Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = flexible antenna sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3440 KB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Viewed by 1551
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

34 pages, 4041 KB  
Review
Sensor Technologies for Non-Invasive Blood Glucose Monitoring
by Jiale Shi, Raúl Fernández-García and Ignacio Gil
Sensors 2025, 25(12), 3591; https://doi.org/10.3390/s25123591 - 7 Jun 2025
Viewed by 7004
Abstract
Diabetes poses a significant global health challenge, underscoring the urgent need for accurate and continuous glucose monitoring technologies. This review provides a comprehensive analysis of both invasive and non-invasive sensor technologies, with a particular focus on antenna-sensors and their working principle. Key aspects, [...] Read more.
Diabetes poses a significant global health challenge, underscoring the urgent need for accurate and continuous glucose monitoring technologies. This review provides a comprehensive analysis of both invasive and non-invasive sensor technologies, with a particular focus on antenna-sensors and their working principle. Key aspects, including the selection of substrates and conductive materials, fabrication techniques, and recent advancements in rigid and flexible antenna-sensor designs, are critically evaluated. Notably, textile antenna-sensors are gaining increasing attention due to their potential for seamless integration into daily clothing. Furthermore, the influence of the human body on antenna-sensor performance is examined, emphasizing the importance of human phantom simulation and fabrication for precise modeling and validation. Finally, this review highlights the current technical challenges in the development of flexible antenna-sensors and discusses their transformative potential in enabling next-generation, non-invasive, and patient-centric glucose monitoring solutions. Full article
Show Figures

Figure 1

29 pages, 3201 KB  
Review
Screen Printing for Energy Storage and Functional Electronics: A Review
by Juan C. Rubio and Martin Bolduc
Electron. Mater. 2025, 6(2), 7; https://doi.org/10.3390/electronicmat6020007 - 30 May 2025
Cited by 2 | Viewed by 3098
Abstract
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, [...] Read more.
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, mesh selection and squeegee dynamics govern film uniformity, pattern resolution and ultimately device performance. Recent progress in advanced ink systems is surveyed, highlighting carbon allotropes (graphene, carbon nano-onions, carbon nanotubes, graphite), silver and copper nanostructures, MXene and functional oxides that collectively enhance mechanical robustness, electrical conductivity and radio-frequency behavior. Parallel improvements in substrate engineering such as polyimide, PET, TPU, cellulose and elastomers demonstrate the technique’s capacity to accommodate complex geometries for wearable, medical and industrial applications while supporting environmentally responsible material choices such as water-borne binders and bio-based solvents. By mapping two decades of developments across energy-storage layers and functional electronics, the article identifies the key process elements, recurring challenges and emerging sustainable practices that will guide future optimization of screen-printing materials and protocols for high-performance, customizable and eco-friendly flexible devices. Full article
Show Figures

Figure 1

15 pages, 5934 KB  
Article
A Waterborne, Flexible, and Highly Conductive Silver Ink for Ultra-Rapid Fabrication of Epidermal Electronics
by Patrick Rwei, Jia-Wei Shiu, Mehmet Senel, Amirhossein Hajiaghajani, Chengyang Qian, Chin-Wen Chen, Peter Tseng and Michelle Khine
Sensors 2025, 25(7), 2092; https://doi.org/10.3390/s25072092 - 27 Mar 2025
Cited by 1 | Viewed by 4553
Abstract
Epidermal electronics provide a promising solution to key challenges in wearable electronics, such as motion artifacts and low signal-to-noise ratios caused by an imperfect sensor–skin interface. To achieve the optimal performance, skin-worn electronics require high conductivity, flexibility, stability, and biocompatibility. Herein, we present [...] Read more.
Epidermal electronics provide a promising solution to key challenges in wearable electronics, such as motion artifacts and low signal-to-noise ratios caused by an imperfect sensor–skin interface. To achieve the optimal performance, skin-worn electronics require high conductivity, flexibility, stability, and biocompatibility. Herein, we present a nontoxic, waterborne conductive ink made of silver and child-safe slime for the fabrication of skin-compatible electronics. The ink formulation includes polyvinyl acetate (PVAc), known as school glue, as a matrix, glyceryl triacetate (GTA) as a plasticizer, sodium tetraborate (Borax) as a crosslinker, and silver (Ag) flakes as the conducting material. Substituting citric acid (CA) for GTA enhances the deformability by more than 100%. With exceptional conductivity (up to 1.17 × 104 S/cm), we demonstrate the ink’s potential in applications such as an epidermal near-field communication (NFC) antenna patch and a wireless ECG system for motion monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

