P.; Polcawich, R.G.; Trolier-McKinstry, S. Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 2009, 34, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Meillaud, F.; Boccard, M.; Bugnon, G.; Despeisse, M.; Hänni, S.; Haug, F.-J.; Persoz, J.; Schüttauf, J.-W.; Stuckelberger, M.; Ballif, C. Recent advances and remaining challenges in thin-film silicon photovoltaic technology. Mater. Today 2015, 18, 378–384. [Google Scholar] [CrossRef]
- Dharmadasa, I. Advances in Thin-Film Solar Cells; Jenny Stanford Publishing: Singapore, 2018. [Google Scholar]
- Melville, O.A.; Lessard, B.H.; Bender, T.P. Phthalocyanine-based organic thin-film transistors: A review of recent advances. ACS Appl. Mater. Interfaces 2015, 7, 13105–13118. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Luo, J.; Nguyen, N.-T.; Walton, A.; Flewitt, A.J.; Zu, X.-T.; Li, Y.; McHale, G.; Matthews, A.; Iborra, E. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 2017, 89, 31–91. [Google Scholar] [CrossRef] [Green Version]
- Juneau, J.-M. The Simulation, Design, and Fabrication of Optical Filters; Rose Hulman Institute of Technology: Terre Haute, IN, USA, 2017. [Google Scholar]
- Keshmiri, S.; Mirsalehi, M. Multilayer Thin-Film Optical Filters: Design, Fabrication, and Applications. In Physics and Technology of Thin Films: IWTF 2003; World Scientific: Singapore, 2004; pp. 306–317. [Google Scholar]
- Kalantar-Zadeh, K.; Powell, D.A.; Wlodarski, W.; Ippolito, S.; Galatsis, K. Comparison of layered based SAW sensors. Sens. Actuators B Chem. 2003, 91, 303–308. [Google Scholar] [CrossRef]
- Chang, I. Tunable acousto-optic filters: An overview. In Proceedings of the Acousto-Optics: Device Development/Instrumentation/Applications, San Diego, CA, USA, 26–27 August 1976; International Society for Optics and Photonics: Bellingham, DC, USA, 1976; pp. 12–22. [Google Scholar]
- Mantsevich, S.; Korablev, O.; Kalinnikov, Y.K.; Ivanov, A.Y.; Kiselev, A. Wide-aperture TeO2 AOTF at low temperatures: Operation and survival. Ultrasonics 2015, 59, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.; Glenar, D.A.; Hillman, J.J. Spectral characterization of acousto-optic filters used in imaging spectroscopy. Appl. Opt. 2002, 41, 209–217. [Google Scholar] [CrossRef]
- Mukhopadhyay, T.; Mahata, A.; Adhikari, S.; Zaeem, M.A. Effective mechanical properties of multilayer nano-heterostructures. Sci. Rep. 2017, 7, 15818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, J.B.; Wagner, K.H. Acousto-optic figure of merit search. Phys. Procedia 2015, 70, 762–765. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Yu, X.-X.; Zheng, D.-S.; Yin, H. Piezoelectric potential enhanced photocatalytic performance based on ZnO with different nanostructures. Nanotechnology 2021, 32, 135703. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Qiu, Y.; Yang, D.; Lin, K.; Guo, S. Piezoelectric property comparison of two-dimensional ZnO nanostructures for energy harvesting devices. RSC Adv. 2021, 11, 3363–3370. [Google Scholar] [CrossRef]
- Weis, R.; Gaylord, T. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191–203. [Google Scholar] [CrossRef]
