Millimeter-Wave Smart Antenna Solutions for URLLC in Industry 4.0 and Beyond
Abstract
:1. Introduction
1.1. Contributions
- We present an overview of the sophisticated applications under the ambit of Industry 4.0 and beyond;
- We reveal various limitations of sub-6 GHz ISM bands that can not meet the stringent requirements of modern industrial applications;
- We explore various key performance indicators (KPI) to ensure URLLC in Industry 4.0 and beyond. Based on these KPIs, we highlight the potential of the 60 GHz mmWave ISM band based on state-of-the-art literature;
- We investigate the potential advantages as well as the challenges of 60 GHz mmWave communication;
- We identify different standards and protocols working at unlicensed 60 GHz ISM bands so that smart antennas for Industry 4.0 and beyond can be designed at these bands. This might help antenna design engineers to select the right frequency bands to target 60 GHz mmWave industrial communication;
- By establishing the potential of the 60 GHz mmWave band for smart industrial communication and highlighting the wireless standards, we review various 60 GHz mmWave antenna designs and discuss their challenges for Industry 4.0 and beyond applications;
- We emphasize the intriguing potential emerging in this domain, explaining new design characteristics and research paths for the researchers in this domain. As a result, this review paper can act as a catalyst for more research into 60 GHz mmWave smart antenna designs and the development of physical layer-based solutions to support smart communication in the era of Industry 4.0 and beyond.
1.2. Paper Organization
2. Advantages and Challenges of mmWave Industry 4.0 and beyond Communication
2.1. Advantages of mmWave Communication
2.1.1. Large Available Bandwidth
2.1.2. Inherent Security
2.1.3. Efficient Spectrum Reuse
2.1.4. Beamforming
2.1.5. Size Miniaturization
2.2. Challenges of mmWave Communication
2.2.1. LOS Blockage
2.2.2. Path Loss
3. Wireless Standards at 60 GHz mmWave Band
3.1. IEEE 802.11ad
3.2. IEEE 802.11ay
4. Antennas for mmWave Industry 4.0 and beyond Communication
4.1. PCB-Based Antennas
4.2. LTCC-Based Antennas
4.3. On-Chip Antennas
5. Research Opportunities and Future Directions
5.1. RF Frontend Design
5.2. System-on-Chip Design
5.3. mmWave Antenna Array Design Challenges
5.4. mmWave MIMO
5.5. Beamforming
5.6. Terahertz Communication
5.7. Distributed Antenna System
5.8. Machine Learning for Antennas in Industry 4.0 and Beyond
5.9. Reconfigurable Intelligent Surfaces
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | Third-Generation Partnership Project |
5G | Fifth Generation |
6G | Sixth Generation |
CMOS | Complementary Metal Oxide Semiconductor |
FPGA | Field-Programmable Gate Array |
IC | Integrated Circuit |
IoT | Internet of Things |
ISM | Industrial Scientific and Medical |
M2M | Machine to Machine |
mGbps | Multi-Gigabits per Second |
MIMO | Multiple-Input-Multiple-Output |
ML | Machine Learning |
mmWave | Millimeter Wave |
NR | New Radio |
P2P | Point-to-Point |
P2MP | Point-to-Multipoint |
PIN | Positive Intrinsic Negative |
SNR | Signal-to-Noise Ratio |
SiP | System-in-Package |
SoC | System-on-Chip |
URLLC | Ultra-Reliable and Low-Latency Communication |
WiGig | Wireless Gigabit |
References
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Meindl, B.; Ayala, N.F.; Mendonça, J.; Frank, A.G. The four smarts of Industry 4.0: Evolution of ten years of research and future perspectives. Technol. Forecast. Soc. Chang. 2021, 168, 120784. [Google Scholar] [CrossRef]
- Kalsoom, T.; Ramzan, N.; Ahmed, S.; Ur-Rehman, M. Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors 2020, 20, 6783. [Google Scholar] [CrossRef]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Kalsoom, T.; Ahmed, S.; Rafi-Ul-Shan, P.M.; Azmat, M.; Akhtar, P.; Pervez, Z.; Imran, M.A.; Ur-Rehman, M. Impact of IoT on Manufacturing Industry 4.0: A new triangular systematic review. Sustainability 2021, 13, 12506. [Google Scholar] [CrossRef]
- Singh, H. Big data, industry 4.0 and cyber-physical systems integration: A smart industry context. Mater. Today Proc. 2021, 46, 157–162. [Google Scholar] [CrossRef]
- Pivoto, D.G.S.; de Almeida, L.F.F.; da Rosa Righi, R.; Rodrigues, J.J.P.C.; Lugli, A.B.; Alberti, A.M. Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. J. Manuf. Syst. 2021, 58, 176–192. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A.Y.C. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Peres, R.S.; Jia, X.; Lee, J.; Sun, K.; Colombo, A.W.; Barata, J. Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE Access 2020, 8, 220121–220139. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Artificial intelligence applications for industry 4.0: A literature-based study. J. Ind. Integr. Manag. 2021, 1–29. [Google Scholar] [CrossRef]
- Mhlanga, D. Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? Sustainability 2021, 13, 5788. [Google Scholar] [CrossRef]
- Dopico, M.; Gómez, A.; De la Fuente, D.; García, N.; Rosillo, R.; Puche, J. A vision of industry 4.0 from an artificial intelligence point of view. In Proceedings of the International Conference on Artificial Intelligence (ICAI), Las Vegas, NV, USA, 26–29 June 2006; p. 407. [Google Scholar]
- Alhayani, B.; Kwekha-Rashid, A.S.; Mahajan, H.B.; Ilhan, H.; Uke, N.; Alkhayyat, A.; Mohammed, H.J. 5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: Perspective of smart healthcare system. Appl. Nanosci. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K. The Fourth Industrial Revolution; Penguin Random House; LLC: New York, NY, USA, 2017. [Google Scholar]
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Haghnegahdar, L.; Joshi, S.S.; Dahotre, N.B. From IoT-based cloud manufacturing approach to intelligent additive manufacturing: Industrial Internet of Things—An overview. Int. J. Adv. Manuf. Technol. 2022, 119, 1461–1478. [Google Scholar] [CrossRef]
- Dilberoglu, U.M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The role of additive manufacturing in the era of industry 4.0. Procedia Manuf. 2017, 11, 545–554. [Google Scholar] [CrossRef]
- Pfeiffer, S. Robots, Industry 4.0 and humans, or why assembly work is more than routine work. Societies 2016, 6, 16. [Google Scholar] [CrossRef]
- Van Huynh, D.; Khosravirad, S.R.; Nguyen, L.D.; Duong, T.Q. Multiple relay robots-assisted URLLC for industrial automation with deep neural networks. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–5. [Google Scholar]
