Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range
Abstract
:1. Introduction
2. SPR Sensing System—Coupling Mechanism
2.1. Coupling of Surface Waves to a Cavity Mode
2.2. Fabry–Perot Cavity for SPP Modes
2.3. Rectangular Waveguide Cavity Resonance Mode
3. Numerical Scheme
4. Simulation Results and Discussion
4.1. Optimization Process
4.2. Sensor Sensitivity—Frequency Domain
4.3. Sample Fabrication Method—Producibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Smolyanskaya, O.; Chernomyrdin, N.; Konovko, A.; Zaytsev, K.; Ozheredov, I.; Cherkasova, O.; Nazarov, M.; Guillet, J.-P.; Kozlov, S.; Kistenev, Y.; et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quantum Electron. 2018, 62, 1–77. [Google Scholar] [CrossRef]
- Zaytsev, K.I.; Dolganova, I.N.; Chernomyrdin, N.V.; Katyba, G.M.; Gavdush, A.A.; Cherkasova, O.P.; Komandin, G.A.; Shchedrina, M.A.; Khodan, A.N.; Ponomarev, D.S.; et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: A review. J. Opt. 2020, 22, 013001. [Google Scholar] [CrossRef]
- Pandey, S.; Gupta, B.; Chanana, A.; Nahata, A. Non-Drude like Behaviour of Metals in the Terahertz Spectral Range. Adv. Phys. X 2016, 1, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Bulgakova, V.V.; Gerasimov, V.V.; Goldenberg, B.G.; Lemzyakov, A.G.; Malkin, A.M. Study of Terahertz Spoof Surface Plasmons on Subwavelength Gratings with Dielectric Substance in Grooves. Procedia Eng. 2017, 201, 14–23. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, L.; Gao, F.; Luo, Y.; Zhang, B. Spoof Plasmonics: From Metamaterial Concept to Topological Description. Adv. Mater. 2018, 30, 1706683. [Google Scholar] [CrossRef] [PubMed]
- Beruete, M.; Jáuregui-López, I. Terahertz Sensing Based on Metasurfaces. Adv. Optical Mater. 2020, 8, 1900721. [Google Scholar] [CrossRef] [Green Version]
- Gerasimov, V.V.; Hafizov, R.R.; Kuznetsov, S.A.; Lazorskiy, P.A. Exploiting Localized Surface Plasmon Resonances in Subwavelength Spiral Disks for THz Thin Film Sensing. Appl. Sci. 2020, 10, 3595. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Yin, J.; Hong, Z. Asymmetric All Silicon Micro-Antenna Array for High Angle Beam Bending in Terahertz Band. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Yan, D.; Li, J.; Li, J.; Qiu, G.; Hou, X.; Cheng, G. Experimental Demonstration of 3D Printed Terahertz Polarization-Insensitive Flat Devices Based on Low-Index Meta-Gratings. J. Phys. D Appl. Phys. 2020, 53, 505301. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Cheng, G.; Hou, X.; Yan, D.; Qiu, G.; Guo, S.; Zhou, W.; Li, J. Terahertz Spoof Surface Plasmon Sensing Based on Dielectric Metagrating Coupling. APL Mater. 2021, 9, 051118. [Google Scholar] [CrossRef]
- Ng, B.; Wu, J.; Hanham, S.M.; Fernández-Domínguez, A.I.; Klein, N.; Liew, Y.F.; Breese, M.B.H.; Hong, M.; Maier, S.A. Spoof Plasmon Surfaces: A Novel Platform for THz Sensing. Adv. Opt. Mater. 2013, 1, 543–548. [Google Scholar] [CrossRef]
- Yao, H.; Zhong, S. High-Mode Spoof SPP of Periodic Metal Grooves for Ultra-Sensitive Terahertz Sensing. Opt. Express 2014, 22, 25149. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Zhong, S.; Tu, W. Performance Analysis of Higher Mode Spoof Surface Plasmon Polariton for Terahertz Sensing. J. Appl. Phys. 2015, 117, 133104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hong, Z.; Han, Z. Spoof Plasmon Resonance with 1D Periodic Grooves for Terahertz Refractive Index Sensing. Opt. Commun. 2015, 340, 102–106. [Google Scholar] [CrossRef]
- Chen, L.; Yin, H.; Chen, L.; Zhu, Y. Ultra-Sensitive Fluid Fill Height Sensing Based on Spoof Surface Plasmon Polaritons. J. Electromagn. Waves Appl. 2018, 32, 471–482. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, H.; Lu, G.; Zhao, R. Refractive Index Sensing Based on Terahertz Spoof Surface Plasmon Polariton Structure. J. Phys. Conf. Ser. 2020, 1617, 012008. [Google Scholar] [CrossRef]
- Huang, Y.; Zhong, S.; Shi, T.; Shen, Y.; Cui, D. Terahertz Plasmonic Phase-Jump Manipulator for Liquid Sensing. Nanophotonics 2020, 9, 3011–3021. [Google Scholar] [CrossRef]
- Zhao, R.; Lu, G.; Yin, H.; Liang, J.; Zeng, D.; Xiao, H. Terahertz Sensor Study Based on Spoof Surface Plasmon Polaritons. Int. J. Antennas Propag. 2020, 2020, 2504626. [Google Scholar] [CrossRef]
