Cooperative Power-Domain NOMA Systems: An Overview
Abstract
:1. Introduction
1.1. Scope
1.2. Motivation and Contributions
- The current literature on cooperative PD-NOMA is extensively reviewed to provide a better picture of the research that has been conducted in this field. In this paper, we discuss a thorough, up-to-date review of the integration of PD-NOMA with antenna selection schemes, MIMO systems, mmWave, CoMP, cognitive radio, THz bands, cooperative communications, SWIPT, transmit antenna selection, beamforming, clustered-based NOMA, and the other modern communications techniques, in order to improve the systems’ overall rates and, consequently, the spectral efficiency in upcoming wireless networks.
- An overview of the existing NOMA systems is presented. Furthermore, cooperative PD-NOMA, the concept, benefits, problems, and applications are outlined, and parallels are drawn with the well-established cooperative networks and the rationale for integrating cooperative approaches with PD-NOMA is provided. A qualitative analysis is conducted to establish the performance gain of PD-NOMA over OMA-based cooperative networks in particular.
- The fundamentals of communication strategies under consideration (RIS-assisted NOMA) are reviewed. The main concept of RISs, namely the reconfiguration of the users’ propagation environment, is demonstrated, and a description of NOMA’s capacity to promote the sharing of spectra between mobile users to maximise spectral efficiency is illustrated. This survey also covers RIS-NOMA security provisioning. The influence of using a RIS with security is highlighted by studying the RIS-NOMA applications to improve physical layer security with regard to passive eavesdropping. The use of RIS-NOMA to cover cooperative PD-NOMA communications is then investigated.
- The impact of machine learning on NOMA-based schemes is thoroughly investigated, and the directions for further research on NOMA with ML support are described.
- In the end, we identify the open research challenges and prospective research directions which may enable the researchers to contribute some effective results in the aforementioned domains.
1.3. Organization of the Paper
2. Non-Orthogonal Multiple Access
2.1. Standards of NOMA
2.2. Basic Principle of NOMA
2.2.1. Superposition Coding (SC)
2.2.2. Successive Interference Cancellation
2.3. Advanced Channel Coding and Modulation
2.3.1. Channel Coding
2.3.2. Modulation and Spreading
2.4. Benefits of NOMA over OMA
- High spectral efficiency: NOMA has a higher SE when compared with OMA, because one RB offers services to many users. In OMA systems, each user is allotted by one RB, resulting in bandwidth loss [57]. NOMA may also be readily discussed as mMIMO, mmWave, HetNets, and device-to-device (D2D) systems to further boost network throughput.
- Fairness: NOMA ensures user fairness by assigning a higher power to weak users (those with poor channel conditions) and a smaller amount to strong users. Then, in terms of throughput, stronger and weaker users are assured QoS.
- Ultra low latency: Due to HetNet design of B5G networks, latency requirements are more demanding. Because OMA methods rely on access-grant requests, which increases transmission delay and signalling cost, they are not appropriate for such architectures. To overcome this problem, NOMA is utilised which allows for grant-free transmission, which is highly useful in the uplink scenario. Furthermore, NOMA allows for variable scheduling of many devices based on the application and QoS requirements.
3. Types of NOMA
3.1. Code Domain NOMA
3.2. Power Domain NOMA
3.2.1. Cooperative Relaying Communication
3.2.2. NOMA with SWIPT Protocol
3.2.3. Hybrid NOMA
- Spectrum efficiency: MIMO-NOMA is able to minimise power consumption by utilising the power domain for user multiplexing. The SIC condition ensures that the received interference can meet the data rate requirement following the signal decoding. As power consumption decreases, more users may be supplied concurrently, improving spectrum efficiency.
- Enhanced user cooperation: This scheme can preserve service quality and fairness by adjusting power allocation between different types of users. By allocating more power to weak users, MIMO-NOMA may increase cell-edge quality and hence improve the cell-edge user effectiveness.
- Many wireless transmission scenarios: As the MIMO-NOMA scheme can easily be integrated with different modern MIMO technologies, such as cooperative multi-point (CoMP) technology [107] and cloud radio networks [108], MIMO-NOMA is often implemented as a cooperative method either inside a single base station (BS) or across numerous BSs.
3.2.4. Antenna Selection-Based MIMO-NOMA:
3.2.5. MIMO-NOMA with Beamforming
3.2.6. Clustered-Based MIMO-NOMA
NOMA Variant | Problem Discussed | Metric | Advantages | Open Issues |
---|---|---|---|---|
TAS-NOMA [127] | Multiple antennas at transmitter | SR | Reduces the cost, complexity and power | Imperfect CSI |
NOMA-SSK [115] | Low SE of cell-edge users | EE BER SE | Reduces decoding complexity | Power allocation scheme |
NOMA-GSSK [116] | Low SE of cell-edge users | EE BER SE | Reduces computa-tional complexity | SIC analysis |
PD-NOMA-SSK [117] | Secerecy | BER SE | Improves network throughput | Power allocation problem |
NOMA-HARQ [118] | Inaccurate MCS selection | SE | Extension of MU-MIMO | |
NOMA-BF [120] | Inter-cluster, inter-user interference | SR | Improves QoS | Imperfect CSI |
Random-BF-NOMA [121] | Inter-cluster, inter-beam interference | Th | Reduces CSI feedback | Analysis of imperfect SIC |
ZFBF-NOMA [122] | Inter-cluster interference | SE Th | Maximises overall throughput | Multicell scenario |
ROBUST-BF-NOMA [123] | Inter-beam, inter-cluster interference | SR | Maximises worst case sum rate | Extension of MU-MIMO |
C-BF-NOMA [124] | Inter-cell, inter-cluster interference | Th | Increases throughput of cell-edge users | Imperfect SIC |
NOMA-MRT [125] | Sum rate | SR | Maximises weighted sum rate | Extension of mMIMO |
NOMA-SM [126] | Inter-user interference | SE EE | Enhanced SE | Imperfect CSI |
SA-NOMA [128] | Inter-cluster interference | OP | Provides large diversity gain | Imperfect CSI and SIC |
PH-NOMA [129] | Inter and intra-cluster interference | SR OP | Minimises total power consumption | MIMO-NOMA scenario |
H-NOMA [73] | Transmission power | OP | Reduces the transmission power |
3.2.7. Reconfigurable Intelligent Surface (RIS)-Aided NOMA
RIS-NOMA Variant | Problem Discussed | Variables | Results | Open Issues |
---|---|---|---|---|
Throughput and Data Rate Maximization | SIS-RIS-NOMA [149] | Power, phase shift | Weighted sum rate performance | Optimal PACs |
MISO-RIS-NOMA [134] | Phase shift, active beamforming | Maximises system sum rate | Additional powertransmission | |
mmWave aided-RIS-NOMA [136] | Beam selection, active beamforming | Provides a near-optimal solution | Resource allocation scheme | |
Massive MIMO-RIS-NOMA [138] | Phase shift of RIS | Dual-polarised RISs | Channel estimation with limited feedback | |