- Ranjha, A.; Kaddoum, G.; Dev, K. Facilitating URLLC in UAV-assisted relay systems with multiple-mobile robots for 6G Networks: A prospective of agriculture 4.0. IEEE Trans. Ind. Inform. 2021. [Google Scholar] [CrossRef]
- Østergaard, E.H. Welcome to industry 5.0. Retrieved Febr. 2018, 5, 2020. [Google Scholar]
- Maddikunta, P.K.R.; Pham, Q.-V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 2021, 26, 100257. [Google Scholar] [CrossRef]
- Firyaguna, F.; John, J.; Khyam, M.O.; Pesch, D.; Armstrong, E.; Claussen, H.; Poor, H.V. Towards Industry 5.0: Intelligent Reflecting Surface (IRS) in Smart Manufacturing. arXiv 2022, arXiv:2201.02214. [Google Scholar]
- Aceto, G.; Persico, V.; Pescapé, A. A survey on information and communication technologies for industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3467–3501. [Google Scholar] [CrossRef]
- Luvisotto, M.; Pang, Z.; Dzung, D. High-performance wireless networks for industrial control applications: New targets and feasibility. Proc. IEEE. 2019, 107, 1074–1093. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.F.; Wang, S. A review of industrial wireless networks in the context of industry 4.0. Wirel. Netw. 2017, 23, 23–41. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, J. Comparative examination on architecture and protocol of industrial wireless sensor network standards. IEEE Commun. Surv. Tutor. 2016, 18, 2197–2219. [Google Scholar] [CrossRef]
- Christin, D.; Mogre, P.S.; Hollick, M. Survey on wireless sensor network technologies for industrial automation: The security and quality of service perspectives. Future Internet 2010, 2, 96–125. [Google Scholar] [CrossRef] [Green Version]
- Holfeld, B.; Wieruch, D.; Wirth, T.; Thiele, L.; Ashraf, S.A.; Huschke, J.; Aktas, I.; Ansari, J. Wireless communication for factory automation: An opportunity for LTE and 5G systems. IEEE Commun. Mag. 2016, 54, 36–43. [Google Scholar] [CrossRef]
- Yu, H.; Zeng, P.; Xu, C. Industrial wireless control networks: From WIA to the future. Engineering 2021, 8, 18–24. [Google Scholar] [CrossRef]
- Galloway, B.; Hancke, G.P. Introduction to industrial control networks. IEEE Commun. Surv. Tutor. 2012, 15, 860–880. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.M.; Tran, T.D.; Nguyen, T.T.; Kazmi, S.M.A.; Le, L.B.; Hong, C.S.; Hanzo, L. Next-generation wireless solutions for the smart factory, smart vehicles, the smart grid and smart cities. arXiv 2019, arXiv:1907.10102. [Google Scholar]
- Rao, S.K.; Prasad, R. Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 2018, 100, 145–159. [Google Scholar] [CrossRef]
- Brown, G.; Analyst, P.; Reading, H. Ultra-reliable low-latency 5G for industrial automation. Technol. Rep. Qualcomm. 2018, 2, 52065394. [Google Scholar]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019, 34, 134–142. [Google Scholar] [CrossRef] [Green Version]
- De Alwis, C.; Kalla, A.; Pham, Q.V.; Kumar, P.; Dev, K.; Hwang, W.-J.; Liyan, M. Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Zhai, W.; Sun, S.; Niyato, D.; Lam, K.Y. A survey of 6G wireless communications: Emerging technologies. In Proceedings of the Future of Information and Communication Conference, Vancouver, BC, Canada, 29–30 April 2021; pp. 150–170. [Google Scholar]
- Tambare, P.; Meshram, C.; Lee, C.C.; Ramteke, R.J.; Imoize, A.L. Performance Measurement System and Quality Management in Data-Driven Industry 4.0: A Review. Sensors 2021, 22, 224. [Google Scholar] [CrossRef]
- Imoize, A.L.; Adedeji, O.; Tandiya, N.; Shetty, S. 6G enabled smart infrastructure for sustainable society: Opportunities, challenges, and research roadmap. Sensors 2021, 21, 1709. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, A.; Kaddoum, G.; Rahim, M.; Dev, K. URLLC in UAV-enabled multicasting systems: A dual time and energy minimization problem using UAV speed, altitude and beamwidth. Comput. Commun. 2022, 187, 125–133. [Google Scholar] [CrossRef]
- She, C.; Sun, C.; Gu, Z.; Li, Y.; Yang, C.; Poor, H.V.; Vucetic, B. A tutorial on ultrareliable and low-latency communications in 6G: Integrating domain knowledge into deep learning. Proc. IEEE 2021, 109, 204–246. [Google Scholar] [CrossRef]
- Cheffena, M. Industrial wireless communications over the millimeter wave spectrum: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 66–72. [Google Scholar] [CrossRef]
- Pielli, C.; Ropitault, T.; Zorzi, M. The potential of mmwaves in smart industry: Manufacturing at 60 ghz. In Proceedings of the International Conference on Ad-Hoc Networks and Wireless, Saint-Malo, France, 5–7 September 2018; pp. 64–76. [Google Scholar]
- Imran, M.A.; Hussain, S.; Abbasi, Q.H. Wireless Automation as an Enabler for the Next Industrial Revolution; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Lagen, S.; Giupponi, L.; Goyal, S.; Patriciello, N.; Bojovic, B.; Demir, A.; Beluri, M. New radio beam-based access to unlicensed spectrum: Design challenges and solutions. IEEE Commun. Surv. Tutor. 2019, 22, 8–37. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ai, B.; You, I.; Imran, M.; Wang, L.; Guan, K.; He, D.; Zhong, Z.; Keusgen, W. Ultra-reliable communications for industrial internet of things: Design considerations and channel modeling. IEEE Netw. 2019, 33, 104–111. [Google Scholar] [CrossRef]
- Mazgula, J.; Sapis, J.; Hashmi, U.S.; Viswanathan, H. Ultra reliable low latency communications in mmWave for factory floor automation. J. Indian Inst. Sci. 2020, 100, 303–314. [Google Scholar] [CrossRef]
- Ghasempour, Y.; Da Silva, C.R.C.M.; Cordeiro, C.; Knightly, E.W. IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi. IEEE Commun. Mag. 2017, 55, 186–192. [Google Scholar] [CrossRef]
- Nitsche, T.; Cordeiro, C.; Flores, A.B.; Knightly, E.W.; Perahia, E.; Widmer, J.C. IEEE 802.11 ad: Directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi. IEEE Commun. Mag. 2014, 52, 132–141. [Google Scholar] [CrossRef]
- Hansen, C.J. WiGiG: Multi-gigabit wireless communications in the 60 GHz band. IEEE Wirel. Commun. 2011, 18, 6–7. [Google Scholar] [CrossRef]
- Patriciello, N.; Lagén, S.; Bojović, B.; Giupponi, L. NR-U and IEEE 802.11 technologies coexistence in unlicensed mmWave spectrum: Models and evaluation. IEEE Access 2020, 8, 71254–71271. [Google Scholar] [CrossRef]
- Patriciello, N.; Goyal, S.; Lagen, S.; Giupponi, L.; Bojovic, B.; Demir, A.; Beluri, M. NR-U and WiGig coexistence in 60 GHz bands. arXiv 2020, arXiv:2001.04779. [Google Scholar]