- O’Hara, J.F.; Averitt, R.D.; Taylor, A.J. Terahertz Surface Plasmon Polariton Coupling on Metallic Gratings. Opt. Express 2004, 12, 6397. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, M.; Garet, F.; Armand, D.; Shkurinov, A.; Coutaz, J.-L. Surface Plasmon THz Waves on Gratings. Comptes Rendus Physique 2008, 9, 232–247. [Google Scholar] [CrossRef]
- Martl, M.; Darmo, J.; Unterrainer, K.; Gornik, E. Excitation of Terahertz Surface Plasmon Polaritons on Etched Groove Gratings. J. Opt. Soc. Am. B 2009, 26, 554. [Google Scholar] [CrossRef]
- Nazarov, M.; Coutaz, J.-L. Terahertz Surface Waves Propagating on Metals with Sub-Wavelength Structure and Grating Reliefs. J. Infrared Milli. Terahz. Waves 2011, 32, 1054–1073. [Google Scholar] [CrossRef]
- Spevak, I.S.; Kuzmenko, A.A.; Tymchenko, M.; Gavrikov, V.K.; Shulga, V.M.; Feng, J.; Sun, H.B.; Kamenev, Y.E.; Kats, A.V. Surface Plasmon-Polariton Resonance at Diffraction of THz Radiation on Semiconductor Gratings. Low Temp. Phys. 2016, 42, 698–702. [Google Scholar] [CrossRef] [Green Version]
- Sathukarn, A.; Jia yi, C.; Boonruang, S.; Horprathum, M.; Tantiwanichapan, K.; Prasertsuk, K.; Thanapirom, C.; Kusolthossakul, W.; Kasamsook, K. The Simulation of a Surface Plasmon Resonance Metallic Grating for Maximizing THz Sensitivity in Refractive Index Sensor Application. Int. J. Opt. 2020, 2020, 3138725. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1. [Google Scholar]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Long, L.L.; Querry, M.R. Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 1985, 24, 4493. [Google Scholar] [CrossRef]
- Urrutia, A.; Villar, I.D.; Zubiate, P.; Zamarreco, C.R. A Comprehensive Review of Optical Fiber Refractometers: Toward a Standard Comparative Criterion. Laser Photonics Rev. 2019, 13, 1900094. [Google Scholar] [CrossRef]
- Scherger, B.; Born, N.; Jansen, C.; Schumann, S.; Koch, M.; Wiesauer, K. Compression Molded Terahertz Transmission Blaze-Grating. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 556–561. [Google Scholar] [CrossRef]
- Busch, S.F.; Born, N.; Koch, M.; Fischer, B. Terahertz Reflection Gratings Made by Room-Temperature High-Pressure Molding. J. Infrared Milli. Terahz. Waves 2013, 34, 413–415. [Google Scholar] [CrossRef]
- Squires, A.D.; Constable, E.; Lewis, R.A. 3D Printed Terahertz Diffraction Gratings and Lenses. J. Infrared Milli. Terahz. Waves 2015, 36, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Busch, S.F.; Weidenbach, M.; Balzer, J.C.; Koch, M. THz Optics 3D Printed with TOPAS. J. Infrared Milli. Terahz. Waves 2016, 37, 303–307. [Google Scholar] [CrossRef]
- Ornik, J.; Zhang, Y.; Schneider, M.; Taherkhani, M.; Alaboz, H.; Koch, M. THz Gratings Produced by Laser Cutting. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; IEEE: Paris, France, 2019; pp. 1–2. [Google Scholar]
- Linas, J.; Dovilė, M.; Gabrielius, K.; Vytautas, P. Femtosecond lasers: The ultimate tool for high-precision 3D manufacturing. Adv. Opt. Technol. 2019, 8, 241–251. [Google Scholar] [CrossRef]
μm | μm | μm | THz | THz | THz/RIU | |||
---|---|---|---|---|---|---|---|---|
SPP mode | ||||||||
175 | 70 | 220 | 15 | 2.163 | 0.621 | 0.00115 | 2.12 | 1843 |
175 | 70 | 510 | 15 | 2.146 | 0.617 | 0.0002 | 2.10 | 10,500 |
175 | 70 | 860 | 15 | 2.143 | 0.477 | 0.0001 | 2.13 | 21,250 |
(1,1) | ||||||||
175 | 70 | 200 | 15 | 2.307 | 0.83 | 0.00119 | 2.26 | 1899 |
(1,2) | ||||||||
175 | 70 | 690 | 15 | 2.204 | 0.768 | 0.001 | 2.16 | 2160 |
SPP mode | ||||||||
175 | 140 | 330 | 15 | 2.151 | 0.671 | 0.0004 | 2.11 | 5275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kameshkov, O.; Gerasimov, V.; Knyazev, B. Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range. Sensors 2022, 22, 172. https://doi.org/10.3390/s22010172
Kameshkov O, Gerasimov V, Knyazev B. Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range. Sensors. 2022; 22(1):172. https://doi.org/10.3390/s22010172
Chicago/Turabian StyleKameshkov, Oleg, Vasily Gerasimov, and Boris Knyazev. 2022. "Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range" Sensors 22, no. 1: 172. https://doi.org/10.3390/s22010172
APA StyleKameshkov, O., Gerasimov, V., & Knyazev, B. (2022). Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range. Sensors, 22(1), 172. https://doi.org/10.3390/s22010172