- Kaletta, U.C.; Wipf, C.; Fraschke, M.; Wolansky, D.; Schubert, M.A.; Schroeder, T.; Wenger, C. AlN/SiO2/Si3N4/Si(100)-based CMOS compatible surface acoustic wave filter with− 12.8-dB minimum insertion loss. IEEE Trans. Electron Devices 2015, 62, 764–768. [Google Scholar] [CrossRef]
- Kaletta, U.C.; Wenger, C. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO2/Si (1 0 0). Ultrasonics 2014, 54, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.Z.; Jeoti, V.; Karuppanan, S.; Malik, A.F.; Iqbal, A. FEM analysis of sezawa mode SAW sensor for VOC based on CMOS compatible AlN/SiO2/Si multilayer structure. Sensors 2018, 18, 1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wen, Z.; Wang, C. Investigation of surface acoustic waves propagating in ZnO–SiO2–Si multilayer structure. Ultrasonics 2013, 53, 363–368. [Google Scholar] [CrossRef]
- Shu, L.; Peng, B.; Li, C.; Gong, D.; Yang, Z.; Liu, X.; Zhang, W. The characterization of surface acoustic wave devices based on AlN-metal structures. Sensors 2016, 16, 526. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, A.A.; Islam, M.S.; Ali, S.H.M.; Parthiban, R.; Ramakrishnan, N. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors. Sensors 2013, 13, 2164–2175. [Google Scholar] [CrossRef]
- Maouhoub, S.; Aoura, Y.; Mir, A. FEM simulation of AlN thin layers on diamond substrates for high frequency SAW devices. Diam. Relat. Mater. 2016, 62, 7–13. [Google Scholar] [CrossRef]
- Hofer, M.; Finger, N.; Kovacs, G.; Schoberl, J.; Langer, U.; Lerch, R. Finite element simulation of bulk-and surface acoustic wave (SAW) interaction in SAW devices. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; pp. 53–56. [Google Scholar]
- Buchner, M.; Ruile, W.; Dietz, A.; Dill, R. FEM analysis of the reflection coefficient of SAWs in an infinite periodic array. In Proceedings of the IEEE 1991 Ultrasonics Symposium, Orlando, FL, USA, 8–11 December 1991; pp. 371–375. [Google Scholar]
- Yong, Y.-K. Analysis of periodic structures for BAW and SAW resonators. In Proceedings of the 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263), Atlanta, GA, USA, 7–10 October 2001; pp. 781–790. [Google Scholar]
- McIntosh, R.; Bhalla, A.S.; Guo, R. Finite element modeling of acousto-optic effect and optimization of the figure of merit. In Proceedings of the Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VI, San Diego, CA, USA, 12–13 August 2021; p. 849703. [Google Scholar] [CrossRef]
- Davydov, S.Y. Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN. Semiconductors 2002, 36, 41–44. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Jeoti, V.; Karuppanan, S.; Malik, A.F. FEM Simulation Analysis of AlN/SiO 2/Si Multilayer Structure and Effect of IDT Configuration on SAW Propagation Modes and Characteristics. In Proceedings of the 2018 International Conference on Intelligent and Advanced System (ICIAS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 1–4. [Google Scholar]