- Segura, D.; Khatib, E.J.; Munilla, J.; Barco, R. 5G Numerologies Assessment for URLLC in Industrial Communications. Sensors 2021, 21, 2489. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Baldemair, R.; Tullberg, H.; Bjorkegren, H.; Sundstrom, L.; Medbo, J.; Kilinc, C.; Da Silva, I. Waveform and numerology to support 5G services and requirements. IEEE Commun. Mag. 2016, 54, 90–98. [Google Scholar] [CrossRef]
- Zhou, P.; Cheng, K.; Han, X.; Fang, X.; Fang, Y.; He, R.; Long, Y.; Liu, Y. IEEE 802.11 ay-based mmWave WLANs: Design challenges and solutions. IEEE Commun. Surv. Tutor. 2018, 20, 1654–1681. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Murdock, J.N.; Gutierrez, F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 2011, 99, 1390–1436. [Google Scholar] [CrossRef]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 836–869. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Kutty, S.; Sen, D. Beamforming for millimeter wave communications: An inclusive survey. IEEE Commun. Surv. Tutor. 2015, 18, 949–973. [Google Scholar] [CrossRef]
- Hong, W.; Kwang-Hyun, B.; Seungtae, K. Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration. IEEE Trans. Antennas Propag. 2017, 65, 6250–6261. [Google Scholar] [CrossRef]
- Hong, W.; Jiang, Z.H.; Yu, C.; Zhou, J.; Chen, P.; Yu, Z.; Zhang, H.; Yang, B.; Pang, X.; Jiang, M.; et al. Multibeam antenna technologies for 5G wireless communications. IEEE Trans. Antennas Propag. 2017, 65, 6231–6249. [Google Scholar] [CrossRef]
- Ghosh, S.; Sen, D. An inclusive survey on array antenna design for millimeter-wave communications. IEEE Access 2019, 7, 83137–83161. [Google Scholar] [CrossRef]
- Smulders, P.; Yang, H.; Akkermans, I. On the design of low-cost 60-GHz radios for multigigabit-per-second transmission over short distances [topics in radio communications]. IEEE Commun. Mag. 2007, 45, 44–51. [Google Scholar] [CrossRef]
- Banday, Y.; Rather, G.M.; Begh, G.R. Effect of atmospheric absorption on millimetre wave frequencies for 5G cellular networks. IET Commun. 2019, 13, 265–270. [Google Scholar] [CrossRef]
- Chiarello, L.; Baracca, P.; Upadhya, K.; Khosravirad, S.R.; Mandelli, S.; Wild, T. Jamming Resilient Indoor Factory Deployments: Design and Performance Evaluation. arXiv 2022, arXiv:2202.01272. [Google Scholar]
- Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE 2014, 102, 366–385. [Google Scholar] [CrossRef] [Green Version]
- Doan, C.H.; Emami, S.; Sobel, D.A.; Niknejad, A.M.; Brodersen, R.W. Design considerations for 60 GHz CMOS radios. IEEE Commun. Mag. 2004, 42, 132–140. [Google Scholar] [CrossRef]
- Zekri, A.B.; Ajgou, R. Study of mmWave channels for different scenarios. In Proceedings of the 2019 6th International Conference on Image and Signal Processing and Their Applications (ISPA), Mostaganem, Algeria, 24–25 November 2019; pp. 1–6. [Google Scholar]
- Manan, W.; Obeidat, H.; Al-Abdullah, A.; Abd-Alhameed, R.; Hu, F. Indoor to indoor and indoor to outdoor millimeter wave propagation channel simulations at 26 Ghz, 28 Ghz and 60 Ghz for 5G mobile networks. Int. J. Eng. Sci. 2018, 7, 8–18. [Google Scholar]
- Solomitckii, D.; Orsino, A.; Andreev, S.; Koucheryavy, Y.; Valkama, M. Characterization of mmWave channel properties at 28 and 60 GHz in factory automation deployments. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Xu, H.; Kukshya, V.; Rappaport, T.S. Spatial and temporal characteristics of 60-GHz indoor channels. IEEE J. Sel. Areas Commun. 2002, 20, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Rappaport, T.S. Multi-beam antenna combining for 28 GHz cellular link improvement in urban environments. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 3754–3759. [Google Scholar]
- Baykas, T.; Sum, C.-S.; Lan, Z.; Wang, J.; Rahman, M.A.; Harada, H.; Kato, S. IEEE 802.15. 3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 2011, 49, 114–121. [Google Scholar] [CrossRef]
- IEEE 802.11 Working Group. IEEE 802.11 ad, amendment 3: Enhancements for very high throughput in the 60 GHz band. IEEE Stand. 2012, 802. [Google Scholar] [CrossRef]
- Qualcomm. Global Update on Spectrum for 4G & 5G. Qualcomm Inc., San Diego, CA, White Pap. 2020; (December), 1–21. Available online: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf (accessed on 20 February 2022).
- 5G Americas. 5G Americas White Paper on 5G Spectrum Recommendations. Published online 2017, 5–7. Available online: https://www.fcc.gov/document/fcc-promotes-higher-frequency-spectrum-future-wireless-technology-0/ (accessed on 20 February 2022).
- Celik, N.; Iskander, M.F.; Emrick, R.; Franson, S.J.; Holmes, J. Implementation and experimental verification of a smart antenna system operating at 60 GHz band. IEEE Trans. Antennas Propag. 2008, 56, 2790–2800. [Google Scholar] [CrossRef]
- Liu, H.; He, Y.; Wong, H. Printed U-slot patch antenna for 60GHz applications. In Proceedings of the 2013 IEEE International Workshop on Electromagnetics, Applications and Student Innovation Competition, Kowloon, China, 1–3 August 2013; pp. 153–155. [Google Scholar] [CrossRef]
- Phalak, K.; Sebak, A. Surface Integrated waveguide based triangular cavity backed T slot planar antenna at 60 GHz. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1495–1496. [Google Scholar] [CrossRef]
- Raj, C.; Suganthi, S. Performance analysis of antenna with different substrate materials at 60 GHz. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2017; pp. 2537–2539. [Google Scholar]
- Zhu, J.; Liao, S.; Li, S.; Xue, Q. 60 GHz wideband high-gain circularly polarized antenna array with substrate integrated cavity excitation. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 751–755. [Google Scholar] [CrossRef]
- Mneesy, T.S.; Hamad, R.K.; Zaki, A.I.; Ali, W.A.E. A novel high gain monopole antenna array for 60 GHz millimeter-wave communications. Appl. Sci. 2020, 10, 4546. [Google Scholar] [CrossRef]
- Chen, Z.N.; Qing, X.; Sun, M.; Gong, K.; Hong, W. 60-GHz antennas on PCB. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 533–536. [Google Scholar]
- Baniya, P.; Melde, K.L. 360° Switched Beam SIW Horn Arrays at 60 GHz, Phase Centers, and Friis Equation. In Proceedings of the 2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 4–9 January 2021; pp. 113–114. [Google Scholar] [CrossRef]
- Ur Rehman, M.; Safdar, G.A. LTE Communications and Networks: Femtocells and Antenna Design Challenges; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ur-Rehman, M.; Malik, N.A.; Yang, X.; Abbasi, Q.H.; Zhang, Z.; Zhao, N. A low profile antenna for millimeter-wave body-centric applications. IEEE Trans. Antennas Propag. 2017, 65, 6329–6337. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Li, Y.; Ponchak, G.E.; Papapolymerou, J.; Tentzeris, M.M. A 60-GHz CPW-fed high-gain and broadband integrated horn antenna. IEEE Trans. Antennas Propag. 2009, 57, 1050–1056. [Google Scholar] [CrossRef] [Green Version]
