The Impact of Atmospheric Parameters on the Dielectric Permittivity Values of SikaBlock®-M150 and Other Rigid Polyurethane Foams Measured with a Capacitive One-Side Access Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Test Sample
2.2. Other Materials
2.3. The Measured Permittivity Spectra
f = 10, 20, …, 327,680 Hz,
2.4. Water Vapor in Air
2.5. The True Permittivity
2.6. Measurement Uncertainties
3. Results and Discussion
3.1. Permittivity in the Short Series
ε(f8) = −0.00000010k3 + 0.00001810k2 − 0.00073269k + 1.25149051, R² = 0.71 and
ε(f14) = −0.00000006k3 + 0.00001078k2 − 0.00051596k + 1.23458232, R² = 0.52;
RH = −0.000117k3 + 0.020929k2 − 0.754723k + 36.793538, R² = 0.80 and
p = 0.000029k3 − 0.005929k2 + 0.436991k + 1002.709884; R² = 0.17.
ε(f8) = 0.000161T2 − 0.004645T + 1.279791; R² = 0.31 and
ε(f14) = 0.000129T2 − 0.004474T + 1.268358; R² = 0.19.
ε(f8) = −0.000012p2 + 0.024356p − 11.100558; R² = 0.09 and
ε(f14)= −0.000006p2 + 0.012337p − 5.009426; R² = 0.08.
ε(f8) = 0.000008RH2 + 0.000110RH + 1.233174; R² = 0.91;
ε(f14) = 0.000002RH2 + 0.000147RH + 1.221239; R² = 0.63.
3.2. Water Vapor in Air
ε(f8) = −0.00007mw2 + 0.00400mw + 1.22828; R² = 0.80;
ε(f14) = 0.00004mw2 + 0.00079mw + 1.22385; R² = 0.57.
3.3. Permittivity in the Long Series
ε(f8) = 0.000007m2 − 0.000401m + 1.252235; R² = 0.89 and
ε(f14) = 0.000002m2 − 0.000192m + 1.231158; R² = 0.78.
3.4. The True Permittivity
3.5. Measurement Uncertainties
3.6. Other Materials
4. Theoretical
4.1. Permittivity of Air
4.2. Permittivity of an Open-Cell PU Foams Sample
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilyard, N.C. (Ed.) Mechanics of Cellular Plastics; MacMillan: New York, NY, USA, 1982; 360p. [Google Scholar]
- Klempner, D.; Frisch, K.C. (Eds.) Handbook of Polymeric Foams and Foam Technology; Hanser Publishers: Munich, Germany, 1991; 413p. [Google Scholar]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structures and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; 515p. [Google Scholar]
- SikaBlock®-M150. Product Data Sheet. Available online: https://industry.sika.com/en/home/advanced-resins/model-and-mold-manufacturing/block-materials/design-and-stylingboards/sikablock-m150.html (accessed on 14 October 2022).
- SikaBlock®-M960. Product Data Sheet. Available online: https://industry.sika.com/en/home/advanced-resins/model-and-mold-manufacturing/block-materials/boards-for-toolingandfoundryapplications/sikablock-m960.html (accessed on 14 October 2022).
- Goods, S.H.; Neuschwanger, C.L.; Henderson, C.C.; Skala, D.M. Mechanical properties of CRETE, a polyurethane foam. J. Appl. Polym. Sci. 1998, 68, 1045–1055. [Google Scholar] [CrossRef]
- Beverte, I.; Shtrauss, V.; Kalpinsh, A.; Lomanovskis, U.; Cabulis, U.; Sevastyanova, I.; Gaidukovs, S. Dielectric Permittivity of Rigid Rapeseed Oil Polyol Polyurethane Biofoams and Petrochemical Foams at Low Frequencies. J. Renew. Mater. 2020, 8, 1151–1170. [Google Scholar] [CrossRef]
- Beverte, I.; Cabulis, U.; Gaidukovs, S. Polytetrafluoroethylene Films in Rigid Polyurethane Foams’ Dielectric Permittivity Measurements with a One-Side Access Capacitive Sensor. Polymers 2021, 13, 1173. [Google Scholar] [CrossRef] [PubMed]
- Kremer, F.; Schonhals, A. (Eds.) Broadband Dielectric Spectroscopy; Springer-Verlag: Berlin/Heidelberg, Germany, 2003; 730p. [Google Scholar]
- Matiss, I. Capacitive Transducers for Non-Destructive Testing; Publishing House “Zinatne”: Riga, USSR, 1982; 302p. (In Russian) [Google Scholar]
- Matiss, I.; Kalpinsh, A.; Shtrauss, V.; Lomanovskis, U.; Bernavs, I. Capacitance Transducer for NDT of Dielectric Properties of Materials. USSR copyright certificate; Bulletin; 12. Patent SU 1638665A1, 30 March 1991. Available online: https://worldwide.espacenet.com/patent/search/family/021418434/publication/SU1638665A1?q=SU1638665A1%20 (accessed on 14 October 2022).