9 pages, 2578 KB  
Proceeding Paper
Concept of a Multi-Receiver-Vector Tracking Algorithm Within a Gnss Network
by Stefan Laller and Philipp Berglez
Eng. Proc. 2025, 88(1), 20; https://doi.org/10.3390/engproc2025088020 - 26 Mar 2025
Viewed by 383
Abstract
This paper deals with the concept of a GNSS monitoring network, which fulfills requirements in relation to sustainability, cost efficiency and flexibility. For the proposed approach, the hardware of the GNSS monitoring stations should be reduced to a minimum. Therefore, Remote Radio Head [...] Read more.
This paper deals with the concept of a GNSS monitoring network, which fulfills requirements in relation to sustainability, cost efficiency and flexibility. For the proposed approach, the hardware of the GNSS monitoring stations should be reduced to a minimum. Therefore, Remote Radio Head sensors or especially RF Front-Ends, which are already used in the field of GNSS, should be used. In this concept, GNSS network stations are equipped with an antenna, an RF Front-End, and hardware for data transfer (raw I&Q samples) to a central processing facility. The idea is to realize a collaborative processing of all receivers with a Multi-Receiver-Vector Tracking (MRVT) algorithm in one single Software-Defined GNSS receiver (SDR). Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

19 pages, 7338 KB  
Article
The Design and Evaluation of a Direction Sensor System Using Color Marker Patterns Onboard Small Fixed-Wing UAVs in a Wireless Relay System
by Kanya Hirai and Masazumi Ueba
Aerospace 2025, 12(3), 216; https://doi.org/10.3390/aerospace12030216 - 7 Mar 2025
Viewed by 751
Abstract
Among the several usages of unmanned aerial vehicles (UAVs), a wireless relay system is one of the most promising applications. Specifically, a small fixed-wing UAV is suitable to establish the system promptly. In the system, an antenna pointing control system directs an onboard [...] Read more.
Among the several usages of unmanned aerial vehicles (UAVs), a wireless relay system is one of the most promising applications. Specifically, a small fixed-wing UAV is suitable to establish the system promptly. In the system, an antenna pointing control system directs an onboard antenna to a ground station in order to form and maintain a communication link between the UAV and the ground station. In this paper, we propose a sensor system to detect the direction of the ground station from the UAV by using color marker patterns for the antenna pointing control system. The sensor detects the difference between the antenna pointing direction and the ground station direction. The sensor is characterized by the usage of both the color information of multiple color markers and color marker pattern matching. These enable the detection of distant, low-resolution markers, a high accuracy of marker detection, and robust marker detection against motion blur. In this paper, we describe the detailed algorithm of the sensor, and its performance is evaluated by using the prototype sensor system. Experimental performance evaluation results showed that the proposed method had a minimum detectable drawing size of 10.2 pixels, a motion blur tolerance of 0.0175, and a detection accuracy error of less than 0.12 deg. This performance indicates that the method has a minimum detectable draw size that is half that of the ArUco marker (a common AR marker), is 15.9 times more tolerant of motion blur than the ArUco marker, and has a detection accuracy error twice that of the ArUco marker. The color markers in the proposed method can be placed farther away or be smaller in size than ArUco markers, and they can be detected by the onboard camera even if the aircraft’s attitude changes significantly. The proposed method using color marker patterns has the potential to improve the operational flexibility of radio relay systems utilizing UAVs and is expected to be further developed in the future. Full article
(This article belongs to the Special Issue UAV System Modelling Design and Simulation)
Show Figures

Figure 1

16 pages, 2018 KB  
Article
A High-Sensitivity Inkjet-Printed Flexible Resonator for Monitoring Dielectric Changes in Meat
by Jamal Abounasr, Mariam El Gharbi, Raúl Fernández García and Ignacio Gil
Sensors 2025, 25(5), 1338; https://doi.org/10.3390/s25051338 - 22 Feb 2025
Cited by 3 | Viewed by 1050
Abstract
This paper introduces a flexible loop antenna-based sensor optimized for real-time monitoring of meat quality by detecting changes in dielectric properties over a six-day storage period. Operating within the 2.4 GHz ISM band, the sensor is designed using CST Microwave Studio 2024 to [...] Read more.
This paper introduces a flexible loop antenna-based sensor optimized for real-time monitoring of meat quality by detecting changes in dielectric properties over a six-day storage period. Operating within the 2.4 GHz ISM band, the sensor is designed using CST Microwave Studio 2024 to deliver high sensitivity and accuracy. The sensing mechanism leverages resonance frequency shifts caused by variations in permittivity as the meat degrades. Experimental validation across five samples showed a consistent frequency shift from 2.14 GHz (Day 0) to 1.29 GHz (Day 5), with an average sensitivity of 0.173GHz/day. A strong correlation was observed between measured and simulated results, as evidenced by linear regression (R2=0.984 and R2=0.974 for measured and simulated data, respectively). The sensor demonstrated high precision and repeatability, validated by low standard deviations and minimal frequency deviations. Compact, printable, and cost-effective, the proposed sensor offers a scalable solution for food quality monitoring. Its robust performance highlights its potential for integration into IoT platforms and extension to other perishable food products, advancing real-time, non-invasive, RF-based food safety technologies. Full article
(This article belongs to the Special Issue Applications of Antenna Technology in Sensors: 2nd Edition)
Show Figures