- Baniya, P.; Melde, K.L. Switched beam SIW horn arrays at 60 GHz for 360° reconfigurable chip-to-chip communications with interference considerations. IEEE Access 2021, 9, 100460–100471. [Google Scholar] [CrossRef]
- Federico, G.; Caratelli, D.; Theis, G.; Smolders, A.B. A Review of Antenna Array Technologies for Point-to-Point and Point-to-Multipoint Wireless Communications at Millimeter-Wave Frequencies. Int. J. Antennas Propag. 2021, 2021, 5559765. [Google Scholar] [CrossRef]
- Hussain, M.; Naqvi, S.I.; Awan, W.A.; Ali, W.A.E.; Ali, E.M.; Khan, S.; Alibakhshikenari, M. Simple wideband extended aperture antenna-inspired circular patch for V-band communication systems. AEU-Int. J. Electron. Commun. 2022, 144, 154061. [Google Scholar] [CrossRef]
- Haider, M.F.; Alam, S.; Sagor, M.H. V-shaped patch antenna for 60 GHz mmWave communications. In Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–4. [Google Scholar]
- Saini, J.; Agarwal, S.K. Design a single band microstrip patch antenna at 60 GHz millimeter wave for 5G application. In Proceedings of the 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India, 1–2 July 2017; pp. 227–230. [Google Scholar]
- Vettikalladi, H.; Sethi, W.T.; Himdi, M.; Alkanhal, M. 60 GHz beam-tilting coplanar slotted SIW antenna array. Frequenz 2022, 76, 29–36. [Google Scholar] [CrossRef]
- Li, M.; Luk, K.M. Low-cost wideband microstrip antenna array for 60-GHz applications. IEEE Trans. Antennas Propag. 2014, 62, 3012–3018. [Google Scholar] [CrossRef]
- Li, J.; Matos, C.; Chen, S.; Ghalichechian, N. Fundamental improvement to the efficiency of on-chip mmWave phased arrays using MEMS suspension. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 473–477. [Google Scholar] [CrossRef]
- Pilard, R.; Gianesello, F.; Gloria, D.; Titz, D.; Ferrero, F.; Luxey, C. 60 GHz HR SOI CMOS antenna for a system-on-chip integration scheme targeting high data-rate kiosk applications. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 895–898. [Google Scholar]
- Bijumon, P.V.; Antar, Y.M.M.; Freundorfer, A.P.; Sayer, M. Integrated dielectric resonator antennas for system on-chip applications. In Proceedings of the 2007 Internatonal Conference on Microelectronics, Cairo, Egypt, 29–31 December 2007; pp. 275–278. [Google Scholar]
- Rappaport, T.S.; Gutierrez, F., Jr.; Al-Attar, T. Millimeter-wave and terahertz wireless RFIC and on-chip antenna design: Tools and layout techniques. In Proceedings of the 2009 IEEE Globecom Workshops, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–7. [Google Scholar]
- Cheema, H.M.; Shamim, A. The last barrier: On-chip antennas. IEEE Microw. Mag. 2013, 14, 79–91. [Google Scholar] [CrossRef]
- Hsu, S.S.; Wei, K.C.; Hsu, C.Y.; Ru-Chuang, H. A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18-μ CMOS technology. IEEE Electron. Device Lett. 2008, 29, 625–627. [Google Scholar] [CrossRef]
- Li, P.F.; Liao, S.; Xue, Q.; Qu, S.W. 60 GHz dual-polarized high-gain planar aperture antenna array based on LTCC. IEEE Trans. Antennas Propag. 2019, 68, 2883–2894. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.P.; Sun, M.; Luxey, C.; Titz, D.; Ferrero, F. A 60-GHz circularly-polarized array antenna-in-package in LTCC technology. IEEE Trans. Antennas Propag. 2013, 61, 6228–6232. [Google Scholar] [CrossRef]
- Ullah, U.; Mahyuddin, N.; Arifin, Z.; Abdullah, M.Z.; Marzuki, A. Antenna in LTCC technologies: A review and the current state of the art. IEEE Antennas Propag. Mag. 2015, 57, 241–260. [Google Scholar] [CrossRef]
- Lee, H.J.; Li, E.S.; Jin, H.; Li, C.Y.; Chin, K.S. 60 GHz wideband LTCC microstrip patch antenna array with parasitic surrounding stacked patches. IET Microw. Antennas Propag. 2019, 13, 35–41. [Google Scholar] [CrossRef]
- Emami, M. A Reconfigurable, LTCC-Based, Ultra-Wideband Periodic Leaky-Wave Antenna with Circular Polarization at 60 GHz. Master’s Dissertation, École de Technologie Supérieure, Montreal, QC, Canada, 2022. Available online: https://espace.etsmtl.ca/id/eprint/2815 (accessed on 27 February 2022).
- Kam, D.G.; Liu, D.; Natarajan, A.; Reynolds, S.; Chen, H.C.; Floyd, B.A. LTCC packages with embedded phased-array antennas for 60 GHz communications. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 142–144. [Google Scholar] [CrossRef]
- Lamminen, A.E.I.; Saily, J.; Vimpari, A.R. 60-GHz patch antennas and arrays on LTCC with embedded-cavity substrates. IEEE Trans. Antennas Propag. 2008, 56, 2865–2874. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Chu, C.; Li, S.; Liao, S.; Xue, Q. Low-profile wideband and high-gain LTCC patch antenna array for 60 GHz applications. IEEE Trans. Antennas Propag. 2019, 68, 3237–3242. [Google Scholar] [CrossRef]
- Li, Y. Circularly Polarized SIW Slot LTCC Antennas at 60 GHz. In Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems; Wiley: Hoboken, NJ, USA, 2021; pp. 177–195. [Google Scholar]
- Zelenchuk, D.; Kärnfelt, C.; Gallee, F.; Munina, I. Metamaterial-based LTCC Compressed Luneburg Lens Antenna at 60 GHz for Wireless Communications. In Proceedings of the 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel Aviv, Israel, 1–3 November 2021; pp. 513–515. [Google Scholar]
- Sun, H.; Guo, Y.X.; Wang, Z. 60-GHz circularly polarized U-slot patch antenna array on LTCC. IEEE Trans. Antennas Propag. 2012, 61, 430–435. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.X.; Bao, X.; Xiao, S.Q. 60-GHz LTCC integrated circularly polarized helical antenna array. IEEE Trans. Antennas Propag. 2011, 60, 1329–1335. [Google Scholar] [CrossRef]
- Cabrol, P.; Pietraski, P. 60 GHz patch antenna array on low cost Liquid-Crystal Polymer (LCP) substrate. In Proceedings of the IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, Farmingdale, NY, USA, 2 May 2014; pp. 1–6. [Google Scholar]
- Adane, A.; Person, C.; Gallee, F. A broadband U-shaped patch antenna on PTFE/Cu substrate for 60 GHz wireless communications. Microw. Opt. Technol. Lett. 2018, 60, 265–271. [Google Scholar] [CrossRef]
- Bondarik, A.; Sjöberg, D. 60 GHz microstrip antenna array on PTFE substrate. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1016–1018. [Google Scholar]