- Hu, X.; Yang, W. Planar capacitive sensors—Designs and applications. Sensor Rev. 2010, 30, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Kalpinsh, A.; Shtrauss, V.; Lomanovskis, U. Capacitive Probe for Non-Destructive Testing of Dielectric Materials. Patent Office of Republic of Latvia; 9. Patent LV14728B, 20 September 2013. Available online: https://worldwide.espacenet.com/patent/search/family/050153973/publication/LV14728B?q=LV14728B (accessed on 14 October 2022).
- Kalpinsh, A.; Shtrauss, V.; Lomanovskis, U. Digital Emulation of Dielectric Relaxation Functions for Capacitive Sensors of Non-Destructive Dielectric Spectrometry. Comp. Meth. Exp. Meas. 2019, XIX PI, 111–119. [Google Scholar]
- Chen, T. Capacitive Sensors for Measuring Complex Permittivity of Planar and Cylindrical Structures. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2012. Available online: https://lib.dr.iastate.edu/etd/12294 (accessed on 11 July 2022). [CrossRef]
- Avramov-Zamurovic, S.; Lee, R.D. A High-Stability Capacitance Sensor System and Its Evaluation. IEEE Trans. Instrum. Meas. 2009, 58, 955–961. [Google Scholar] [CrossRef]
- Santo Zarnik, M.; Belavic, D. An Experimental and Numerical Study of the Humidity Effect on the Stability of a Capacitive Ceramic Pressure Sensor. Radioengineering 2012, 21, 201–206. [Google Scholar]
- Santo Zarnik, M.; Belavic, D. The Effect of Humidity on the Stability of LTCC Pressure Sensors. Metrol. Meas. Syst. 2012, XIX, 133–140. [Google Scholar] [CrossRef]
- Santo Zarnik, M.; Belavic, D.; Macek, S. The warm-up and offset stability of a low-pressure piezoresistive ceramic pressure sensor. Sens. Actuators A 2010, 158, 198–206. [Google Scholar] [CrossRef]
- Nassr, A.A.; Ahmed, W.H.; El-Dakhakhni, W.W. Coplanar capacitance sensors for detecting water intrusion in composite structures. Meas. Sci. Technol. 2008, 7, 075702. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Ma, H. Fringing electric field sensors for anti-attack at system-level protection. Sensors 2018, 18, 3034. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.M.; Dou, Y.; Zhuo, D.; Fan, J.H. Research on sensor of ice layer thickness based on effect of fringe electric field. In Proceedings of the 2012 International Conference on Computing, Measurement, Control and Sensor Network, Taiyuan, China, 7–9 July 2012; pp. 417–420. [Google Scholar]
- The MAC Humidity/Moisture Handbook, p.20. Available online: www.macinstruments.com (accessed on 11 July 2022).
- Baxter, L.K. Capacitive Sensors; IEEE Press: Piscataway, NJ, USA, 1997; 277p, 302p with Appendices. [Google Scholar]
- Yeap, P.I.; Yuhana, N.Y.; Fariz, S.; Otoh, M.Z. Temperature on the Mechanical, Thermal and Barrier Property of Polyurethane. IOP Conf. Ser. Mater. Sci. Eng. 2020, 943, 012017. [Google Scholar] [CrossRef]
- Yi, Y.; Sun, Y.; Wang, L.; Xiao, P. Impacts of moisture absorption on electrical properties of rigid polyurethane foam for composite post insulator of UHVDC transmission line. Int. J. Electr. Power Energy Syst. 2021, 131, 107098. [Google Scholar] [CrossRef]
- Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. JCGM 100:2008 GUM 1995 with Minor Corrections, 120p. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 11 July 2022).