Power Minimization | SISO-RIS-NOMA [143] | Beamforming at BS | User pairing in RIS-NOMA | Incremental redundancy |
MISO-RIS-NOMA [150] | Phase shift of RISs, beamforming | Minimises transmit power | Multiple antennas at receiver | |
EE Maximization | MISO-RIS-NOMA [147] | Phase shift of RISs, beamforming | Maximises system energy efficiency | Limited CSI knowledge |
Physical Layer Security (PLS) | Multi-user-RIS-NOMA [151] | Passive beamforming | Quality of channel | Secrecy rate |
Channel Estimation | RIS-NOMA-assisted multi-user comms [152] | Limited pilot symbols | Good estimation of channel | Imperfect SIC |
THz Communication | RIS-NOMA assisted THz comms [153] | Average data rate | Best transmission capacity | Limited CSI knowledge |
3.2.8. Machine Learning (ML)-Based NOMA Communications
4. Open Issues and Challenges
4.1. Wireless Power Transfer
4.2. Imperfect CSI
4.3. Covariance Shaping
4.4. Secrecy of the Network
4.5. Resource Allocation
4.6. Receiver’s Complexity
4.7. NOMA in Mobile Edge Computing (MEC)
4.8. NOMA in Intelligent Reflecting Surfaces (IRS)
4.9. NOMA with Imperfect SIC
5. Conclusions
Funding
Conflicts of Interest
Nomenclature
Acronym | Description | Acronym | Description |
1G | First generation | G-RQ | Generalized Rayleigh quotient |
2G | Second generation | GSM | Global system for mobile |
3G | Third generation | HD | Half-duplex |
4G | Fourth generation | HetNet | Heterogeneous network |
5G | Fifth generation | H-NOMA | Hybrid NOMA |
AF | Amplify and forward | ICA | Interference channel alignment |
AR | Augmented reality | IQF | Indefinite quadratic form |
BA | Buffer aided | JD | Joint-diagonalization |
BER | Bit error rate | LDS | Low-density spreading |
BRS | Best relay selection | LoS | Line-of-sight |
BS | Base station | M2M | Machine-to-machine |
CA | Carrier aggregation | MA | Multiple access |
CBF | Coordinated beamforming | MISO | Multiple-input single-output |
CCI | Co-channel interference | mmWave | Millimeter wave |
CDF | Cumulative distribution function | MPA | Message passing algorithm |
CDI | Channel distribution information | MRC | Maximum ratio combining |
CDMA | Code division multiple access | MRT | Maximum ratio transmission |
CEEs | Channel estimation errors | NNC | Noisy network coding |
CF | Compress-and-forward | OP | Outage probability |
CFR | Cooperative full-duplex relaying | PACs | Power allocation coefficients |
CoMP | Coordinated multipoint | PAPR | Peak-to-average-power ratio |
CR | Cooperative relaying | PD | Power domain |
C-RAN | Cloud radio access network | Probability density function | |
CRS | Cooperative relay selection | PH | Projection hybrid |
DDF | Dynamic decode and forward | PLC | Power line communication |
DF | Decode-and-forward | PLS | Physical layer security |
DL | Downlink | QoS | Quality of service |
DPC | Dirty parity coding | QPSK | Quadrature phase-shift keying |
DRS | Dynamic relay selection | RBC | Relaying broadcast channel |
EE | Energy efficiency | R-D | Relay-to-destination |
EH | Energy harvesting | RF | Radio frequency |
eMBB | Enhanced mobile broadband | RHIs | Residual hardware impairments |
EMC | Electromagnetic compatibility | SA | Signal alignment |
ESC | Ergodic sum capacity | SC | Superposition coding |
FD | Full-duplex | SCMA | Sparse code multiple access |
FDD | Frequency-division duplex | SINR | Signal-to-interference-plus-noise ratio |
FDR | Full duplex relaying | SLNR | Signal-to-leakage-plus-noise ratio |
FFR | Fractional frequency reuse | SM | Spatial modulation |
FPA | Fixed power allocation | ZFBF | Zero-forcing beamforming |
References
- Narayanan, A.; Rochman, M.I.; Hassan, A.; Firmansyah, B.S.; Sathya, V.; Ghosh, M.; Qian, F.; Zhang, Z.L. A comparative measurement study of commercial 5G mmwave deployments. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, UK, 2–5 May 2022; pp. 800–809. [Google Scholar]
- Arjoune, Y.; Faruque, S. Experience-driven learning-based intelligent hybrid beamforming for massive MIMO mmWave communications. Phys. Commun. 2022, 51, 101534. [Google Scholar] [CrossRef]
- Ghafoor, U.; Ali, M.; Khan, H.Z.; Siddiqui, A.M.; Naeem, M. NOMA and future 5G & B5G wireless networks: A paradigm. J. Netw. Comput. Appl. 2022, 204, 103413. [Google Scholar]
- Kumar, S.; Yadav, P.; Kaur, M.; Kumar, R. A survey on IRS NOMA integrated communication networks. Telecommun. Syst. 2022, 80, 277–302. [Google Scholar] [CrossRef]
- Goyal, J.; Singla, K.; Singh, S. A Survey of Wireless Communication Technologies from 1G to 5G. In Proceedings of the International Conference on Computer Networks and Inventive Communication Technologies, Coimbatore, India, 23–24 May 2019; pp. 613–624. [Google Scholar]
- Scott, A.W.; Frobenius, R. Multiple access techniques: FDMA, TDMA, and CDMA. In RF Measurements for Cellular Phones and Wireless Data Systems; Wiley: Hoboken, NJ, USA, 2008; pp. 413–429. [Google Scholar]
- Hodara, H.; Skaljo, E. From 1G to 5G. Fiber Integr. Opt. 2021, 45, 1–99. [Google Scholar] [CrossRef]
- AI Dujaili, M.J.; Salih, B.A. A Review of Mobile Technologies from 1G to the 5G and a Comparison between Them. Solid State Technol. 2021, 64, 2805–2823. [Google Scholar]
- Bikos, A.N.; Sklavos, N. LTE/SAE security issues on 4G wireless networks. IEEE Secur. Priv. 2012, 11, 55–62. [Google Scholar] [CrossRef]
- Li, H.; Ru, G.; Kim, Y.; Liu, H. OFDMA capacity analysis in MIMO channels. IEEE Trans. Inf. Theory 2010, 56, 4438–4446. [Google Scholar] [CrossRef]
- Selinis, I.; Katsaros, K.; Allayioti, M.; Vahid, S.; Tafazolli, R. The race to 5G era; LTE and Wi-Fi. IEEE Access 2018, 6, 56598–56636. [Google Scholar] [CrossRef]
- Goyal, A.; Kumar, K. LTE-advanced carrier aggregation for enhancement of bandwidth. In Advances in VLSI, Communication, and Signal Processing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 341–351. [Google Scholar]
- Dangi, R.; Lalwani, P.; Choudhary, G.; You, I.; Pau, G. Study and Investigation on 5G Technology: A Systematic Review. Sensors 2022, 22, 26. [Google Scholar] [CrossRef]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A survey on green 6G network: Architecture and technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Cheng, G.; Chen, H.; Fan, P.; Li, L.; Hao, L. A Layered Grouping Random Access Scheme Based on Dynamic Preamble Selection for Massive Machine Type Communications. arXiv 2021, arXiv:2102.12672. [Google Scholar] [CrossRef]
- Abdullah, D.M.; Ameen, S.Y. Enhanced mobile broadband (EMBB): A review. J. Inf. Technol. Inform. 2021, 1, 13–19. [Google Scholar]
- Segura, D.; Khatib, E.J.; Munilla, J.; Barco, R. 5G Numerologies Assessment for URLLC in Industrial Communications. Sensors 2021, 21, 2489. [Google Scholar] [CrossRef] [PubMed]
- Khalid, W.; Yu, H.; Ali, R.; Ullah, R. Advanced Physical-Layer Technologies for Beyond 5G Wireless Communication Networks. Sensors 2021, 21, 3197. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G evolution: A view on 5G cellular technology beyond 3GPP release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, W.; Zhang, S.; Liu, J.; Kato, N. AI-enhanced cooperative spectrum sensing for non-orthogonal multiple access. IEEE Wirel. Commun. 2019, 27, 173–179. [Google Scholar] [CrossRef]