- Parthiban, P. IoT Antennas for Industry 4.0--Design and Manufacturing with an Example. In Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 9–12 September 2020; pp. 1–5. [Google Scholar]
- Sun, Y.X.; Leung, K.W. Circularly polarized substrate-integrated cylindrical dielectric resonator antenna array for 60 GHz applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1401–1405. [Google Scholar] [CrossRef]
- Jabbar, A.; Kazim, J.U.; Imran, M.A.; Abbasi, Q.H.; Ur Rehman, M. Design of a Compact Ultra-Wideband Microstrip Antenna for Millimeter-Wave Communication. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 837–838. [Google Scholar]
- Dixit, A.S.; Kumar, S.; Urooj, S.; Malibari, A. A highly compact antipodal Vivaldi Antenna array for 5G millimeter wave applications. Sensors 2021, 21, 2360. [Google Scholar] [CrossRef]
- Plettemeier, D.; Jenning, M.; Liang, T.J. Multilayer vivaldi antenna for 60 GHz applications. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Hahnel, R.; Benedix, W.S.; Plettemeier, D. Broadside radiating vivaldi antenna for the 60 GHz band. In Proceedings of the 2013 International Workshop on Antenna Technology (IWAT), Karlsruhe, Germany, 4–6 March 2013; pp. 83–86. [Google Scholar]
- Antar, Y.M.M. Antennas for wireless communication: Recent advances using dielectric resonators. IET Circuits Devices Syst. 2008, 2, 133–138. [Google Scholar] [CrossRef]
- Petosa, A.; Thirakoune, S. Design of a 60 GHz dielectric resonator antenna with enhanced gain. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar]
- Nandakumar, M.; Shanmuganantham, T. SIW flower shaped fractal antenna backed with cavity for 60GHz frequency applications. In Proceedings of the 2018 International Conference on Computer, Communication, and Signal Processing (ICCCSP), Chennai, India, 22–23 February 2018; pp. 1–4. [Google Scholar]
- Palanisamy, S.; Thangaraju, B.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication. Energies 2021, 14, 6204. [Google Scholar] [CrossRef]
- Rahim, A.; Malik, P.K.; Sankar Ponnapalli, V.A. State of the art: A review on vehicular communications, impact of 5G, fractal antennas for future communication. In Proceedings of the First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Singapore, 28 April 2020; pp. 3–15. [Google Scholar]
- Jawad, M.M.; Abd Malik, N.N.N.; Murad, N.A.; Ahmad, M.R.; Esa, M.R.M.; Hussein, Y.M. Design of substrate integrated waveguide withMinkowski-Sierpinski fractal antenna for WBAN applications. Bull. Electr. Eng. Inform. 2020, 9, 2455–2461. [Google Scholar] [CrossRef]
- Li, Y.; Luk, K.M. 60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays. IEEE Trans. Antennas Propag. 2015, 63, 1075–1085. [Google Scholar] [CrossRef]
- Sarkar, A.; Lim, S. 60 GHz compact larger beam scanning range PCB leaky-wave antenna using HMSIW for millimeter-wave applications. IEEE Trans. Antennas Propag. 2020, 68, 5816–5826. [Google Scholar] [CrossRef]
- Nanda Kumar, M.; Shanmuganantham, T. SIW-based slot antenna fed by microstrip for 60/79 GHz applications. In Microelectronics, Electromagnetics and Telecommunications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 741–748. [Google Scholar]
- Kumar, S.; Dixit, A.S.; Malekar, R.R.; Raut, H.D.; Shevada, L.K. Fifth generation antennas: A comprehensive review of design and performance enhancement techniques. IEEE Access 2020, 8, 163568–163593. [Google Scholar] [CrossRef]
- Kam, D.G.; Liu, D.; Natarajan, A.; Reynolds, S.; Floyd, B.A. Low-cost antenna-in-package solutions for 60-GHz phased-array systems. In Proceedings of the 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems, Austin, TX, USA, 25–27 October 2010; pp. 93–96. [Google Scholar]
- Sowlati, T.; Sarkar, S.; Perumana, B.G.; Chan, W.L.; Toda, A.P.; Afshar, B.; Boers, M.; Shin, D.; Mercer, T.R.; Chen, W.-H.; et al. A 60-GHz 144-element phased-array transceiver for backhaul application. IEEE J. Solid-State Circuits 2018, 53, 3640–3659. [Google Scholar] [CrossRef]
- Daniels, R.C.; Heath, R.W. 60 GHz wireless communications: Emerging requirements and design recommendations. IEEE Veh. Technol. Mag. 2007, 2, 41–50. [Google Scholar] [CrossRef]
- Haupt, R.L.; Rahmat-Samii, Y. Antenna array developments: A perspective on the past, present and future. IEEE Antennas Propag. Mag. 2015, 57, 86–96. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, X.; Li, Q.; Guizani, M.; Zhang, Y. 5G millimeter-wave antenna array: Design and challenges. IEEE Wirel. Commun. 2016, 24, 106–112. [Google Scholar] [CrossRef]
- Mizutani, A.; Sakakibara, K.; Kikuma, N.; Hirayama, H. Grating lobe suppression of narrow-wall slotted hollow waveguide millimeter-wave planar antenna for arbitrarily linear polarization. IEEE Trans. Antennas Propag. 2007, 55, 313–320. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Siasi, N.; Ababneh, M.; Jasim, M. Grating Lobes for Enhanced Scattering Intensity in Millimeter Wave Sparse Channels. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 1010–1014. [Google Scholar]
- Farahani, M.; Pourahmadazar, J.; Akbari, M.; Nedil, M.; Sebak, A.R.; Denidni, T.A. Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2324–2327. [Google Scholar] [CrossRef]
- Farahbakhsh, A.; Mohanna, S.; Tavakoli, S.; Sadegh, M.O. New patch configurations to reduce the mutual coupling in microstrip array antenna. In Proceedings of the 2009 Loughborough Antennas & Propagation Conference, Loughborough, UK, 6–17 November 2009; pp. 469–472. [Google Scholar]
- Hafezifard, R.; Naser-Moghadasi, M.; Mohassel, J.R.; Sadeghzadeh, R.A. Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 40–43. [Google Scholar]
- Mandal, S.; Ghosh, C.K. Mutual coupling reduction in a patch antenna array based on planar frequency selective surface structure. Radio Sci. 2022, 57, e2021RS007392. [Google Scholar] [CrossRef]
- Sadiq, M.S.; Ruan, C.; Nawaz, H.; Abbasi, M.A.B.; Nikolaou, S. Mutual coupling reduction between finite spaced planar antenna elements using modified ground structure. Electronics 2020, 10, 19. [Google Scholar] [CrossRef]
- Mandal, S.; Ghosh, C.K. Low mutual coupling of microstrip antenna array integrated with dollar shaped resonator. Wirel. Pers. Commun. 2021, 119, 777–789. [Google Scholar] [CrossRef]
- Naqvi, A.H.; Lim, S. Review of recent phased arrays for millimeter-wave wireless communication. Sensors 2018, 18, 3194. [Google Scholar] [CrossRef] [Green Version]
- Chuang, N.C.; Lin, H.S.; Lin, Y.C. Compact cavity-backed dual-polarized aperture antennas for millimeter wave MIMO applications. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19–21 March 2017; pp. 131–134. [Google Scholar]
