An Open-Source Platform for Human Pose Estimation and Tracking Using a Heterogeneous Multi-Sensor System
Abstract
:1. Introduction
- Detect human body information from background lidar data using Octree based change detection
- Estimate human height and skeletal parameters
- Track position and orientation using multiple heterogeneous sensors and
- Reconstruct human motion on a 3D Avatar.
2. Related Work
3. Materials and Methods
3.1. Heterogeneous Multi-Sensor Setup
3.2. Height Estimation and Skeleton Parametrization
3.3. Heterogeneous Pose Tracking
Algorithm 1: Vector-based position and orientation estimation in real-time. |
4. Evaluation
4.1. Experimental Setup
4.2. User Height and Skeleton
4.3. Pose Tracking and Reconstruction
4.4. Comparison with Other Methods
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
lidar | Light Detection and Ranging |
IMU | Inertial Measurement Unit |
FoV | Field of View |
2D | Two-dimensional |
3D | Three-dimensional |
VTK | Visualization Tool Kit |
RMSE | Root Mean Square Error |
KP | Key Pose |
References
- Roetenberg, D.; Luinge, H.; Slycke, P. Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors; Xsens Motion Technologies B.V.: Enschede, The Netherlands, 2009; pp. 1–9. [Google Scholar]
- Ziegler, J.; Kretzschmar, H.; Stachniss, C.; Grisetti, G.; Burgard, W. Accurate human motion capture in large areas by combining IMU- and laser-based people tracking. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 86–91. [Google Scholar] [CrossRef] [Green Version]
- Trumble, M.; Gilbert, A.; Malleson, C.; Hilton, A.; Collomosse, J.P. Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors. BMVC 2017, 2, 1–13. [Google Scholar]
- Jobanputra, C.; Bavishi, J.; Doshi, N. Human activity recognition: A survey. Procedia Comput. Sci. 2019, 155, 698–703. [Google Scholar] [CrossRef]
- Fu, B.; Damer, N.; Kirchbuchner, F.; Kuijper, A. Sensing technology for human activity recognition: A comprehensive survey. IEEE Access 2020, 8, 83791–83820. [Google Scholar] [CrossRef]
- Bregler, C.; Malik, J.; Pullen, K. Twist based acquisition and tracking of animal and human kinematics. Int. J. Comput. Vis. 2004, 56, 179–194. [Google Scholar] [CrossRef]
- Bian, Z.; Hou, J.; Chau, L.; Magnenat-Thalmann, N. Fall detection based on body part tracking using a depth camera. IEEE J. Biomed. Health Inform. 2014, 19, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R.; Shotton, J.; Kohli, P.; Criminisi, A.; Fitzgibbon, A. Efficient regression of general-activity human poses from depth images. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 415–422. [Google Scholar]
- Martin, C.C.; Burkert, D.C.; Choi, K.R.; Wieczorek, N.B.; McGregor, P.M.; Herrmann, R.A.; Beling, P.A. A real-time ergonomic monitoring system using the Microsoft Kinect. In Proceedings of the 2012 IEEE Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 27 April 2012; pp. 50–55. [Google Scholar]
- Kok, M.; Jeroen, D.H.; Schon, T.B. Using inertial sensors for position and orientation estimation. arXiv 2017, arXiv:1704.06053. [Google Scholar]
- Zhang, S.; Guo, Y.; Zhu, Q.; Liu, Z. Lidar-IMU and wheel odometer based autonomous vehicle localization system. In Proceedings of the 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 4950–4955. [Google Scholar]
- Balasubramanyam, A.; Patil, A.K.; Chakravarthi, B.; Ryu, J.Y.; Chai, Y.H. Motion-Sphere: Visual Representation of the Subtle Motion of Human Joints. Appl. Sci. 2020, 10, 6462. [Google Scholar] [CrossRef]
- Damgrave, R.; Johannes, G.; Lutters, D. The drift of the Xsens MoveN motion capturing suit during common movements in a working environment. In Proceedings of the 19th CIRP Design Conference-Competitive Design, Cranfield, UK, 30–31 March 2009. [Google Scholar]
- Raj, T.; Hashim, F.H.; Huddin, A.B.; Ibrahim, M.F.; Hussain, A. A Survey on LiDAR Scanning Mechanisms. Electronics 2020, 9, 741. [Google Scholar] [CrossRef]