- Malik, A.F.; Jeoti, V.; Fawzy, M.; Iqbal, A.; Aslam, Z.; Pandian, M.S.; Marigo, E. Estimation of SAW velocity and coupling coefficient in multilayered piezo-substrates AlN/SiO2/Si. In Proceedings of the 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 15–17 August 2016; pp. 1–5. [Google Scholar]
- Jain, S.; Mansingh, A. Thin film layered structure for acousto-optic devices. J. Phys. D Appl. Phys. 1992, 25, 1116. [Google Scholar] [CrossRef]
- Nayak, R.; Nayak, A.; Gupta, V.; Sreenivas, K. Optical interactions in ZnO-TeO/sub 2/bi-layer for AO device applications. In Proceedings of the IEEE Symposium on Ultrasonics 2003, Honolulu, HI, USA, 5–8 October 2003; pp. 1129–1132. [Google Scholar]
- Stedham, C.; Draper, M.; Ward, J.; Wachman, E.; Pannell, C. A novel acousto-optic tunable filter for use in hyperspectral imaging systems. In Proceedings of the Physics and Simulation of Optoelectronic Devices XVI, San Jose, CA, USA, 22 February 2008; p. 68891. [Google Scholar]
- Kitui, M.; Mwamburi, M.M.; Gaitho, F.; Maghanga, C.M. Optical Properties of TiO2 Based Multilayer Thin Films: Application to Optical Filters. Int. J. Thin Film Sci. Technol. 2015, 4, 1. [Google Scholar]
- Maouhoub, S.; Aoura, Y.; Mir, A. FEM simulation of Rayleigh waves for SAW devices based on ZnO/AlN/Si. Microelectron. Eng. 2015, 136, 22–25. [Google Scholar] [CrossRef]
- Mahmood, T.; Cao, C.; Khan, W.S.; Usman, Z.; Butt, F.K.; Hussain, S. Electronic, elastic, optical properties of rutile TiO2 under pressure: A DFT study. Phys. B Condens. Matter 2012, 407, 958–965. [Google Scholar] [CrossRef]
- Rathore, B.P.S.; Prakash, R.; Kaur, D. Effect of AlN layer on the resistive switching properties of TiO2 based ReRAM memory devices. Curr. Appl. Phys. 2018, 18, 102–106. [Google Scholar] [CrossRef]
- Yoshida, F.; Nagashima, K.; Tsubouchi, M.; Maruyama, M.; Ochi, Y. THz pulse generation using a contact grating device composed of TiO2/SiO2 thin films on LiNbO3 crystal. J. Appl. Phys. 2016, 120, 183103. [Google Scholar] [CrossRef]
- Hao, L.; Li, Y.; Zhu, J.; Wu, Z.; Long, F.; Liu, X.; Zhang, W. Microstructure and memory characteristics of ferroelectric LiNbO3/ZnO composite thin films on Pt/TiO2/SiO2/Si substrates. J. Alloy. Compd. 2014, 590, 205–209. [Google Scholar] [CrossRef]
- Shirazi, M.; Hosseinnejad, M.; Zendehnam, A.; Ghorannevis, Z.; Ghoranneviss, M. Deposition of ZnO multilayer on LiNbO3 single crystals by DC-magnetron sputtering. Appl. Surf. Sci. 2011, 257, 10233–10238. [Google Scholar] [CrossRef]
- Xiong, S.; Liu, X.; Zhou, J.; Liu, Y.; Shen, Y.; Yin, X.; Wu, J.; Tao, R.; Fu, Y.; Duan, H. Stability studies of ZnO and AlN thin film acoustic wave devices in acid and alkali harsh environments. RSC Adv. 2020, 10, 19178–19184. [Google Scholar] [CrossRef]
- Kischkat, J.; Peters, S.; Gruska, B.; Semtsiv, M.; Chashnikova, M.; Klinkmüller, M.; Fedosenko, O.; Machulik, S.; Aleksandrova, A.; Monastyrskyi, G. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 2012, 51, 6789–6798. [Google Scholar] [CrossRef] [PubMed]
- Newnham, R.E. Properties of Materials: Anisotropy, Symmetry, Structure; Oxford University Press on Demand: Oxford, UK, 2005. [Google Scholar]