- International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), 3rd Edition 2008 Version with Minor Corrections. JCGM 200:2012. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf (accessed on 11 July 2022).
- Beverte, I. Determination of Highly Porous Plastic Foams’ Structural Characteristics by Processing LM Images Data. J. Appl. Polym. Sci. 2014, 131, 39477. [Google Scholar] [CrossRef]
- Renz, R. Zum Zuegigen und Zyklischen Verfomungsverhalten Polymerer Hartschaumstoffe. Ph.D. Thesis, Universität Karlsruhe (TH), Karlsruhe, Germany, 1977. (In German). [Google Scholar]
Interval Number i | Water Vapor Mass in Air mw; g/m3 |
---|---|
1 | 3.0 ≤ mw < 4.0 |
2 | 4.0 ≤ mw < 5.0 |
3 | 5.0 ≤ mw < 6.0 |
4 | 6.0 ≤ mw < 7.0 |
5 | 7.0 ≤ mw < 8.0 |
6 | 8.0 ≤ mw < 9.0 |
7 | 9.0 ≤ mw < 10.0 |
8 | 10.0 ≤ mw < 11.0 |
9 | 11.0 ≤ mw < 12.0 |
№ | Atmospheric Parameter | Range of Values | Pairs of Variables | Coefficient of Determination R2 |
---|---|---|---|---|
1 | T; °C | 14.4–25.2 | “ε-T” | 19% ≤ R2 ≤ 35% |
2 | p; hPa | 980–1040 | “ε-p” | 5% ≤ R2 ≤ 9% |
3 | RH; % | 21–60 | “ε-RH” | 65% ≤ R2 ≤ 94% |
Frequency | Interval | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
---|---|---|---|---|---|---|---|---|---|---|---|
mw; kg/m3 | 3.0–4.0 | 4.0–5.0 | 5.0–6.0 | 6.0–7.0 | 7.0–8.0 | 8.0–9.0 | 9.0–10.0 | 10.0–11.0 | 11.0–12.0 | 3.1–11.1 | |
Ki | 16 | 30 | 14 | 7 | 14 | 32 | 10 | 10 | 1 | 134 | |
f1 = 10 Hz | ε3av | 1.259 | 1.265 | 1.269 | 1.278 | 1.278 | 1.282 | 1.286 | 1.289 | 1.293 | 1.274 |
u(ε3) | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.003 | 0.004 | 0.003 | - | 0.011 | |
U95% | 0.009 | 0.011 | 0.009 | ≥0.011 | 0.009 | 0.006 | 0.008 | 0.006 | - | 0.022 | |
f3 = 40 Hz | ε3av | 1.254 | 1.259 | 1.262 | 1.271 | 1.271 | 1.275 | 1.279 | 1.282 | 1.287 | 1.268 |
u(ε3) | 0.004 | 0.005 | 0.004 | 0.005 | 0.005 | 0.003 | 0.003 | 0.003 | - | 0.010 | |
U95% | 0.009 | 0.010 | 0.009 | ≥0.011 | 0.009 | 0.006 | 0.007 | 0.006 | - | 0.020 | |
f5 = 160 Hz | ε3av | 1.249 | 1.254 | 1.256 | 1.264 | 1.265 | 1.268 | 1.272 | 1.274 | 1.281 | 1.262 |
u(ε3) | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.003 | 0.003 | 0.003 | - | 0.009 | |
U95% | 0.008 | 0.009 | 0.008 | ≥0.010 | 0.009 | 0.006 | 0.006 | 0.006 | - | 0.018 | |
f7 = 640 Hz | ε3av | 1.244 | 1.248 | 1.250 | 1.257 | 1.258 | 1.261 | 1.265 | 1.267 | 1.273 | 1.255 |
u(ε3) | 0.004 | 0.004 | 0.003 | 0.006 | 0.005 | 0.003 | 0.003 | 0.003 | - | 0.008 | |
U95% | 0.007 | 0.008 | 0.007 | ≥0.011 | 0.009 | 0.005 | 0.006 | 0.006 | - | 0.017 | |
f9 = 2.56 kHz | ε3av | 1.239 | 1.243 | 1.244 | 1.250 | 1.250 | 1.253 | 1.257 | 1.259 | 1.265 | 1.248 |
