Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb
Abstract
:1. Introduction
2. Principles and Methods
2.1. A Simplified Mathematical Model for Analyzing the Characteristics of the OFC
2.1.1. M Is Even
2.1.2. M Is Odd
2.2. Characteristics of the Frequency Comb
2.3. The Dispersive Interferometry
2.3.1. The Principle of Dispersive Interferometry
2.3.2. The Resolution of Dispersive Interferometry
2.3.3. Non-Ambiguity Range of Dispersive Interferometry
3. Experiment and Results
3.1. Experiment with the Mode-Locked Frequency Comb
3.2. Lomb–Scargle Algorithm and Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckstein, J.N.; Ferguson, A.I.; Hänsch, T.W. High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses. Phys. Rev. Lett. 1978, 40, 847–850. [Google Scholar] [CrossRef]
- Wei, D.; Takahashi, S.; Takamasu, K.; Matsumoto, H. Analysis of the temporal coherence function of a femtosecond optical frequency comb. Opt. Express 2009, 17, 7011–7018. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Xie, Q.; Shu, C. Comb Spacing Multiplication Enabled Widely Spaced Flexible Frequency Comb Generation. J. Lightwave Technol. 2018, 36, 2651–2659. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Li, T.; Hu, G.; Li, R.; Bai, M.; Yasui, T.; Zheng, Z. Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 2000, 39, 5512–5517. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Pollinger, F.; Meiners-Hagen, K.; Krystek, M.; Tan, J.; Bosse, H. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection. Meas. Sci. Technol. 2015, 26, 84001. [Google Scholar] [CrossRef]
- Jang, Y.S.; Lee, K.; Han, S.; Lee, J.; Kim, S.W. Absolute distance measurement with extension of non-ambiguity range using the frequency comb of a femtosecond laser. Opt. Eng. 2014, 53, 122403. [Google Scholar] [CrossRef]
- Minoshima, K.; Inaba, H. High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs. Meas. Sci. Technol. 2011, 19, 26095–26105. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Kim, Y.J.; Kim, Y.; Kim, S.W.; Kang, C.S. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt. Express 2006, 14, 5968–5974. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett. 2004, 29, 1153–1155. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; van den Berg, S.A.; Urbach, H.P. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express 2011, 19, 6549–6562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Qu, X.; Zhang, F.; Peng, B. Long Distance Measurement System by Optical Sampling Using a Femtosecond Laser. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Joo, K.N.; Kim, S.W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 2006, 14, 5954–5960. [Google Scholar] [CrossRef] [PubMed]
- Joo, K.N.; Kim, Y.; Kim, S.W. Distance measurements by combined method based on a femtosecond pulse laser. Opt. Express 2008, 16, 19799–19806. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Xing, S.; Zhang, F.; Cao, S.; Qu, X.; Fei, Y. Arbitrary and absolute length measurement based on time-of-flight method using femtosecond optical frequency comb. In Proceedings of the Sixth International Symposium on Precision Mechanical Measurements, Guiyang, China, 10 October 2013. [Google Scholar]
- Wu, H.; Zhang, F.; Qu, X. Long distance measurement by pulse-to-pulse alignment based on OSCAT. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Tang, G.; Qu, X.; Zhang, F.; Zhao, X.; Peng, B. Absolute distance measurement based on spectral interferometry using femtosecond optical frequency comb. Opt. Lasers Eng. 2019, 120, 71–78. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- VanderPlas, J.T. Understanding the Lomb–Scargle Periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Kalicinsky, C.; Reisch, R.; Knieling, P.; Koppmann, R. Determination of time-varying periodicities in unequally spaced time series of OH* temperatures using a moving Lomb–Scargle periodogram and a fast calculation of the false alarm probabilities. Atmos. Meas. Tech. 2020, 13, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, V.A.; Monaro, R.M.; Coury, D.V. Fault distance estimation in multiterminal HVDC systems using the Lomb-Scargle periodogram. Electr. Power Syst. Res. 2021, 196, 107251. [Google Scholar] [CrossRef]
- Zechmeister, M.; Kürster, M. The generalised Lomb-Scargle periodogram-a new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 2009, 496, 577–584. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Q.; Song, M.; Zheng, J.; Jia, L.; Liu, J.; Ni, L.; Nian, J.; Cheng, X.; Zhang, F.; Qu, X. Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb. Sensors 2022, 22, 5403. https://doi.org/10.3390/s22145403
Niu Q, Song M, Zheng J, Jia L, Liu J, Ni L, Nian J, Cheng X, Zhang F, Qu X. Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb. Sensors. 2022; 22(14):5403. https://doi.org/10.3390/s22145403
Chicago/Turabian StyleNiu, Qiong, Mingyu Song, Jihui Zheng, Linhua Jia, Junchen Liu, Lingman Ni, Ju Nian, Xingrui Cheng, Fumin Zhang, and Xinghua Qu. 2022. "Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb" Sensors 22, no. 14: 5403. https://doi.org/10.3390/s22145403
APA StyleNiu, Q., Song, M., Zheng, J., Jia, L., Liu, J., Ni, L., Nian, J., Cheng, X., Zhang, F., & Qu, X. (2022). Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb. Sensors, 22(14), 5403. https://doi.org/10.3390/s22145403