- Hsu, Y.W.; Huang, T.C.; Lin, H.S.; Lin, Y.C. Dual-polarized quasi Yagi--Uda antennas with endfire radiation for millimeter-wave MIMO terminals. IEEE Trans. Antennas Propag. 2017, 65, 6282–6289. [Google Scholar] [CrossRef]
- Wójcik, D.; Surma, M.; Noga, A.; Magnuski, M. On the Design of Dual-Polarised Linear Antenna Arrays with Enhanced Port-to-Port Isolation. Sensors 2020, 20, 6105. [Google Scholar] [CrossRef] [PubMed]
- Mirmozafari, M.; Zhang, G.; Fulton, C.; Doviak, R.J. Dual-polarization antennas with high isolation and polarization purity: A review and comparison of cross-coupling mechanisms. IEEE Antennas Propag. Mag. 2018, 61, 50–63. [Google Scholar] [CrossRef]
- Da, Y.; Chen, X.; Li, M.; Zhang, Z.; Al-Hadi, A.A.; Zhang, A.; Kishk, A.A. Enhanced cross-polarization isolation of loop-dipole antenna array backed by dielectric cavities for 5G base stations. J. Electromagn. Waves Appl. 2021, 35, 2034–2050. [Google Scholar] [CrossRef]
- Shi, J.; Zhai, H.; Li, H. A low-profile dual-polarized antenna with crosspolarization enhancement. Microw. Opt. Technol. Lett. 2020, 62, 1997–2003. [Google Scholar] [CrossRef]
- Le, A.T.; Huang, X.; Guo, Y.J. Analog Self-Interference Cancellation in Dual-Polarization Full-Duplex MIMO Systems. IEEE Commun. Lett. 2021, 25, 3075–3079. [Google Scholar] [CrossRef]
- Abbasi, M.A.B.; Fusco, V. Beamformer development challenges for 5G and beyond. In Antennas and Propagation for 5G and Beyond; IET, 2020; pp. 265–299. [Google Scholar]
- Jijo, B.T.; Zeebaree, S.R.; Zebari, R.R.; Sadeeq, M.A.; Sallow, A.B.; Mohsin, S.; Ageed, Z.S. A comprehensive survey of 5G mm-wave technology design challenges. Asian J. Res. Comput. Sci. 2021, 8, 1–20. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter wave communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 1616–1653. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, S.; Chi, X.; Chen, W.; Ma, S. Achieving Energy-Efficient Uplink URLLC with MIMO-Aided Grant-Free Access. IEEE Trans. Wirel. Commun. 2021. [Google Scholar] [CrossRef]
- Ding, J.; Nemati, M.; Pokhrel, S.R.; Park, O.S.; Choi, J.; Adachi, F. Enabling grant-free URLLC: An overview of principle and enhancements by massive MIMO. IEEE Internet. Things J. 2021. [Google Scholar] [CrossRef]
- Imoize, A.L.; Ibhaze, A.E.; Atayero, A.A.; Kavitha, K.V.N. Standard propagation channel models for MIMO communication systems. Wirel. Commun. Mob. Comput. 2021. [Google Scholar] [CrossRef]
- Sun, S.; Rappaport, T.S.; Heath, R.W.; Nix, A.; Rangan, S. MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Commun. Mag. 2014, 52, 110–121. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Henggeler, C. Physical Layer Security for Military IoT Links Using MIMO-Beamforming at 60 GHz. Information 2022, 13, 100. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Sayeed, A.M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun. Mag. 2018, 56, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Chaccour, C.; Soorki, M.N.; Saad, W.; Bennis, M.; Popovski, P.; Debbah, M. Seven defining features of terahertz (THz) wireless systems: A fellowship of communication and sensing. IEEE Commun. Surv. Tutor. 2022. [Google Scholar] [CrossRef]
- Pacheco-Peña, V. Terahertz Technologies and Its Applications. Electronics 2021, 10, 268. [Google Scholar] [CrossRef]
- Sigov, A.; Ratkin, L.; Ivanov, L.A.; da Xu, L. Emerging Enabling Technologies for Industry 4.0 and Beyond. Inf. Syst. Front. 2022, 1–11. [Google Scholar] [CrossRef]
- Angrisani, L.; Arpaia, P.; Bonavolonta, F.; Moriello, R.S.L. Academic fablabs for industry 4.0: Experience at University of naples federico II. IEEE Instrum. Meas. Mag. 2018, 21, 6–13. [Google Scholar] [CrossRef]
- Hassan, B.; Baig, S.; Asif, M. Key Technologies for Ultra-Reliable and Low-Latency Communication in 6G. IEEE Commun. Stand Mag. 2021, 5, 106–113. [Google Scholar] [CrossRef]
- Buratti, C.; Mesini, L.; Verdone, R. Comparing MAC protocols for industrial IoT using Terahertz communications. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; pp. 1–7. [Google Scholar]
- Popovski, P.; Stefanovic, C.; Nielsen, J.J.; de Carvalho, E.; Angjelichinoski, M.; Trillingsgaard, K.F.; Bana, A.-S. Wireless access in ultra-reliable low-latency communication (URLLC). IEEE Trans. Commun. 2019, 67, 5783–5801. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Pfeiffer, U.R.; Jain, R.; Grzyb, J.; Malz, S.; Hillger, P.; Rodriguez-Vizquez, P. Current status of terahertz integrated circuits-from components to systems. In Proceedings of the 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, USA, 14–17 October 2018; pp. 1–7. [Google Scholar]
- Tekb\iy\ik, K.; Ekti, A.R.; Kurt, G.K.; Görçin, A. Terahertz band communication systems: Challenges, novelties and standardization efforts. Phys. Commun. 2019, 35, 100700. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Fujita, M.; Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications. Adv. Opt. Mater. 2018, 6, 1800401. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, Y.; Zhang, L.; Wong, S.W.; Chen, Z.N. An overview of terahertz antennas. China Commun. 2020, 17, 124–165. [Google Scholar] [CrossRef]
- Abohmra, A.; Khan, Z.U.; Abbas, H.T.; Shoaib, N.; Imran, M.A.; Abbasi, Q.H. Two-Dimensional Materials for Future Terahertz Wireless Communications. IEEE Open J. Antennas Propag. 2022, 3, 217–228. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, B.; Yuan, K.; Tang, R.; Xiong, J.; Wang, K. Effect of Terahertz Antenna Radiation in Hypersonic Plasma Sheaths with Different Vehicle Shapes. Appl. Sci. 2022, 12, 1811. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Y.; Yu, J.; Chen, X. 3d beam reconfigurable THz antenna with graphene-based high-impedance surface. Electronics 2019, 8, 1291. [Google Scholar] [CrossRef] [Green Version]
- Correas-Serrano, D.; Gomez-Diaz, J.S. Graphene-based antennas for terahertz systems: A review. arXiv 2017, arXiv:170400371. [Google Scholar]
- Rebeiz, G.M. Millimeter-wave and terahertz integrated circuit antennas. Proc. IEEE 1992, 80, 1748–1770. [Google Scholar] [CrossRef]
- Jha, K.R.; Singh, G. Terahertz planar antennas for future wireless communication: A technical review. Infrared Phys. Technol. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Usman, M.; Ansari, S.; Taha, A.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Terahertz-Based Joint Communication and Sensing for Precision Agriculture: A 6G Use-Case. Front. Commun. Netw. 2022, 3, 836506. [Google Scholar] [CrossRef]