u(ε3) | 0.003 | 0.004 | 0.003 | 0.005 | 0.004 | 0.003 | 0.003 | 0.003 | - | 0.007 | |
U95% | 0.007 | 0.008 | 0.006 | ≥0.010 | 0.008 | 0.005 | 0.005 | 0.006 | - | 0.014 | |
f11 = 10.24 kHz | ε3av | 1.234 | 1.237 | 1.238 | 1.243 | 1.243 | 1.245 | 1.248 | 1.250 | 1.257 | 1.242 |
u(ε3) | 0.003 | 0.004 | 0.003 | 0.004 | 0.004 | 0.002 | 0.002 | 0.003 | - | 0.006 | |
U95% | 0.006 | 0.007 | 0.005 | ≥0.009 | 0.008 | 0.004 | 0.005 | 0.005 | - | 0.012 | |
f13 = 40.96 kHz | ε3av | 1.229 | 1.232 | 1.231 | 1.236 | 1.236 | 1.237 | 1.239 | 1.242 | 1.247 | 1.235 |
u(ε3) | 0.003 | 0.004 | 0.002 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | - | 0.005 | |
U95% | 0.006 | 0.007 | 0.004 | ≥0.007 | 0.006 | 0.004 | 0.004 | 0.004 | - | 0.009 | |
f15 = 163.84 kHz | ε3av | 1.224 | 1.227 | 1.225 | 1.228 | 1.228 | 1.229 | 1.230 | 1.233 | 1.237 | 1.228 |
u(ε3) | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | - | 0.003 | |
U95% | 0.006 | 0.007 | 0.004 | ≥0.005 | 0.005 | 0.003 | 0.004 | 0.003 | - | 0.007 |
Interval Number | Statistical Characteristics | Temperature T; °C | Rel. Humidity RH; % | Pressure p; hPa | mw; g/m3 | Interval Number | Temperature T; °C | Rel. Humid. RH; % | Pressure p; hPa | mw; g/m3 |
---|---|---|---|---|---|---|---|---|---|---|
1 | Average value | 17.7 | 26 | 1017 | 3.7 | 6 | 21.5 | 49 | 1015 | 8.5 |
Stand. deviation | 0.8 | 3 | 13 | 0.3 | 1.1 | 3 | 9 | 0.3 | ||
Lower value | 16.1 | 20 | 991 | 3.1 | 19.3 | 43 | 997 | 7.9 | ||
Upper value | 19.3 | 31 | 1043 | 4.3 | 23.6 | 55 | 1034 | 9.1 | ||
2 | Average value | 17.3 | 32 | 1009 | 4.4 | 7 | 21.9 | 52 | 1016 | 9.4 |
Stand. deviation | 1.6 | 3 | 13 | 0.2 | 1.1 | 3 | 5 | 0.2 | ||
Lower value | 14.2 | 25 | 983 | 4.0 | 19.7 | 47 | 1006 | 9.0 | ||
Upper value | 20.4 | 39 | 1035 | 4.9 | 24.1 | 58 | 1026 | 9.8 | ||
3 | Average value | 18.1 | 37 | 1017 | 5.4 | 8 | 23.4 | 54 | 1017 | 10.5 |
Stand. deviation | 1.8 | 4 | 19 | 0.3 | 1.4 | 4 | 3 | 0.3 | ||
Lower value | 14.5 | 29 | 980 | 4.9 | 20.7 | 47 | 1011 | 9.9 | ||
Upper value | 21.7 | 46 | 1054 | 5.9 | 26.2 | 61 | 1023 | 11.1 | ||
4 | Average value | 18.0 | 45 | 1018 | 6.4 | 9 | 22.4 | 60 | 1016 | 11.1 |
Stand. deviation | 2.1 | 5 | 7 | 0.3 | - | - | - | - | ||
Lower value | 13.8 | 34 | 1005 | 5.9 | - | - | - | - | ||
Upper value | 22.1 | 56 | 1032 | 7.0 | - | - | - | - | ||
5 | Average value | 20.5 | 45 | 1012 | 7.5 | |||||
Stand. deviation | 1.2 | 3 | 6 | 0.3 | ||||||
Lower value | 18.1 | 39 | 999 | 7.0 | ||||||
Upper value | 22.9 | 52 | 1025 | 8.0 |
№ | Polyurethane Material | Density ρ; kg/m3 | Volume Fraction of PU ηp; % | ε(fn) at mw = 3 g/m3 | ε(fn) at mw = 8 g/m3 | ||||
---|---|---|---|---|---|---|---|---|---|