- Deolia, V.K. Code Domain Non-Orthogonal Multiple Access Schemes for 5G and Beyond Communication Networks: A Review. J. Eng. Res. 2021, 10, 132–152. [Google Scholar]
- Kassir, A.; Dziyauddin, R.A.; Kaidi, H.M.; Izhar, M.A.M. Power domain non orthogonal multiple access: A review. In Proceedings of the 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), Kuching, Malaysia, 24–26 July 2018; pp. 66–71. [Google Scholar]
- Liaqat, M.; Noordin, K.A.; Latef, T.A.; Dimyati, K. Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: An overview. Wirel. Netw. 2020, 26, 181–203. [Google Scholar] [CrossRef]
- Shukla, A. Comparative analysis of various code domain NOMA schemes for future communication networks. Mater. Today Proc. 2021, 46, 5797–5800. [Google Scholar] [CrossRef]
- Reddy, P.V.; Reddy, S.; Reddy, S.; Sawale, R.D.; Narendar, P.; Duggineni, C.; Valiveti, H.B. Analytical Review on OMA vs. NOMA and Challenges Implementing NOMA. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 552–556. [Google Scholar]
- Maraqa, O.; Rajasekaran, A.S.; Al-Ahmadi, S.; Yanikomeroglu, H.; Sait, S.M. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks. IEEE Commun. Surv. Tutor. 2020, 22, 2192–2235. [Google Scholar] [CrossRef]
- Makki, B.; Chitti, K.; Behravan, A.; Alouini, M.S. A survey of NOMA: Current status and open research challenges. IEEE Open J. Commun. Soc. 2020, 1, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Benjebbovu, A.; Li, A.; Saito, Y.; Kishiyama, Y.; Harada, A.; Nakamura, T. System-level performance of downlink NOMA for future LTE enhancements. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 66–70. [Google Scholar]
- Kizilirmak, R.C.; Bizaki, H.K. Non-orthogonal multiple access (NOMA) for 5G networks. Towards Wirel. Netw. Phys. Layer Perspect. 2016, 83, 83–98. [Google Scholar]
- Zeng, J.; Lv, T.; Liu, R.P.; Su, X.; Peng, M.; Wang, C.; Mei, J. Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G. IEEE Access 2018, 6, 48268–48288. [Google Scholar] [CrossRef]
- Mestoui, J.; El Ghzaoui, M. A Survey of NOMA for 5G: Implementation Schemes and Energy Efficiency. In WITS 2020; Springer: Berlin/Heidelberg, Germany, 2022; pp. 949–959. [Google Scholar]
- Shwetha, H.; Anuradha, S. Analysis of Downlink and Uplink Non-orthogonal Multiple Access (NOMA) for 5G. In Proceedings of the Third International Conference on Sustainable Computing, Jaipur, India, 19–20 March 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 385–395. [Google Scholar]
- Ligwa, M.; Balyan, V. A Comprehensive Survey of NOMA-Based Cooperative Communication Studies for 5G Implementation. In Expert Clouds and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 619–629. [Google Scholar]
- Islam, S.R.; Zeng, M.; Dobre, O.A.; Kwak, K.S. Resource allocation for downlink NOMA systems: Key techniques and open issues. IEEE Wirel. Commun. 2018, 25, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Liu, Y.; Choi, J.; Sun, Q.; Elkashlan, M.; Chih-Lin, I.; Poor, H.V. Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 2017, 55, 185–191. [Google Scholar] [CrossRef]
- Islam, S.R.; Avazov, N.; Dobre, O.A.; Kwak, K.S. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Commun. Surv. Tutor. 2016, 19, 721–742. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surv. Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version]
- Basharat, M.; Ejaz, W.; Naeem, M.; Khattak, A.M.; Anpalagan, A. A survey and taxonomy on nonorthogonal multiple-access schemes for 5G networks. Trans. Emerg. Telecommun. Technol. 2018, 29, e3202. [Google Scholar] [CrossRef]
- Thakre, P.N.; Pokle, S.B. A survey on Power Allocation in PD-NOMA for 5G Wireless Communication Systems. In Proceedings of the 2022 10th International Conference on Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 29-30 April 2022; pp. 1–5. [Google Scholar]
- Budhiraja, I.; Kumar, N.; Tyagi, S.; Tanwar, S.; Han, Z.; Suh, D.Y.; Piran, M.J. A Systematic Review on NOMA Variants for 5G and Beyond. IEEE Access 2021, 9, 85573–85644. [Google Scholar] [CrossRef]
- Jaafar, W.; Naser, S.; Muhaidat, S.; Sofotasios, P.C.; Yanikomeroglu, H. Multiple access in aerial networks: From orthogonal and non-orthogonal to rate-splitting. IEEE Open J. Veh. Technol. 2020, 1, 372–392. [Google Scholar] [CrossRef]
- Shah, A.S.; Qasim, A.N.; Karabulut, M.A.; Ilhan, H.; Islam, M.B. Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems. IEEE Access 2021, 9, 113428–113442. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, G.; Wang, N.; Zhong, Z.; Ai, B. OTFS Enabled NOMA for MMTC Systems over LEO Satellite. ZTE Commun. 2022, 19, 63–70. [Google Scholar]
- Cong Lam, S.; Pham, T.H.; Tran, X.N. Uplink performance of nonorthogonal multiple access ultradense networks with power control. Int. J. Commun. Syst. 2022, 35, e5069. [Google Scholar] [CrossRef]
- Chowdary, A.; Chopra, G.; Kumar, A.; Cenkeramaddi, L.R. Impact of NOMA and CoMP Implementation Order on the Performance of Ultra-Dense Networks. arXiv 2022, arXiv:2201.03293. [Google Scholar]
- Wang, Z.; Liu, Y.; Mu, X.; Ding, Z.; Dobre, O.A. NOMA Empowered Integrated Sensing and Communication. IEEE Commun. Lett. 2022, 26, 677–681. [Google Scholar] [CrossRef]
- Ye, N.; Wang, A.; Li, X.; Liu, W.; Hou, X.; Yu, H. On constellation rotation of NOMA with SIC receiver. IEEE Commun. Lett. 2017, 22, 514–517. [Google Scholar] [CrossRef]
- Ding, Z.; Schober, R.; Poor, H.V. Unveiling the importance of SIC in NOMA systems—Part 1: State of the art and recent findings. IEEE Commun. Lett. 2020, 24, 2373–2377. [Google Scholar] [CrossRef]
- Kumar, V.; Cardiff, B.; Flanagan, M.F. Performance analysis of NOMA with generalised selection combining receivers. Electron. Lett. 2019, 55, 1364–1367. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zhang, Y.; Peng, K.; Chen, Z.; Song, J. Construction of rate-compatible raptor-like quasi-cyclic LDPC code with edge classification for IDMA based random access. IEEE Access 2019, 7, 30818–30830. [Google Scholar] [CrossRef]
- Davey, M.C.; MacKay, D.J. Low density parity check codes over GF (q). In Proceedings of the 1998 Information Theory Workshop (Cat. No. 98EX131), Killarney, Ireland, 22–26 June 1998; pp. 70–71. [Google Scholar]
- Sommer, N.; Feder, M.; Shalvi, O. Low-density lattice codes. IEEE Trans. Inf. Theory 2008, 54, 1561–1585. [Google Scholar] [CrossRef]
- Rusek, F. Partial Response and Faster-Than-Nyquist Signaling; Lund University: Lund, Sweden, 2007. [Google Scholar]