- Abohmra, A.; Abbas, H.; Kazim, J.U.R.; Rabbani, M.S.; Li, C.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. An ultrawideband microfabricated gold-based antenna array for terahertz communication. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2156–2160. [Google Scholar] [CrossRef]
- Kazim, J.U.R.; Abohmra, A.; Ur Rehman, M.; Imran, M.A.; Abbasi, Q.H. A Corrugated SIW Based Slot Antenna for Terahertz Application. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 4–11 July 2020; pp. 1407–1408. [Google Scholar]
- Kazim, J.U.R.; Abohmra, A.; Al-Hasan, M.; Mabrouk, I.B.; Ur-Rehman, M.; Sheikh, F.; Kaiser, T.; Imran, M.A.; Abbasi, Q.H. A 1-bit High-Gain Flexible Metasurface Reflectarray for Terahertz Application. In Proceedings of the 2020 Third International Workshop on Mobile Terahertz Systems (IWMTS), Essen, Germany, 1–2 July 2020; pp. 1–4. [Google Scholar]
- Dash, S.; Patnaik, A. Material selection for TH z antennas. Microw. Opt. Technol. Lett. 2018, 60, 1183–1187. [Google Scholar] [CrossRef]
- Matthaiou, M.; Yurduseven, O.; Ngo, H.Q.; Morales-Jimenez, D.; Cotton, S.L.; Fusco, V.F. The road to 6G: Ten physical layer challenges for communications engineers. IEEE Commun. Mag. 2021, 59, 64–69. [Google Scholar] [CrossRef]
- Khosravirad, S.R.; Viswanathan, H.; Yu, W. Exploiting diversity for ultra-reliable and low-latency wireless control. IEEE Trans. Wirel. Commun. 2020, 20, 316–331. [Google Scholar] [CrossRef]
- Moerman, A.; Van Kerrebrouck, J.; Caytan, O.; de Paula, I.L.; Bogaert, L.; Torfs, G.; Demeester, P.; Rogier, H.; Lemey, S. Beyond 5G Without Obstacles: mmWaveover-Fiber Distributed Antenna Systems. IEEE Commun. Mag. 2022, 60, 27–33. [Google Scholar] [CrossRef]
- Hong, J.P.; Park, J.; Shin, W.; Beak, S. Distributed antenna system design for ultra-reliable low-latency uplink communications. In Proceedings of the 2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 22–25 January 2019; pp. 1–3. [Google Scholar]
- Arnold, M.; Baracca, P.; Wild, T.; Schaich, F.; ten Brink, S. Measured Distributed vs Co-located Massive MIMO in Industry 4.0 Environments. In Proceedings of the 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; pp. 306–310. [Google Scholar]
- Battistella Nadas, J.P. The Path towards Ultra-Reliable Low-Latency Communications Via HARQ; University of Glasgow: Glasgow, Scotland, 2021. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Scalable cell-free massive MIMO systems. IEEE Trans. Commun. 2020, 68, 4247–4261. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.U.; Ruttik, K.; Jäntti, R.; Hämäläinen, J. Distributed Antenna System in 3GPP Specified Industrial Environment. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–6. [Google Scholar]
- Joung, J. Machine learning-based antenna selection in wireless communications. IEEE Commun. Lett. 2016, 20, 2241–2244. [Google Scholar] [CrossRef]
- El Misilmani, H.M.; Naous, T.; Al Khatib, S.K. A review on the design and optimization of antennas using machine learning algorithms and techniques. Int. J. RF Microw. Comput. Eng. 2020, 30, e22356. [Google Scholar] [CrossRef]
- El Misilmani, H.M.; Naous, T. Machine learning in antenna design: An overview on machine learning concept and algorithms. In Proceedings of the 2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; pp. 600–607. [Google Scholar]
- Wu, Q.; Cao, Y.; Wang, H.; Hong, W. Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges. China Commun. 2020, 17, 152–164. [Google Scholar] [CrossRef]
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Enabling large intelligent surfaces with compressive sensing and deep learning. IEEE Access 2021, 9, 44304–44321. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Jin, S.; Ai, B. Channel estimation for cell-free mmWave massive MIMO through deep learning. IEEE Trans. Veh. Technol. 2019, 68, 10325–10329. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Alex, S.; Varkey, P.; Li, Y.; Qu, Q.; Tujkovic, D. Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access 2018, 6, 37328–37348. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Fu, S.; Wang, Y.; Xu, F. Intelligent Beamforming via Physics-Inspired Neural Networks on Programmable Metasurface. IEEE Trans. Antennas Propag. 2022. [Google Scholar] [CrossRef]
- Kazim, J.U.R.; Abbas, H.T.; Imran, M.A.; Abbasi, Q.H. Intelligent Reflective Surfaces—State of the Art. Backscattering RF Sens. Future Wirel. Commun. 2021, 1–18. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Almohamad, A.; Tahir, A.M.; Al-Kababji, A.; Furqan, H.M.; Khattab, T.; Hasna, M.O.; Arslan, H. Smart and secure wireless communications via reflecting intelligent surfaces: A short survey. IEEE Open J. Commun. Soc. 2020, 1, 1442–1456. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfors, O. Beyond massive MIMO: The potential of data transmission with large intelligent surfaces. IEEE Trans. Signal. Process. 2018, 66, 2746–2758. [Google Scholar] [CrossRef] [Green Version]
- Abeywickrama, S.; Zhang, R.; Wu, Q.; Yuen, C. Intelligent reflecting surface: Practical phase shift model and beamforming optimization. IEEE Trans. Commun. 2020, 68, 5849–5863. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Al-Dhahir, N. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization. IEEE Trans. Wirel. Commun. 2020, 19, 6884–6898. [Google Scholar] [CrossRef]
- Di Renzo, M.; Danufane, F.H.; Tretyakov, S. Communication Models for Reconfigurable Intelligent Surfaces: From Surface Electromagnetics to Wireless Networks Optimization. arXiv 2021, arXiv:211000833. [Google Scholar]
- Björnson, E.; Wymeersch, H.; Matthiesen, B.; Popovski, P.; Sanguinetti, L.; de Carvalho, E. Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications. arXiv 2021, arXiv:210200742. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wirel. Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Rains, J.; Kazim, J.u.R.; Zhang, L.; Abbasi, Q.H.; Imran, M.; Tukmanov, A. 2.75-Bit Reflecting Unit Cell Design for Reconfigurable Intelligent Surfaces. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Marina Bay Sands, Singapore, 4–10 December 2021; pp. 335–336. [Google Scholar]
- Trichopoulos, G.C.; Theofanopoulos, P.; Kashyap, B.; Modi, A.; Osman, T.; Kumar, S.; Sengar, A.; Chang, A.; Alkhateeb, A. Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment. arXiv 2021, arXiv:210907763. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; You, C.; Mei, W.; Zhang, R. A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications. IEEE Commun. Surv. Tutor. 2022. [Google Scholar] [CrossRef]