- Pavan, K.B.N.; Adithya, B.; Chethana, B.; Patil, A.K.; Chai, Y.H. Gaze-Controlled Virtual Retrofitting of UAV-Scanned Point Cloud Data. Symmetry 2018, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Ilci, V.; Toth, C. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation. Sensors 2020, 20, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, G.A.; Lee, J.H.; Hwang, J.; Park, J.; Youn, S.H.; Kwon, S. LiDAR and camera fusion approach for object distance estimation in self-driving vehicles. Symmetry 2020, 12, 324. [Google Scholar] [CrossRef] [Green Version]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Zeng, A.; Liu, M.; Lai, Q.; Xu, Q. Deepfuse: An IMU-aware network for real-time 3D human pose estimation from multi-view image. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 429–438. [Google Scholar]
- Qiu, S.; Wang, Z.; Zhao, H.; Qin, K.; Li, Z.; Hu, H. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Inf. Fusion 2018, 39, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Weng, D.; Li, D.; Wang, Y. A Low-Cost Drift-Free Optical-Inertial Hybrid Motion Capture System for High-Precision Human Pose Detection. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, China, 10–18 October 2019; pp. 75–80. [Google Scholar]
- Barros, J.M.D.; Garcia, F.; Sidibe, D. Real-time Human Pose Estimation from Body-scanned Point Clouds. In Proceedings of the International Conference on Computer Vision Theory and Applications, Berlin, Germany, 11–14 March 2015; pp. 553–560. [Google Scholar]
- Yan, J.; Li, Y.; Zheng, E.; Liu, Y. An accelerated human motion tracking system based on voxel reconstruction under complex environments. In Asian Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2009; pp. 313–324. [Google Scholar]
- Malleson, C.; Gilbert, A.; Trumble, M.; Collomosse, J.; Hilton, A.; Volino, M. Real-time full-body motion capture from video and IMUs. In Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 449–457. [Google Scholar]
- Pons-Moll, G.; Baak, A.; Gall, J.; Leal-Taixe, L.; Mueller, M.; Seidel, H.-P.; Rosenhahn, B. Outdoor human motion capture using inverse kinematics and von mises-fisher sampling. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1243–1250. [Google Scholar]
- von Marcard, T.; Henschel, R.; Black, M.J.; Rosenhahn, B.; Pons-Moll, G. Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 601–617. [Google Scholar]
- Liaqat, S.; Dashtipour, K.; Arshad, K.; Assaleh, K.; Ramzan, N. A hybrid posture detection framework: Integrating machine learning and deep neural networks. IEEE Sens. J. 2021. [Google Scholar] [CrossRef]
- Alqarni, M.A. Error-less data fusion for posture detection using smart healthcare systems and wearable sensors for patient monitoring. Pers. Ubiquitous Comput. 2021, 1–12. [Google Scholar] [CrossRef]
- Tran, T.; Nguyen, D.T.; Nguyen, T.P. Human Posture Classification from Multiple Viewpoints and Application for Fall Detection. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc Island, Vietnam, 13–15 January 2021; pp. 262–267. [Google Scholar]
- Xu, C.; Su, R.; Chen, Y.; Duan, S. Towards Human Motion Tracking: An Open-source Platform based on Multi-sensory Fusion Methods. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 774–779. [Google Scholar]
- Patil, A.K.; Balasubramanyam, A.; Ryu, J.Y.; B N, P.K.; Chakravarthi, B.; Chai, Y.H. Fusion of Multiple Lidars and Inertial Sensors for the Real-Time Pose Tracking of Human Motion. Sensors 2020, 20, 5342. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Duckett, T.; Bellotto, N. Online learning for human classification in 3D lidar-based tracking. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 864–871. [Google Scholar]
- Kammerl, J.; Blodow, N.; Rusu, R.B.; Gedikli, S.; Beetz, M.; Steinbach, E. Real-time compression of point cloud streams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MI, USA, 14–18 May 2012; pp. 778–785. [Google Scholar]
- PCL, Point Cloud Library. Available online: https://pointclouds.org/ (accessed on 24 March 2021).