Figure 1

13 pages, 8457 KB  
Article
Electromagnetic Properties of Natural Plant Leaves for Eco-Friendly and Biodegradable Substrates for Wireless IoT Devices
by Nikolay Todorov Atanasov, Blagovest Nikolaev Atanasov and Gabriela Lachezarova Atanasova
Sensors 2025, 25(4), 1118; https://doi.org/10.3390/s25041118 - 12 Feb 2025
Cited by 2 | Viewed by 1194
Abstract
Today, innovative engineering solutions, including IoT devices, enable the precise monitoring of plant health and the early detection of diseases. However, the lifespan of IoT devices used for the real-time monitoring of environmental or plant parameters in precision agriculture is typically only a [...] Read more.
Today, innovative engineering solutions, including IoT devices, enable the precise monitoring of plant health and the early detection of diseases. However, the lifespan of IoT devices used for the real-time monitoring of environmental or plant parameters in precision agriculture is typically only a few months, from planting to harvest. This short lifespan creates challenges in managing the e-waste generated by smart agriculture. One potential solution to reduce the volume and environmental impact of e-waste is to use more environmentally friendly and biodegradable materials to replace the non-degradable components (substrates) currently used in the structure of IoT devices. In this study, we estimate the electromagnetic properties at 2565 MHz of the leaves from three widely grown crops: winter wheat, corn, and sunflower. We found that winter wheat and sunflower leaves have values of the real part of relative permittivity ranging from about 33 to 69 (wheat) and 13 to 32 (sunflower), respectively, while corn exhibits a value of about 33.5. Our research indicates that the position of a leaf on the plant stem and its distance from the soil significantly affect the relative permittivity of winter wheat and sunflower. These relationships, however, are not evident in the electromagnetic properties of corn leaves. Full article
(This article belongs to the Special Issue Electromagnetic Waves, Antennas and Sensor Technologies)
Show Figures

Figure 1

25 pages, 13404 KB  
Article
Drone SAR Imaging for Monitoring an Active Landslide Adjacent to the M25 at Flint Hall Farm
by Anthony Carpenter, James A. Lawrence, Philippa J. Mason, Richard Ghail and Stewart Agar
Remote Sens. 2024, 16(20), 3874; https://doi.org/10.3390/rs16203874 - 18 Oct 2024
Cited by 3 | Viewed by 3837
Abstract
Flint Hall Farm in Godstone, Surrey, UK, is situated adjacent to the London Orbital Motorway, or M25, and contains several landslide systems which pose a significant geohazard risk to this critical infrastructure. The site has been routinely monitored by geotechnical engineers following a [...] Read more.
Flint Hall Farm in Godstone, Surrey, UK, is situated adjacent to the London Orbital Motorway, or M25, and contains several landslide systems which pose a significant geohazard risk to this critical infrastructure. The site has been routinely monitored by geotechnical engineers following a landslide that encroached onto the hard shoulder in December 2000; current in situ instrumentation includes inclinometers and piezoelectric sensors. Interferometric Synthetic Aperture Radar (InSAR) is an active remote sensing technique that can quantify millimetric rates of Earth surface and structural deformation, typically utilising satellite data, and is ideal for monitoring landslide movements. We have developed the hardware and software for an Unmanned Aerial Vehicle (UAV), or drone radar system, for improved operational flexibility and spatial–temporal resolutions in the InSAR data. The hardware payload includes an industrial-grade DJI drone, a high-performance Ettus Software Defined Radar (SDR), and custom Copper Clad Laminate (CCL) radar horn antennas. The software utilises Frequency Modulated Continuous Wave (FMCW) radar at 5.4 GHz for raw data collection and a Range Migration Algorithm (RMA) for focusing the data into a Single Look Complex (SLC) Synthetic Aperture Radar (SAR) image. We present the first SAR image acquired using the drone radar system at Flint Hall Farm, which provides an improved spatial resolution compared to satellite SAR. Discrete targets on the landslide slope, such as corner reflectors and the in situ instrumentation, are visible as bright pixels, with their size and positioning as expected; the surrounding grass and vegetation appear as natural speckles. Drone SAR imaging is an emerging field of research, given the necessary and recent technological advancements in drones and SDR processing power; as such, this is a novel achievement, with few authors demonstrating similar systems. Ongoing and future work includes repeat-pass SAR data collection and developing the InSAR processing chain for drone SAR data to provide meaningful deformation outputs for the landslides and other geotechnical hazards and infrastructure. Full article
Show Figures