- Ge, L.; Dong, P.; Zhang, H.; Wang, J.B.; You, X. Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications. IEEE Access 2020, 8, 78702–78712. [Google Scholar] [CrossRef]
- Pei, X.; Yin, H.; Tan, L.; Cao, L.; Li, Z.; Wang, K.; Zhang, K.; Bjornson, E. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials. IEEE Trans. Commun. 2021, 69, 8627–8640. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.-S.; Yuen, C.; de Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Ren, H.; Wang, K.; Pan, C. Intelligent Reflecting Surface-aided URLLC in a Factory Automation Scenario. arXiv 2021, arXiv:210309323. [Google Scholar] [CrossRef]
- Li, Y.; Yin, C.; Do-Duy, T.; Masaracchia, A.; Duong, T.Q. Aerial reconfigurable intelligent surface-enabled URLLC UAV systems. IEEE Access 2021, 9, 140248–140257. [Google Scholar] [CrossRef]
Ref. | Comments |
---|---|
[1] | Discussion on the differences between Industry 4.0 and Industry 5.0, the co-existence of these two, and some enabling technologies. |
[4] | Review of IoT, big data, and cloud computing for Industry 4.0-based healthcare |
[7] | Discussion on cyber-physical systems for Industrial IoT in Industry 4.0. |
[24] | A survey of potential applications of Industry 5.0 such as intelligent healthcare, cloud manufacturing, supply chain management, and manufacturing production |
[45] | Discussed opportunities and challenges of 60 GHz mmWave communication for industrial environment. |
[46] | Highlighted the potential of 60 GHz communication for factory automation scenarios. |
[51] | Overview of IEEE 802.11ay standard, as well as new PHY and MAC specifications based on IEEE 802.11ad, MIMO enhanced channel access and beamforming training. |
[52] | Design concerns for the IEEE 802.11ad standard, as well as solutions for overcoming mmWave communication problems. |
[53] | Industrial perspective of using 60 GHz WiGig communication. |
[58] | Review of beamforming training, design issues, channel bonding and aggregation, channel access, and channel allocation in IEEE 802.11ay. |
[59] | A detailed survey of 60 GHz radio transceivers, antennas, low-noise amplifiers, power amplifiers, mixers, etc. |
[65] | Review of various mmWave antenna designs from 10 to 100 GHz. |
[66] | Discussion on 60 GHz radio, link budget, channel propagation, RF front end architecture, and antenna solutions. |
This work | Review of URLLC requirements in Industry 4.0 and beyond, overview of potential of 60 GHz mmWave band for industrial communication, analysis of wireless standards and protocols at 60 GHz band. Review of various 60 GHz mmWave antennas for Industry 4.0 and beyond and their design challenges. Inclusive discussion on the prospects and research opportunities of 60 GHz mmWave communication and PHY-based solutions for Industry 4.0 and beyond. |
IEEE Standard | Forum Type | Peak Data Rate (Gbps) | Bandwidth (GHz) |
---|---|---|---|
IEEE 802.11ay | International standard | 100 | 8.64 |
IEEE 802.11ad | Industry consortium | 8 | 2.16 |
IEEE 802.15.3c | International standard | 5.7 | <3 |
WirelessHD | Industry consortium | 4 | 2 |
ECMA387 | International standard | 4.032 | 2.16 |
Antenna Type | Advantages | Disadvantages |
---|---|---|
Microstrip and PCB antennas | Compact, low cost, easy fabrication, light weight, easily integrable with other RF circuitry | High substrate loss, conductor and dielectric loss, feed radiation issues, impedance matching issues, bandwidth issues for thick substrates |
On-chip integrated antennas | Compact, low power, light weight, low profile and multifunctional | Low gain, low efficiency, high radiation losses, complex fabrication, and complex design rules |
Leaky wave and surface wave antennas | Low fabrication cost, planar tunability, no requirement of phase shifters usually | Low efficiency usually due to traveling wave, scanning angle varies with frequency, complex design considerations |
Ref. | Antenna Technology | Antenna Type | Array Configuration | Peak Gain (dBi) | Size (mm × mm) |
---|---|---|---|---|---|
[90] | PCB | Integrated horn | Single unit structure | 14.6 | - |
[85] | PCB | Monopole array | 1 × 2 | 11.6 | 20.64 × 20 |
[96] | PCB | SIW coplanar fed slot | Linear array | 12 | 30 × 5 |
[82] | PCB | T-slot planar | Single element | 8.77 | 11.7 × 9.8 |
[84] | PCB | CP substrate-integrated cavity | 4 × 4 | 20 | 30 × 30 |
[97] | PCB | Microstrip CP array | 2 × 2 | 16 | 20 × 20 |
[120] | PCB | Dielectric resonator | 2 × 2 | 11.43 | - |
[132] | PCB | SIW-based leaky wave | Linear array | 14.5 | 23 × 3 |
[127] | PCB | SIW fractal antenna | Single SIW | 4.57 | 4.1 × 8.6 |
[130] | PCB | SIW fractal antenna | Single SIW | 7.9 | 6.5 × 9.6 |
[110] | LTCC | CP SIW | 4 × 4 | 18.2 | 18.6 × 18.6 |
[107] | LTCC | Parasitic microstrip patches | 4 × 4 | 10.5 | 10.1 × 8.5 |
[104] | LTCC | Planar aperture | 16 × 16 | 24.6 | 37 × 37 |
[111] | LTCC | Patch with SIW feed | 4 × 4 | 16.7 | ≈20 × 20 |
[105] | LTCC | Patch | 4 × 4 | 17.1 | 13 × 13 |
[114] | LTCC | U-slot patch | 4 × 4 | 16 | 14 × 16 |
[115] | LTCC | Helical | 4 × 4 | 14 | 12 × 10 |
[103] | On-chip | Yagi | - | -8 | Chip size 1.1 × 0.95 |
[98] | On-chip | MEMS based | 9 × 9 | 23.3 | 24.75 × 24.75 |
[99] | On-chip | Folded slot silicon integrated | - | 3.9 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbar, A.; Abbasi, Q.H.; Anjum, N.; Kalsoom, T.; Ramzan, N.; Ahmed, S.; Rafi-ul-Shan, P.M.; Falade, O.P.; Imran, M.A.; Ur Rehman, M. Millimeter-Wave Smart Antenna Solutions for URLLC in Industry 4.0 and Beyond. Sensors 2022, 22, 2688. https://doi.org/10.3390/s22072688
Jabbar A, Abbasi QH, Anjum N, Kalsoom T, Ramzan N, Ahmed S, Rafi-ul-Shan PM, Falade OP, Imran MA, Ur Rehman M. Millimeter-Wave Smart Antenna Solutions for URLLC in Industry 4.0 and Beyond. Sensors. 2022; 22(7):2688. https://doi.org/10.3390/s22072688
Chicago/Turabian StyleJabbar, Abdul, Qammer H. Abbasi, Nadeem Anjum, Tahera Kalsoom, Naeem Ramzan, Shehzad Ahmed, Piyya Muhammad Rafi-ul-Shan, Oluyemi Peter Falade, Muhammad Ali Imran, and Masood Ur Rehman. 2022. "Millimeter-Wave Smart Antenna Solutions for URLLC in Industry 4.0 and Beyond" Sensors 22, no. 7: 2688. https://doi.org/10.3390/s22072688
APA StyleJabbar, A., Abbasi, Q. H., Anjum, N., Kalsoom, T., Ramzan, N., Ahmed, S., Rafi-ul-Shan, P. M., Falade, O. P., Imran, M. A., & Ur Rehman, M. (2022). Millimeter-Wave Smart Antenna Solutions for URLLC in Industry 4.0 and Beyond. Sensors, 22(7), 2688. https://doi.org/10.3390/s22072688