- Qiu, M.; Huang, Y.C.; Shieh, S.L.; Yuan, J. A lattice-partition framework of downlink non-orthogonal multiple access without SIC. IEEE Trans. Commun. 2018, 66, 2532–2546. [Google Scholar] [CrossRef]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Simsek, M.; Aijaz, A.; Dohler, M.; Sachs, J.; Fettweis, G. 5G-enabled tactile internet. IEEE J. Sel. Areas Commun. 2016, 34, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Shirvanimoghaddam, M.; Dohler, M.; Johnson, S.J. Massive non-orthogonal multiple access for cellular IoT: Potentials and limitations. IEEE Commun. Mag. 2017, 55, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Hoshyar, R.; Wathan, F.P.; Tafazolli, R. Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. 2008, 56, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Razavi, R.; Hoshyar, R.; Imran, M.A.; Wang, Y. Information theoretic analysis of LDS scheme. IEEE Commun. Lett. 2011, 15, 798–800. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Wang, C.C. Multiuser detection of sparsely spread CDMA. IEEE J. Sel. Areas Commun. 2008, 26, 421–431. [Google Scholar]
- Van De Beek, J.; Popovic, B.M. Multiple access with low-density signatures. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar]
- Al-Imari, M.; Xiao, P.; Imran, M.A.; Tafazolli, R. Uplink non-orthogonal multiple access for 5G wireless networks. In Proceedings of the 2014 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona, Spain, 26–29 August 2014; pp. 781–785. [Google Scholar]
- Mohammed, A.I.; Imran, M.A.; Tafazolli, R.; Chen, D. Performance evaluation of low density spreading multiple access. In Proceedings of the 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, Cyprus, 27–31 August 2012; pp. 383–388. [Google Scholar]
- Mohammed, A.I.; Imran, M.A.; Tafazolli, R. Low density spreading for next generation multicarrier cellular systems. In Proceedings of the 2012 International Conference on Future Communication Networks, Baghdad, Iraq, 10–12 April 2012; pp. 52–57. [Google Scholar]
- Zhou, Y.; Luo, H.; Li, R.; Wang, J. A dynamic states reduction message passing algorithm for sparse code multiple access. In Proceedings of the 2016 Wireless Telecommunications Symposium (WTS), London, UK, 18–20 April 2016; pp. 1–5. [Google Scholar]
- Wu, Y.; Zhang, S.; Chen, Y. Iterative multiuser receiver in sparse code multiple access systems. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 2918–2923. [Google Scholar]
- Xiao, B.; Xiao, K.; Zhang, S.; Chen, Z.; Xia, B.; Liu, H. Iterative detection and decoding for SCMA systems with LDPC codes. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Zeng, J.; Li, B.; Su, X.; Rong, L.; Xing, R. Pattern division multiple access (PDMA) for cellular future radio access. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Akbil, B.; Aboutajdine, D. Improved IDMA for multiple access of 5G. Int. J. Commun. Netw. Inf. Secur. 2015, 7, 138. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, M.; Poor, H.V. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 2015, 19, 1462–1465. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ding, Z.; Dai, X.; Karagiannidis, G.K. On the application of quasi-degradation to MISO-NOMA downlink. IEEE Trans. Signal Process. 2016, 64, 6174–6189. [Google Scholar] [CrossRef] [Green Version]
- Tweneboah-Koduah, S.; Affum, E.A.; Prempeh Agyekum, K.A.; Ajagbe, S.A.; Adigun, M.O. Performance of Cooperative Relay NOMA with Large Antenna Transmitters. Electronics 2022, 11, 3482. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Li, Y.; Pervaiz, H.; Ni, Q. Outage Performance Enhancement for NOMA Based Cooperative Relay Sharing Networks. IEEE Wirel. Commun. Lett. 2022, 11, 2665–2669. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Liu, Y.; Ding, Z.; Nallanathan, A. Residual transceiver hardware impairments on cooperative NOMA networks. IEEE Trans. Wirel. Commun. 2019, 19, 680–695. [Google Scholar] [CrossRef]
- Singh, V.; Upadhyay, P.K. Exploiting FD/HD cooperative-NOMA in underlay cognitive hybrid satellite-terrestrial networks. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 246–262. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X. Outage probability and capacity analysis of the collaborative NOMA assisted relaying system in 5G. In Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC), Chengdu, China, 27–29 July 2016; pp. 1–5. [Google Scholar]
- Liu, G.; Chen, X.; Ding, Z.; Ma, Z.; Yu, F.R. Hybrid half-duplex/full-duplex cooperative non-orthogonal multiple access with transmit power adaptation. IEEE Trans. Wirel. Commun. 2017, 17, 506–519. [Google Scholar] [CrossRef]
- Kader, M.F.; Shahab, M.B.; Shin, S.Y. Non-orthogonal multiple access for a full-duplex cooperative network with virtually paired users. Comput. Commun. 2018, 120, 1–9. [Google Scholar] [CrossRef]
- Rabie, K.M.; Adebisi, B.; Tonello, A.M.; Yarkan, S.; Ijaz, M. Two-stage non-orthogonal multiple access over power line communication channels. IEEE Access 2018, 6, 17368–17376. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, I.H. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Commun. Lett. 2015, 19, 1949–1952. [Google Scholar] [CrossRef]
- Xu, M.; Ji, F.; Wen, M.; Duan, W. Novel receiver design for the cooperative relaying system with non-orthogonal multiple access. IEEE Commun. Lett. 2016, 20, 1679–1682. [Google Scholar] [CrossRef]
- Kim, J.B.; Song, M.S.; Lee, I.H. Achievable rate of best relay selection for non-orthogonal multiple access-based cooperative relaying systems. In Proceedings of the 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2016; pp. 960–962. [Google Scholar]
- Kader, M.F.; Shahab, M.B.; Shin, S.Y. Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Commun. Lett. 2017, 21, 1159–1162. [Google Scholar] [CrossRef]
- Kader, M.F.; Shin, S.Y.; Leung, V.C. Full-duplex non-orthogonal multiple access in cooperative relay sharing for 5G systems. IEEE Trans. Veh. Technol. 2018, 67, 5831–5840. [Google Scholar] [CrossRef]
- Kader, M.F.; Shin, S.Y. Cooperative relaying using space-time block coded non-orthogonal multiple access. IEEE Trans. Veh. Technol. 2016, 66, 5894–5903. [Google Scholar] [CrossRef]
- Zhao, J.; Ding, Z.; Fan, P.; Yang, Z.; Karagiannidis, G.K. Dual relay selection for cooperative NOMA with distributed space time coding. IEEE Access 2018, 6, 20440–20450. [Google Scholar] [CrossRef]
- Zhou, Y.; Wong, V.W.; Schober, R. Performance analysis of cooperative NOMA with dynamic decode-and-forward relaying. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Yue, X.; Liu, Y.; Kang, S.; Nallanathan, A.; Chen, Y. Modeling and analysis of two-way relay non-orthogonal multiple access systems. IEEE Trans. Commun. 2018, 66, 3784–3796. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Fan, Y.; Thompson, J.; Poor, H.V. Buffering in a three-node relay network. IEEE Trans. Wirel. Commun. 2008, 7, 4492–4496. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, X.; Huang, J. Non-orthogonal multiple access with buffer-aided cooperative relaying. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 1535–1539. [Google Scholar]
- Messadi, O.; Sali, A.; Khodamoradi, V.; Salah, A.A.; Pan, G.; Hashim, S.J.; Noordin, N.K. Optimal relay selection scheme with multiantenna power beacon for wireless-powered cooperation communication networks. Sensors 2021, 21, 147. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Xiao, M.; Wu, G.; Liang, Y.C.; Li, S. Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE J. Sel. Areas Commun. 2017, 35, 2398–2412. [Google Scholar] [CrossRef]