f3 | f8 | f14 | f3 | f8 | f14 | ||||
1 | PU foams | 33 | 2.6 | 1.049 | 1.048 | 1.046 | 1.051 | 1.050 | 1.048 |
2 | 144 | 11.3 | 1.251 | 1.240 | 1.227 | 1.274 | 1.257 | 1.233 | |
3 | 274 | 21.4 | 1.475 | 1.467 | 1.451 | 1.506 | 1.490 | 1.463 | |
4 | 459 | 35.9 | 1.825 | 1.782 | 1.737 | 1.889 | 1.825 | 1.763 | |
5 | 993 | 77.6 | 3.093 | 3.055 | 2.996 | 3.234 | 3.170 | 3.083 | |
6 | Monolithic PU | 1 280 | 100.0 | 3.395 | 3.379 | 3.325 | 3.626 | 3.571 | 3.462 |
7 | 1 351 | 100.0 | 4.212 | 4.112 | 3.967 | 4.461 | 4.332 | 4.125 |
Frequency fn; Hz | Permittivity of Polyurethane | Effective Permittivity εf(fn) | |
---|---|---|---|
mwmin | mwmax | ||
f1 = 10 Hz | 3.767 | 1.26342 | 1.26350 |
f2 = 20 Hz | 3.757 | 1.26255 | 1.26263 |
f3 = 40 Hz | 3.745 | 1.26144 | 1.26152 |
f4 = 80 Hz | 3.732 | 1.26034 | 1.26042 |
f5 = 160 Hz | 3.721 | 1.25938 | 1.25946 |
f6 = 320 Hz | 3.710 | 1.25841 | 1.25848 |
f7 = 640 Hz | 3.698 | 1.25738 | 1.25745 |
f8 = 1280 Hz | 3.688 | 1.25651 | 1.25658 |
f9 = 2560 Hz | 3.677 | 1.25551 | 1.25558 |
f10 = 5120 Hz | 3.664 | 1.25439 | 1.25447 |
f11 = 10,240 Hz | 3.651 | 1.25324 | 1.25331 |
f12 = 20,480 Hz | 3.635 | 1.25185 | 1.25192 |
f13 = 40,960 Hz | 3.615 | 1.25007 | 1.25014 |
f14 = 81,920 Hz | 3.590 | 1.24790 | 1.24797 |
f15 = 163,840 Hz | 3.560 | 1.24528 | 1.24535 |
f16 = 327,680 Hz | 3.525 | 1.24215 | 1.24223 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beverte, I.; Gaidukovs, S.; Andersons, J.; Skruls, V. The Impact of Atmospheric Parameters on the Dielectric Permittivity Values of SikaBlock®-M150 and Other Rigid Polyurethane Foams Measured with a Capacitive One-Side Access Sensor. Sensors 2022, 22, 7859. https://doi.org/10.3390/s22207859
Beverte I, Gaidukovs S, Andersons J, Skruls V. The Impact of Atmospheric Parameters on the Dielectric Permittivity Values of SikaBlock®-M150 and Other Rigid Polyurethane Foams Measured with a Capacitive One-Side Access Sensor. Sensors. 2022; 22(20):7859. https://doi.org/10.3390/s22207859
Chicago/Turabian StyleBeverte, Ilze, Sergejs Gaidukovs, Janis Andersons, and Vilis Skruls. 2022. "The Impact of Atmospheric Parameters on the Dielectric Permittivity Values of SikaBlock®-M150 and Other Rigid Polyurethane Foams Measured with a Capacitive One-Side Access Sensor" Sensors 22, no. 20: 7859. https://doi.org/10.3390/s22207859
APA StyleBeverte, I., Gaidukovs, S., Andersons, J., & Skruls, V. (2022). The Impact of Atmospheric Parameters on the Dielectric Permittivity Values of SikaBlock®-M150 and Other Rigid Polyurethane Foams Measured with a Capacitive One-Side Access Sensor. Sensors, 22(20), 7859. https://doi.org/10.3390/s22207859