Performance Comparison of Repetition Coding MIMO Optical Wireless Communications with Distinct Light Beams
Abstract
:1. Introduction
2. Distinct Light Beams Characteristics and Channel Model
2.1. General Lambertian Light Beams
2.2. Typical Non-Lambertian Light Beams
2.3. Channel Model
3. Repetition Coding MIMO OWC Transmission System
4. Numerical Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.; Wang, X.; Wang, J.; Zhang, H.; Pan, C.; Zhang, Y.; Cosmas, J. The Converged Internet of Lights Network for Telecommunication, Positioning, Illumination, and Medical Therapy. IEEE Commun. Stand. Mag. 2020, 4, 70–75. [Google Scholar] [CrossRef]
- Shi, L.; Shi, D.; Zhang, X.; Meunier, B.; Zhang, H.; Wang, Z.; Vladimirescu, A.; Li, W.; Zhang, Y.; Cosmas, J.; et al. 5G Internet of Radio Light Positioning System for Indoor Broadcasting Service. IEEE Trans. Broadcast. 2020, 66, 534–544. [Google Scholar] [CrossRef]
- Strinati, E.C.; Barbarossa, S.; Gonzalez-Jimenez, J.L.; Ktenas, D.; Cassiau, N.; Maret, L.; Dehos, C. 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Veh. Technol. Mag. 2019, 14, 42–50. [Google Scholar] [CrossRef]
- Meunier, B.; Cosmas, J.; Jawad, N.; Ali, K. Realising a new generation of 5G VR systems through internet of radio light. In Proceedings of the 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Paris, France, 27–29 October 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Ma, X.; Gao, J.; Yang, F.; Ding, W.; Yang, H.; Song, J. Integrated power line and visible light communication system compatible with multi-service transmission. IET Commun. 2017, 11, 104–111. [Google Scholar] [CrossRef]
- Mana, S.M.; Kouhini, S.M.; Hellwig, P.; Hilt, J.; Berenguer, P.W.; Jungnickel, V. Distributed MIMO Experiments for LiFi in a Conference Room. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Online, 20–22 July 2020; IEEE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Kouhini, S.M.; Mana, S.M.; Freund, R.; Jungnickel, V.; Correa, C.R.B.; Tangdiongga, E.; Cunha, T.; Deng, X.; Linnartz, J.-P.M.G. Distributed MIMO Experiment Using LiFi Over Plastic Optical Fiber. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei City, Taiwan, 7–11 December 2020; IEEE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Tsonev, D.; Sinanovic, S.; Haas, H. Practical MIMO Capacity for Indoor Optical Wireless Communication with White LEDs. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; IEEE: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Fath, T.; Haas, H. Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments. IEEE Trans. Commun. 2012, 61, 733–742. [Google Scholar] [CrossRef]
- Ding, J.; Chih-Lin, I.; Xu, Z. Indoor optical wireless channel characteristics with distinct source radiation patterns. IEEE Photonics J. 2016, 8, 1–15. [Google Scholar] [CrossRef]
- Moreno, I.; Sun, C.-C. Modeling the radiation pattern of LEDs. Opt. Express 2008, 16, 1808–1819. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I. Spatial distribution of LED radiation. In Proceedings of the International Optical Design Conference 2006, Vancouver, BC, Canada, 17 July 2006; SPIE: Washington, DC, USA, 2006. [Google Scholar]
- Yang, C.; Wang, Y.-H.; Ding, Z.; Wen, J.; Bian, L.-F. Radiation Pattern Measurement in the Planar Coordinate. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Sun, C.-C.; Lee, T.-X.; Ma, S.-H.; Lee, Y.-L.; Huang, S.-M. Precise optical modeling for LED lighting verified by cross correlation in the midfield region. Opt. Lett. 2006, 31, 2193–2195. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Chih-Lin, I.; Zhang, H.; Chen, X.; Yu, B.; Lai, H. Cells Planning of VLC Networks using Non-Circular Symmetric Optical Beam. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Ding, J.; Chih-Lin, I.; Chen, X.; Lai, H. Asymmetrical Emission Beams based Visible Light Communication Access Points Design. In Proceedings of the 2019 28th Wireless and Optical Communications Conference (WOCC), Beijing, China, 9–10 May 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Ding, J.; Chih-Lin, I.; Xie, R.; Lai, H.; Zhang, C. Actual radiation patterns-oriented non-deterministic optical wireless channel characterization. In Proceedings of the Chinese Conference on Biometric Recognition, Urumchi, China, 11–12 August 2018; Springer: Berlin, Germany, 2018. [Google Scholar]
- Ding, J.; Chih-Lin, I.; Zhang, C.; Yu, B.; Lai, H. Evaluation of Outdoor Visible Light Communications Links Using Actual LED Street Luminaries. In Proceedings of the Chinese Conference on Biometric Recognition, Urumchi, China, 11–12 August 2018; Springer: Berlin, Germany, 2018. [Google Scholar]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Room size (W × L × H) | 5 × 5 × 3 m3 |
Emitted power of all APs | 1 W |
LED APs spacing | 2.5 m |
LED Lambertian index | 1 |
Receiver field of view | 45° |
PD spacing | 10 cm |
Height of receiving plane | 0.85 m |
Physical area of PD | 1 cm2 |
Responsivity of PD | 0. 28 A/W |
Concentrator refractive index | 1.54 |
Optical filter gain | 1 |
Modulation bandwidth | 20 MHz |
Background light current | 5100 μA |
Absolute temperature | 298 K |
Feedback resistance of TIA | 6 kΩ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; I, C.-L.; Wang, J.; Yang, H.; Wang, L. Performance Comparison of Repetition Coding MIMO Optical Wireless Communications with Distinct Light Beams. Sensors 2022, 22, 1256. https://doi.org/10.3390/s22031256
Ding J, I C-L, Wang J, Yang H, Wang L. Performance Comparison of Repetition Coding MIMO Optical Wireless Communications with Distinct Light Beams. Sensors. 2022; 22(3):1256. https://doi.org/10.3390/s22031256
Chicago/Turabian StyleDing, Jupeng, Chih-Lin I, Jintao Wang, Hui Yang, and Lili Wang. 2022. "Performance Comparison of Repetition Coding MIMO Optical Wireless Communications with Distinct Light Beams" Sensors 22, no. 3: 1256. https://doi.org/10.3390/s22031256
APA StyleDing, J., I, C.-L., Wang, J., Yang, H., & Wang, L. (2022). Performance Comparison of Repetition Coding MIMO Optical Wireless Communications with Distinct Light Beams. Sensors, 22(3), 1256. https://doi.org/10.3390/s22031256