- So, J.; Sung, Y. Improving non-orthogonal multiple access by forming relaying broadcast channels. IEEE Commun. Lett. 2016, 20, 1816–1819. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Z.; Elkashlan, M.; Poor, H.V. Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 2016, 34, 938–953. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Wang, Y.; Wang, X.; Zhang, Y. Transceiver design for cooperative non-orthogonal multiple access systems with wireless energy transfer. IET Commun. 2016, 10, 1947–1955. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Shahid, A.; Jang, J.W.; Lee, K.G. Energy harvesting non-orthogonal multiple access system with multi-antenna relay and base station. IEEE Access 2017, 5, 17660–17670. [Google Scholar] [CrossRef] [Green Version]
- Oleiwi, H.W.; Al-Raweshidy, H. Cooperative SWIPT THz-NOMA/6G Performance Analysis. Electronics 2022, 11, 873. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, C.; Ding, Z.; Sun, X.; Yan, S.; Zhu, G.; Zhong, Z. Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems. IEEE Trans. Signal Process. 2017, 65, 4874–4886. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Ge, J.; Men, J. Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Commun. 2016, 10, 2687–2693. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, Z.; Fan, P.; Al-Dhahir, N. The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT. IEEE Trans. Wirel. Commun. 2017, 16, 4332–4343. [Google Scholar] [CrossRef] [Green Version]
- Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Guizani, N. Subchannel assignment for SWIPT-NOMA based HetNet with imperfect channel state information. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 842–847. [Google Scholar]
- Budhiraja, I.; Kumar, N.; Tyagi, S.; Tanwar, S.; Guizani, M. An energy-efficient resource allocation scheme for SWIPT-NOMA based femtocells users with imperfect CSI. IEEE Trans. Veh. Technol. 2020, 69, 7790–7805. [Google Scholar] [CrossRef]
- Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 2014, 21, 1501–1505. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Benjebboui, A.; Lan, Y.; Li, A.; Jiang, H. Evaluations of downlink non-orthogonal multiple access (NOMA) combined with SU-MIMO. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington DC, USA, 2–5 September 2014; pp. 1887–1891. [Google Scholar]
- Wang, H.; Leung, S.H.; Song, R. Precoding design for two-cell MIMO-NOMA uplink with CoMP reception. IEEE Commun. Lett. 2018, 22, 2607–2610. [Google Scholar] [CrossRef]
- Rai, R.; Zhu, H.; Wang, J. Resource scheduling in non-orthogonal multiple access (NOMA) based cloud-RAN systems. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 418–422. [Google Scholar]
- AlJubayrin, S.; Al-Wesabi, F.N.; Alsolai, H.; Duhayyim, M.A.; Nour, M.K.; Khan, W.U.; Mahmood, A.; Rabie, K.; Shongwe, T. Energy Efficient Transmission Design for NOMA Backscatter-Aided UAV Networks with Imperfect CSI. Drones 2022, 6, 190. [Google Scholar] [CrossRef]
- Khan, W.U.; Jamshed, M.A.; Mahmood, A.; Lagunas, E.; Chatzinotas, S.; Ottersten, B. Backscatter-aided NOMA V2X communication under channel estimation errors. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar]
- Ullah Khan, W.; Jamshed, M.A.; Mahmood, A.; Lagunas, E.; Chatzinotas, S.; Ottersten, B. Backscatter-Aided NOMA V2X Communication under Channel Estimation Errors. arXiv 2022, arXiv:2202.01586. [Google Scholar]
- Molisch, A.F.; Win, M.Z. MIMO systems with antenna selection. IEEE Microw. Mag. 2004, 5, 46–56. [Google Scholar] [CrossRef]
- Shrestha, A.P.; Han, T.; Bai, Z.; Kim, J.M.; Kwak, K.S. Performance of transmit antenna selection in non-orthogonal multiple access for 5G systems. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016; pp. 1031–1034. [Google Scholar]
- Liu, X.; Wang, X. Efficient antenna selection and user scheduling in 5G massive MIMO-NOMA system. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.; Ceron, A. Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 2009, 8, 3692–3703. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Shin, S.Y.; Leung, V.C. Performance enhancement of downlink NOMA by combination with GSSK. IEEE Wirel. Commun. Lett. 2018, 7, 860–863. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Castiglione, A.; Esposito, C.; Choi, C. Power domain NOMA to support group communication in public safety networks. Future Gener. Comput. Syst. 2018, 84, 228–238. [Google Scholar] [CrossRef]
- Li, A.; Benjebbour, A.; Chen, X.; Jiang, H.; Kayama, H. Investigation on hybrid automatic repeat request (HARQ) design for NOMA with SU-MIMO. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 590–594. [Google Scholar]
- Sidiropoulos, N.D.; Davidson, T.N.; Luo, Z.Q. Transmit beamforming for physical-layer multicasting. IEEE Trans. Signal Process. 2006, 54, 2239–2251. [Google Scholar] [CrossRef]
- Kimy, B.; Lim, S.; Kim, H.; Suh, S.; Kwun, J.; Choi, S.; Lee, C.; Lee, S.; Hong, D. Non-orthogonal multiple access in a downlink multiuser beamforming system. In Proceedings of the MILCOM 2013—2013 IEEE Military Communications Conference, San Diego, CA, USA, 18–20 November 2013; pp. 1278–1283. [Google Scholar]
- Higuchi, K.; Kishiyama, Y. Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013; pp. 1–5. [Google Scholar]
- Ali, S.; Hossain, E.; Kim, D.I. Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation. IEEE Access 2016, 5, 565–577. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Qin, J. Robust beamforming for nonorthogonal multiple-access systems in MISO channels. IEEE Trans. Veh. Technol. 2016, 65, 10231–10236. [Google Scholar] [CrossRef]
- Shin, W.; Vaezi, M.; Lee, B.; Love, D.J.; Lee, J.; Poor, H.V. Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun. Lett. 2016, 21, 84–87. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W. An adaptive switching method for sum rate maximization in downlink MISO-NOMA systems. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Wang, Z.; Cao, J. NOMA-based spatial modulation. IEEE Access 2017, 5, 3790–3800. [Google Scholar]
- Yu, Y.; Chen, H.; Li, Y.; Ding, Z.; Song, L.; Vucetic, B. Antenna selection for MIMO nonorthogonal multiple access systems. IEEE Trans. Veh. Technol. 2017, 67, 3158–3171. [Google Scholar] [CrossRef]
- Ding, Z.; Schober, R.; Poor, H.V. A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans. Wirel. Commun. 2016, 15, 4438–4454. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ding, Z.; Dai, X. Beamforming for combating inter-cluster and intra-cluster interference in hybrid NOMA systems. IEEE Access 2016, 4, 4452–4463. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhou, X.; Schober, R. IRS-assisted wireless powered NOMA: Do we really need different phase shifts in DL and UL? IEEE Wirel. Commun. Lett. 2021, 10, 1493–1497. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Qin, Z.; Al-Dhahir, N. Resource allocation in intelligent reflecting surface assisted NOMA systems. IEEE Trans. Commun. 2020, 68, 7170–7183. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Schober, R. Joint deployment and multiple access design for intelligent reflecting surface assisted networks. IEEE Trans. Wirel. Commun. 2021, 20, 6648–6664. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Al-Dhahir, N. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization. IEEE Trans. Wirel. Commun. 2020, 19, 6884–6898. [Google Scholar] [CrossRef]