- Coviello, G.; Avitabile, G.; Florio, A. The importance of data synchronization in multiboard acquisition systems. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020; pp. 293–297. [Google Scholar]
- Leica DISTO S910. Available online: https://shop.leica-geosystems.com/buy/package/s910 (accessed on 24 March 2021).
- DISTO Transfer Software for PC. Available online: https://shop.leica-geosystems.com/global/disto-transfer-software-pc (accessed on 24 March 2021).
- Schroeder, W.J.; Avila, L.S.; Hoffman, W. Visualizing with VTK: A tutorial. IEEE Comput. Graph. Appl. 2000, 20, 20–27. [Google Scholar] [CrossRef] [Green Version]
Sl. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Distance (m) | 1.25 | 1.51 | 1.75 | 2.04 | 2.28 | 2.54 | 2.90 | 3.20 | 3.82 | 4.50 | 5.35 | 5.92 |
Height (cm) | 171 | 170 | 169 | 173 | 174 | 175 | 166 | 168 | 171 | 167 | 173 | 168 |
Mean error (cm) | 1.58 |
Trails | IMU Only (cm) | Multi-Sensor (cm) |
---|---|---|
1 | 6.4339 | 9.1725 |
2 | 13.9382 | 12.5533 |
3 | 43.0608 | 11.6600 |
4 | 45.4884 | 9.1796 |
Li et al. [21] | Zielger et al. [2] | Our Proposed System | |
---|---|---|---|
Position tracking sensor | HTC VIVE 2 Base station 6 Trackers | Mobile robot equipped with SICK LMS laser ranger | Ouster OS0 Lidar sensor |
Inertial sensor | Perception Neuron 17 IMUs | Xsens MVN 17 IMUs | Xsens Awinda 10 IMUs |
Experiment setup | Indoor Environment | Outdoor Environment | Indoor Environment |
3D model | Self developed Skeleton model | Xsens provided Skeleton model | Self developed Skeleton and Avatar model |
Open-source platform | No | No | Yes |
Drift accuracy | ∼120 cm in x and z ∼2 cm in y | <20 cm | <11 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, A.K.; Balasubramanyam, A.; Ryu, J.Y.; Chakravarthi, B.; Chai, Y.H. An Open-Source Platform for Human Pose Estimation and Tracking Using a Heterogeneous Multi-Sensor System. Sensors 2021, 21, 2340. https://doi.org/10.3390/s21072340
Patil AK, Balasubramanyam A, Ryu JY, Chakravarthi B, Chai YH. An Open-Source Platform for Human Pose Estimation and Tracking Using a Heterogeneous Multi-Sensor System. Sensors. 2021; 21(7):2340. https://doi.org/10.3390/s21072340
Chicago/Turabian StylePatil, Ashok Kumar, Adithya Balasubramanyam, Jae Yeong Ryu, Bharatesh Chakravarthi, and Young Ho Chai. 2021. "An Open-Source Platform for Human Pose Estimation and Tracking Using a Heterogeneous Multi-Sensor System" Sensors 21, no. 7: 2340. https://doi.org/10.3390/s21072340
APA StylePatil, A. K., Balasubramanyam, A., Ryu, J. Y., Chakravarthi, B., & Chai, Y. H. (2021). An Open-Source Platform for Human Pose Estimation and Tracking Using a Heterogeneous Multi-Sensor System. Sensors, 21(7), 2340. https://doi.org/10.3390/s21072340