- Benetti, M.; Cannata, D.; Di Pictrantonio, F.; Verona, E. Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1806–1811. [Google Scholar] [CrossRef] [PubMed]
- Takagaki, Y.; Santos, P.; Wiebicke, E.; Brandt, O.; Schönherr, H.-P.; Ploog, K. Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates. Appl. Phys. Lett. 2002, 81, 2538–2540. [Google Scholar] [CrossRef] [Green Version]
- Bu, G.; Ciplys, D.; Shur, M.; Schowalter, L.J.; Schujman, S.; Gaska, R. Surface acoustic wave velocity in single-crystal AlN substrates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 251–254. [Google Scholar] [CrossRef] [PubMed]
Dimensions | Value (µm) |
---|---|
Wavelength | 4 (λ) |
Pitch of electrode | 2 (λ/2) |
Width of IDT | 1 (λ/4) |
Substrate thickness | 40 (10 λ) |
Mechanical BC | Electrical BC | |
---|---|---|
Γ1 | Free | Zero Charge/Symmetry |
Γ2 | Continuity | Continuity |
Γ3 | Continuity | Continuity |
Γ | Fixed Constraint | Ground |
ΓL, ΓR | Periodic BC | - |
Parameter | Symbol | AlN | LiNbO3 | ZnO | SiO2 | Si |
---|---|---|---|---|---|---|
Density (kg/m3) | ρ | 3260 | 4644 | 5606 | 2200 | 2330 |
Elastic constants (GPa) | c11 | 345 | 2.03 | 209.7 | 78.5 | 166 |
c12 | 125 | 0.53 | 12.1 | 16.1 | 64 | |
c13 | 120 | 0.75 | 105.4 | 16.1 | 64 | |
c33 | 395 | 2.45 | 211.2 | 78.5 | 166 | |
c44 | 118 | 0.6 | 42.4 | 31.2 | 80 | |
c66 | 110 | - | - | 31.2 | 80 | |
Piezoelectric constants (C/m2) | e15 | −0.48 | 4.1607 | −0.45 | - | - |
e31 | −0.45 | 0.8661 | −0.51 | |||
e33 | −1.55 | 3.7 | 1.22 | |||
Dielectric constants (10−11 F/m) | ε11 | 9 | 43.6 | 8.55 | 3.32 | 10.62 |
ε33 | 11 | 29.16 | 10.2 | 3.32 | 10.62 | |
Refractive index | N | 2.1 | 2.203 | 2.015 | 1.5 | 3.88 |
Acoustic velocity (m/s) | v | 5760 | 6487.6 | 6133.5 | 3750 | 5000 |
Acousto-optic figure of merit 10−15 [s3/kg] | M2 | - | 10.418 | 2.572 | 0.59 | - |
Structure | Figure of Merit (s3/kg) | Phase Velocity (m/s) | Electromechanical Coupling Coefficient | |
---|---|---|---|---|
A | ZnO/SiO2/Si | 1.23 × 10−14 | 3.63 × 103 | 4.20 |
B | LiNbO3/SiO2/Si | 5.09 × 10−14 | 3.83 × 103 | 5.03 |
C | AlN/SiO2/Si | 7.04 × 10−14 | 4.42 × 103 | 7.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, M.; Jeoti, V.; Ahmad, M.R.; Aslam, M.Z.; Qureshi, S.; Stojanovic, G. FEM Analysis of Various Multilayer Structures for CMOS Compatible Wearable Acousto-Optic Devices. Sensors 2021, 21, 7863. https://doi.org/10.3390/s21237863
Hanif M, Jeoti V, Ahmad MR, Aslam MZ, Qureshi S, Stojanovic G. FEM Analysis of Various Multilayer Structures for CMOS Compatible Wearable Acousto-Optic Devices. Sensors. 2021; 21(23):7863. https://doi.org/10.3390/s21237863
Chicago/Turabian StyleHanif, Mehwish, Varun Jeoti, Mohamad Radzi Ahmad, Muhammad Zubair Aslam, Saima Qureshi, and Goran Stojanovic. 2021. "FEM Analysis of Various Multilayer Structures for CMOS Compatible Wearable Acousto-Optic Devices" Sensors 21, no. 23: 7863. https://doi.org/10.3390/s21237863
APA StyleHanif, M., Jeoti, V., Ahmad, M. R., Aslam, M. Z., Qureshi, S., & Stojanovic, G. (2021). FEM Analysis of Various Multilayer Structures for CMOS Compatible Wearable Acousto-Optic Devices. Sensors, 21(23), 7863. https://doi.org/10.3390/s21237863