- Zhang, Y.; He, W.; Li, X.; Peng, H.; Rabie, K.; Nauryzbayev, G.; ElHalawany, B.M.; Zhu, M. Covert Communication in Downlink NOMA Systems With Channel Uncertainty. IEEE Sensors J. 2022, 22, 19101–19112. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Basar, E.; Dobre, O.A. Intelligent reflecting surface enhanced millimeter-wave NOMA systems. IEEE Commun. Lett. 2020, 24, 2632–2636. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Cheng, W.; Gao, X.; Huang, X. Intelligent reflecting surface aided NOMA for millimeter-wave massive MIMO with lens antenna array. IEEE Trans. Veh. Technol. 2021, 70, 4419–4434. [Google Scholar] [CrossRef]
- de Sena, A.S.; Nardelli, P.H.; da Costa, D.B.; Lima, F.R.M.; Yang, L.; Popovski, P.; Ding, Z.; Papadias, C.B. IRS-assisted massive MIMO-NOMA networks: Exploiting wave polarization. IEEE Trans. Wirel. Commun. 2021, 20, 7166–7183. [Google Scholar] [CrossRef]
- De Lima, C.; Belot, D.; Berkvens, R.; Bourdoux, A.; Dardari, D.; Guillaud, M.; Isomursu, M.; Lohan, E.S.; Miao, Y.; Barreto, A.N.; et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access 2021, 9, 26902–26925. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.S. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Ülgen, O.; Erküçük, S.; Baykaş, T. Non-orthogonal multiple access for terahertz communication networks. In Proceedings of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 28–31 October 2020; pp. 737–742. [Google Scholar]
- Ma, X.; Chen, Z.; Chen, W.; Chi, Y.; Li, Z.; Han, C.; Wen, Q. Intelligent reflecting surface enhanced indoor terahertz communication systems. Nano Commun. Netw. 2020, 24, 100284. [Google Scholar] [CrossRef]
- Zheng, B.; Wu, Q.; Zhang, R. Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA? IEEE Commun. Lett. 2020, 24, 753–757. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, M.; Zhang, Q.; Qin, J. Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks. IEEE Trans. Commun. 2020, 69, 664–674. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Y.; Wang, J.; Navaie, K.; Ding, Z. Power efficient IRS-assisted NOMA. IEEE Trans. Commun. 2020, 69, 900–913. [Google Scholar] [CrossRef]
- Xie, X.; Fang, F.; Ding, Z. Joint optimization of beamforming, phase-shifting and power allocation in a multi-cluster IRS-NOMA network. IEEE Trans. Veh. Technol. 2021, 70, 7705–7717. [Google Scholar] [CrossRef]
- Fang, F.; Xu, Y.; Pham, Q.V.; Ding, Z. Energy-efficient design of IRS-NOMA networks. IEEE Trans. Veh. Technol. 2020, 69, 14088–14092. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, H.; Cheng, J.; Leung, V.C. Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Trans. Commun. 2016, 64, 3722–3732. [Google Scholar] [CrossRef]
- Guo, Y.; Qin, Z.; Liu, Y.; Al-Dhahir, N. Intelligent reflecting surface aided multiple access over fading channels. IEEE Trans. Commun. 2020, 69, 2015–2027. [Google Scholar] [CrossRef]
- Fu, M.; Zhou, Y.; Shi, Y. Intelligent reflecting surface for downlink non-orthogonal multiple access networks. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Zhang, Z.; Lv, L.; Wu, Q.; Deng, H.; Chen, J. Robust and secure communications in intelligent reflecting surface assisted NOMA networks. IEEE Commun. Lett. 2020, 25, 739–743. [Google Scholar] [CrossRef]
- Murti, F.W.; Siregar, R.F.; Royyan, M.; Shin, S.Y. Exploiting non-orthogonal multiple access in downlink coordinated multipoint transmission with the presence of imperfect channel state information. Int. J. Commun. Syst. 2020, 33, e4533. [Google Scholar] [CrossRef]
- Kundu, N.K.; Dash, S.P.; Mckay, M.R.; Mallik, R.K. Channel Estimation and Secret Key Rate Analysis of MIMO Terahertz Quantum Key Distribution. IEEE Trans. Commun. 2022, 70, 3350–3363. [Google Scholar] [CrossRef]
- Lv, L.; Jiang, H.; Ding, Z.; Yang, L.; Chen, J. Secrecy-enhancing design for cooperative downlink and uplink NOMA with an untrusted relay. IEEE Trans. Commun. 2019, 68, 1698–1715. [Google Scholar] [CrossRef]
- Yadav, P.; Kumar, S.; Kumar, R. A comprehensive survey of physical layer security over fading channels: Classifications, applications, and challenges. Trans. Emerg. Telecommun. Technol. 2021, 32, e4270. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, X.; Ng, D.W.K.; Yuan, J.; Al-Dhahir, N. Intelligent reflecting surface for wireless communication security and privacy. arXiv 2021, arXiv:2103.16696. [Google Scholar]
- Fang, F.; Zhang, H.; Cheng, J.; Leung, V.C. Energy-efficient resource scheduling for NOMA systems with imperfect channel state information. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–5. [Google Scholar]
- Li, G.; Liu, H.; Huang, G.; Li, X.; Raj, B.; Kara, F. Effective capacity analysis of reconfigurable intelligent surfaces aided NOMA network. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.; Li, X.; Liu, Y.; Huang, G.; Ding, Z. Effective Capacity Analysis of STAR-RIS-Assisted NOMA Networks. IEEE Wirel. Commun. Lett. 2022, 11, 1930–1934. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, R. Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization. IEEE Wirel. Commun. Lett. 2019, 9, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, L.; Cui, S. Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Trans. Wirel. Commun. 2020, 19, 6607–6620. [Google Scholar] [CrossRef]
- Hussain, F.; Hassan, S.A.; Hussain, R.; Hossain, E. Machine learning for resource management in cellular and IoT networks: Potentials, current solutions, and open challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1251–1275. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Ding, Z.; Fan, P.; Al-Dhahir, N. Unsupervised machine learning-based user clustering in millimeter-wave-NOMA systems. IEEE Trans. Wirel. Commun. 2018, 17, 7425–7440. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Z.; Xu, M.; Fang, F.; Ding, Z. An EM-based user clustering method in non-orthogonal multiple access. IEEE Trans. Commun. 2019, 67, 8422–8434. [Google Scholar] [CrossRef]
- He, C.; Hu, Y.; Chen, Y.; Zeng, B. Joint power allocation and channel assignment for NOMA with deep reinforcement learning. IEEE J. Sel. Areas Commun. 2019, 37, 2200–2210. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Y.; Dai, C.; Dai, H.; Poor, H.V. Reinforcement learning-based NOMA power allocation in the presence of smart jamming. IEEE Trans. Veh. Technol. 2017, 67, 3377–3389. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Y.; Cai, L.; Zhou, S.; Niu, Z. Deep learning based optimization in wireless network. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digit. Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Wen, C.K.; Jin, S.; Wong, K.K.; Chen, J.C.; Ting, P. Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning. IEEE Trans. Wirel. Commun. 2014, 14, 1356–1368. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K.C.; Hanzo, L. Thirty years of machine learning: The road to Pareto-optimal wireless networks. IEEE Commun. Surv. Tutor. 2020, 22, 1472–1514. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Song, T.; Gui, G. Deep cognitive perspective: Resource allocation for NOMA-based heterogeneous IoT with imperfect SIC. IEEE Internet Things J. 2018, 6, 2885–2894. [Google Scholar] [CrossRef]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning in communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef] [Green Version]
- Senel, K.; Cheng, H.V.; Björnson, E.; Larsson, E.G. What role can NOMA play in massive MIMO? IEEE J. Sel. Top. Signal Process. 2019, 13, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Do, D.T.; Le, C.B. Application of NOMA in wireless system with wireless power transfer scheme: Outage and ergodic capacity performance analysis. Sensors 2018, 18, 3501. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Lei, L.; Zhang, H.; Ristaniemi, T.; Chatzinotas, S.; Ottersten, B.; Han, Z. Energy-efficient and secure resource allocation for multiple-antenna NOMA with wireless power transfer. IEEE Trans. Green Commun. Netw. 2018, 2, 1059–1071. [Google Scholar] [CrossRef]
- Do, D.T.; Van Nguyen, M.S. Device-to-device transmission modes in NOMA network with and without Wireless Power Transfer. Comput. Commun. 2019, 139, 67–77. [Google Scholar] [CrossRef]
- Ghous, M.; Abbas, Z.H.; Hassan, A.K.; Abbas, G.; Baker, T.; Al-Jumeily, D. Performance Analysis and Beamforming Design of a Secure Cooperative MISO-NOMA Network. Sensors 2021, 21, 4180. [Google Scholar] [CrossRef]
- Perera, T.D.P.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Commun. Surv. Tutor. 2017, 20, 264–302. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Zhang, H.; Cheng, J.; Roy, S.; Leung, V.C. Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI. IEEE J. Sel. Areas Commun. 2017, 35, 2874–2885. [Google Scholar] [CrossRef]
- Arzykulov, S.; Tsiftsis, T.A.; Nauryzbayev, G.; Abdallah, M. Outage performance of cooperative underlay CR-NOMA with imperfect CSI. IEEE Commun. Lett. 2018, 23, 176–179. [Google Scholar] [CrossRef]
- Gao, Y.; Xia, B.; Liu, Y.; Yao, Y.; Xiao, K.; Lu, G. Analysis of the dynamic ordered decoding for uplink NOMA systems with imperfect CSI. IEEE Trans. Veh. Technol. 2018, 67, 6647–6651. [Google Scholar] [CrossRef]
- Cai, W.; Chen, C.; Bai, L.; Jin, Y.; Choi, J. User selection and power allocation schemes for downlink NOMA systems with imperfect CSI. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Nguyen, T.L.; Do, D.T. Power allocation schemes for wireless powered NOMA systems with imperfect CSI: An application in multiple antenna–based relay. Int. J. Commun. Syst. 2018, 31, e3789. [Google Scholar] [CrossRef]
- Liang, X.; Wu, Y.; Ng, D.W.K.; Jin, S.; Yao, Y.; Hong, T. Outage probability of cooperative NOMA networks under imperfect CSI with user selection. IEEE Access 2020, 8, 117921–117931. [Google Scholar] [CrossRef]
- Li, Y.; Baduge, G.A.A. NOMA-aided cell-free massive MIMO systems. IEEE Wirel. Commun. Lett. 2018, 7, 950–953. [Google Scholar] [CrossRef]
- Liang, X.; Gong, X.; Wu, Y.; Ng, D.W.K.; Hong, T. Analysis of outage probabilities for cooperative NOMA users with imperfect CSI. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; pp. 1617–1623. [Google Scholar]
- Rezaei, F.; Heidarpour, A.R.; Tellambura, C.; Tadaion, A. Underlaid spectrum sharing for cell-free massive MIMO-NOMA. IEEE Commun. Lett. 2020, 24, 907–911. [Google Scholar] [CrossRef]
- Mursia, P.; Atzeni, I.; Gesbert, D.; Cottatellucci, L. Covariance shaping for massive MIMO systems. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Hassan, A.K.; Moinuddin, M.; Al-Saggaf, U.M.; Aldayel, O.; Davidson, T.N.; Al-Naffouri, T.Y. Performance Analysis and Joint Statistical Beamformer Design for Multi-User MIMO Systems. IEEE Commun. Lett. 2020, 24, 2152–2156. [Google Scholar] [CrossRef]
- Hassan, A.K.; Moinuddin, M. Beamforming using exact evaluation of leakage and ergodic capacity of MU-MIMO system. Sensors 2021, 21, 6792. [Google Scholar] [CrossRef]
- Baig, S.; Ali, U.; Asif, H.M.; Khan, A.A.; Mumtaz, S. Closed-form BER expression for Fourier and wavelet transform-based pulse-shaped data in downlink NOMA. IEEE Commun. Lett. 2019, 23, 592–595. [Google Scholar] [CrossRef]
- Melki, R.; Noura, H.N.; Mansour, M.M.; Chehab, A. An efficient OFDM-based encryption scheme using a dynamic key approach. IEEE Internet Things J. 2018, 6, 361–378. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Alouini, M.S. Physical layer security for cooperative NOMA systems. IEEE Trans. Veh. Technol. 2018, 67, 4645–4649. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Yang, W.; Pan, G.; Cai, Y.; Song, Y. Physical layer security in cognitive radio inspired NOMA network. IEEE J. Sel. Top. Signal Process. 2019, 13, 700–714. [Google Scholar] [CrossRef]
- Mei-Ling, L.; Xiao-Xia, Y.; Wen-Jie, C.; Zhao-Ming, L. Physical Layer Security for Cooperative CR-NOMA system based on V2X. J. Beijing Univ. Posts Telecommun. 2022, 45, 181. [Google Scholar]
- Xiao, F.; Li, X.; Tang, K. Security-aware spectrum sharing for NOMA in cognitive radio networks with discrete-time energy harvesting. Comput. Commun. 2022, 183, 83–95. [Google Scholar] [CrossRef]
- Schaefer, R.F.; Amarasuriya, G.; Poor, H.V. Physical layer security in massive MIMO systems. In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 3–8. [Google Scholar]
- Chorti, A.; Perlaza, S.M.; Han, Z.; Poor, H.V. On the resilience of wireless multiuser networks to passive and active eavesdroppers. IEEE J. Sel. Areas Commun. 2013, 31, 1850–1863. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ng, D.W.K.; Ding, Z.; Schober, R. Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Trans. Commun. 2017, 65, 1077–1091. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, X. NOMA-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Trans. Ind. Inform. 2019, 16, 5379–5388. [Google Scholar] [CrossRef]
- Abozariba, R.; Naeem, M.K.; Patwary, M.; Seyedebrahimi, M.; Bull, P.; Aneiba, A. NOMA-based resource allocation and mobility enhancement framework for IoT in next generation cellular networks. IEEE Access 2019, 7, 29158–29172. [Google Scholar] [CrossRef]
- Le, M.; Pham, Q.V.; Kim, H.C.; Hwang, W.J. Enhanced Resource Allocation in D2D Communications With NOMA and Unlicensed Spectrum. IEEE Syst. J. 2022. [Google Scholar] [CrossRef]
- Hassan, E.A.; Mumtaz, Z.; Ali, Z. A Survey on Power Domain Non-Orthogonal Multiple Access (NOMA) based Communication System. IEEE Commun. Surv. Tutor. 2016, 19, 721–742. [Google Scholar]
- Chen, X.; Beiijebbour, A.; Li, A.; Jiang, H.; Kayama, H. Consideration on successive interference canceller (SIC) receiver at cell-edge users for non-orthogonal multiple access (NOMA) with SU-MIMO. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August– 2 September 2015; pp. 522–526. [Google Scholar]
- Li, H.; He, W.; He, Q.; He, J. The application and development of SIC technology in wireless communication system. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, 6–8 May 2017; pp. 565–570. [Google Scholar]
- Yan, C.; Harada, A.; Benjebbour, A.; Lan, Y.; Li, A.; Jiang, H. Receiver design for downlink non-orthogonal multiple access (NOMA). In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–6. [Google Scholar]
- Assaf, T.; Al-Dweik, A.; El Moursi, M.S.; Zeineldin, H.; Al-Jarrah, M. NOMA receiver design for delay-sensitive systems. IEEE Syst. J. 2020, 15, 5606–5617. [Google Scholar] [CrossRef]
- Saito, K.; Benjebbour, A.; Kishiyama, Y.; Okumura, Y.; Nakamura, T. Performance and design of SIC receiver for downlink NOMA with open-loop SU-MIMO. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 1161–1165. [Google Scholar]
- Ghous, M.; Hassan, A.K.; Abbas, Z.H.; Abbas, G. Modeling and analysis of self-interference impaired two-user cooperative MIMO-NOMA system. Phys. Commun. 2021, 48, 101441. [Google Scholar] [CrossRef]
- Liu, B.; Peng, M. Joint resource block-power allocation for NOMA-enabled fog radio access networks. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Yang, G.; Xu, X.; Liang, Y.C. Intelligent reflecting surface assisted non-orthogonal multiple access. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Khan, W.U.; Lagunas, E.; Mahmood, A.; Ali, Z.; Chatzinotas, S.; Ottersten, B. Integration of NOMA with reflecting intelligent surfaces: A multi-cell optimization with sic decoding errors. arXiv 2022, arXiv:2205.03248. [Google Scholar]
- Usman, M.R.; Khan, A.; Usman, M.A.; Jang, Y.S.; Shin, S.Y. On the performance of perfect and imperfect SIC in downlink non orthogonal multiple access (NOMA). In Proceedings of the 2016 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS), Bali, Indonesia, 6–8 October 2016; pp. 102–106. [Google Scholar]
- Wang, X.; Chen, R.; Xu, Y.; Meng, Q. Low-complexity power allocation in NOMA systems with imperfect SIC for maximizing weighted sum-rate. IEEE Access 2019, 7, 94238–94253. [Google Scholar] [CrossRef]
- Le, C.B.; Do, D.T. Joint evaluation of imperfect SIC and fixed power allocation scheme for wireless powered D2D-NOMA networks with multiple antennas at base station. Wirel. Netw. 2019, 25, 5069–5081. [Google Scholar] [CrossRef]
- Im, G.; Lee, J.H. Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks. IEEE Commun. Lett. 2019, 23, 692–695. [Google Scholar] [CrossRef]
- Sarfraz, M.; Sohail, M.F.; Alam, S.; Javvad ur Rehman, M.; Ghauri, S.A.; Rabie, K.; Abbas, H.; Ansari, S. Capacity Optimization of Next-Generation UAV Communication Involving Non-Orthogonal Multiple Access. Drones 2022, 6, 234. [Google Scholar] [CrossRef]
Type | [23] | [26] | [40] | [41] | [42] | [43] | Our Work |
---|---|---|---|---|---|---|---|
Physical layer security | ✔ | ✘ | ✘ | ✔ | ✔ | ✘ | ✔ |
MIMO and mMIMO | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
ComP | ✘ | ✔ | ✘ | ✘ | ✘ | ✘ | ✔ |
Cooperative Network | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
mmWave | ✘ | ✔ | ✘ | ✔ | ✔ | ✔ | ✔ |
MEC | ✘ | ✔ | ✘ | ✔ | ✘ | ✘ | ✔ |
THz | ✘ | ✔ | ✘ | ✔ | ✘ | ✘ | ✔ |
IRS | ✘ | ✔ | ✘ | ✔ | ✘ | ✘ | ✔ |
ML | ✘ | ✔ | ✘ | ✔ | ✘ | ✘ | ✔ |
Clustered NOMA | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | ✔ |
Hybrid NOMA | ✔ | ✔ | ✔ | ✔ | ✘ | ✘ | ✔ |
TAS | ✔ | ✘ | ✘ | ✘ | ✘ | ✘ | ✔ |
Covariance shaping | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | ✔ |
Channel estimation | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | ✔ |
NOMA | Domain Multiplexing | Received Type | Advantage | Open Issues |
---|---|---|---|---|
LDS [60,61,62,63,64,65,66] | Spreading codes | MPA | Without CSI | redundancy in coding issue |
SCMA [67,68] | Codebooks | MPA | Without CSI | Difficult detection |
PDMA [70] | Pattern | SIC/MPA | Better performance | Less overload |
IDMA [71] | Interleaver | Signal estimation | High user overload | High latency |
PD-NOMA [72,73] | Power | SIC | Less receiver complexity | Low user overloading |
NOMA Variant | Problem Discussed | Performance Metric | Advantages | Open Issues |
---|---|---|---|---|
C-NOMA [72] | QoS of far user | Ergodic capacity outage probability | Reduces the system complexity, maximises diversity gain, | Multiple antennas at BS, optimal PACs |
CNAR [78] | Multiple cell-edge users | Ergodic capacity outage probability | High throughput, better data rate | NOMA interference on cell-edge |
FD/HD-CNOMA [79] | Power allocations | User rate | Better user rate | Resource allocation scheme |
FD-NOMA-VP [80] | Interference cancellation | Ergodic capacity outage probability | Comparably better results | Additional power transmission with MIMO systems |
NOMA-PLC [81] | Average capacity | Sum capacity | Compatible with PLC, two symbols forward | AF protocol, FD systems |
CRS-NOMA [82] | Spatially multiplexing | Average rate | Improves average power | SIC stability Channel estimation with limited feedback MIMO systems |
CRS-NOMA-ND [83] | Receiver design | Ergodic capacity outage probability | Better ergodic sum rate, better MRC scheme results | Incremental redundancy |
N-BRS [84] | Rate gain | Average rate | Reduce complexity | Best relay position |
NOMA-RS [85] | SIC | Sum capacity | Serves a large number of users | Evaluates outage |
FD-NOMA-RS [86] | Spectral efficiency | Ergodic capacity outage probability | Serves a large number of users | With MIMO-NOMA |
STBC-NOMA [87] | Reliability | Sum capacity | Boosts the spectral efficiency | Multiple antennas at receiver |
DRS-FPA-NOMA [88] | Diversity gain | outage probability | Better reception reliability | Nakagami-m fading channel |
DDF-NOMA [89] | Reception reliability | Outage probability | Better reception reliability | Has limited CSI knowledge |
CFR-NOMA [94] | Imperfect SIC | Ergodic capacity outage probability | Better fairness, maximises achievable rate | Channel allocation scheme |
NOMA-RBC [95] | Full duplex relaying | Achievable throughput | Improves weak user rate | Extended to MU-MIMO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghous, M.; Hassan, A.K.; Abbas, Z.H.; Abbas, G.; Hussien, A.; Baker, T. Cooperative Power-Domain NOMA Systems: An Overview. Sensors 2022, 22, 9652. https://doi.org/10.3390/s22249652
Ghous M, Hassan AK, Abbas ZH, Abbas G, Hussien A, Baker T. Cooperative Power-Domain NOMA Systems: An Overview. Sensors. 2022; 22(24):9652. https://doi.org/10.3390/s22249652
Chicago/Turabian StyleGhous, Mujtaba, Ahmad Kamal Hassan, Ziaul Haq Abbas, Ghulam Abbas, Aseel Hussien, and Thar Baker. 2022. "Cooperative Power-Domain NOMA Systems: An Overview" Sensors 22, no. 24: 9652. https://doi.org/10.3390/s22249652
APA StyleGhous, M., Hassan, A. K., Abbas, Z. H., Abbas, G., Hussien, A., & Baker, T. (2022). Cooperative Power-Domain NOMA Systems: An Overview. Sensors, 22(24), 9652. https://doi.org/10.3390/s22249652