Figure 1

19 pages, 6453 KB  
Article
A Versatile, Machine-Learning-Enhanced RF Spectral Sensor for Developing a Trunk Hydration Monitoring System in Smart Agriculture
by Oumaima Afif, Leonardo Franceschelli, Eleonora Iaccheri, Simone Trovarello, Alessandra Di Florio Di Renzo, Luigi Ragni, Alessandra Costanzo and Marco Tartagni
Sensors 2024, 24(19), 6199; https://doi.org/10.3390/s24196199 - 25 Sep 2024
Cited by 4 | Viewed by 4426
Abstract
This paper comprehensively explores the development of a standalone and compact microwave sensing system tailored for automated radio frequency (RF) scattered parameter acquisitions. Coupled with an emitting RF device (antenna, resonator, open waveguide), the system could be used for non-invasive monitoring of external [...] Read more.
This paper comprehensively explores the development of a standalone and compact microwave sensing system tailored for automated radio frequency (RF) scattered parameter acquisitions. Coupled with an emitting RF device (antenna, resonator, open waveguide), the system could be used for non-invasive monitoring of external matter or latent environmental variables. Central to this design is the integration of a NanoVNA and a Raspberry Pi Zero W platform, allowing easy recording of S-parameters (scattering parameters) in the range of the 50 kHz–4.4 GHz frequency band. Noteworthy features include dual recording modes, manual for on-demand acquisitions and automatic for scheduled data collection, powered seamlessly by a single battery source. Thanks to the flexibility of the system’s architecture, which embeds a Linux operating system, we can easily embed machine learning (ML) algorithms and predictive models for information detection. As a case study, the potential application of the integrated sensor system with an RF patch antenna is explored in the context of greenwood hydration detection within the field of smart agriculture. This innovative system enables non-invasive monitoring of wood hydration levels by analyzing scattering parameters (S-parameters). These S-parameters are then processed using ML techniques to automate the monitoring process, enabling real-time and predictive analysis of moisture levels. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture)
Show Figures

Figure 1

21 pages, 3171 KB  
Review
Application of 3D and 4D Printing in Electronics
by Matilde Aronne, Miriam Polano, Valentina Bertana, Sergio Ferrero, Francesca Frascella, Luciano Scaltrito and Simone Luigi Marasso
J. Manuf. Mater. Process. 2024, 8(4), 164; https://doi.org/10.3390/jmmp8040164 - 31 Jul 2024
Cited by 2 | Viewed by 3491
Abstract
Nowadays, additive manufacturing technologies have impacted different engineering sectors. Three- and four-dimensional printing techniques are increasingly used in soft and flexible electronics thanks to the possibility of working contemporarily with several materials on various substrates. The materials portfolio is wide, as well as [...] Read more.
Nowadays, additive manufacturing technologies have impacted different engineering sectors. Three- and four-dimensional printing techniques are increasingly used in soft and flexible electronics thanks to the possibility of working contemporarily with several materials on various substrates. The materials portfolio is wide, as well as printing processes. Shape memory polymers, together with composites, have gained great success in the electronic field and are becoming increasingly popular for fabricating pH, temperature, humidity, and stress sensors that are integrated into wearable, stretchable, and flexible devices, as well as for the fabrication of communication devices, such as antennas. Here, we report an overview of the state of the art about the application of 4D printing technologies and smart materials in electronics. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems, 2nd Volume)
Show Figures

Figure 1

36 pages, 8866 KB  
Article
Force Control of a Haptic Flexible-Link Antenna Based on a Lumped-Mass Model
by María Isabel Haro-Olmo, Luis Mérida-Calvo, Daniel Feliu-Talegón and Vicente Feliu-Batlle
Biomimetics 2024, 9(7), 414; https://doi.org/10.3390/biomimetics9070414 - 7 Jul 2024
Viewed by 1719
Abstract
Haptic organs are common in nature and help animals to navigate environments where vision is not possible. Insects often use slender, lightweight, and flexible links as sensing antennae. These antennae have a muscle-endowed base that changes their orientation and an organ that senses [...] Read more.
Haptic organs are common in nature and help animals to navigate environments where vision is not possible. Insects often use slender, lightweight, and flexible links as sensing antennae. These antennae have a muscle-endowed base that changes their orientation and an organ that senses the applied force and moment, enabling active sensing. Sensing antennae detect obstacles through contact during motion and even recognize objects. They can also push obstacles. In all these tasks, force control of the antenna is crucial. The objective of our research is to develop a haptic robotic system based on a sensing antenna, consisting of a very lightweight and slender flexible rod. In this context, the work presented here focuses on the force control of this device. To achieve this, (a) we develop a dynamic model of the antenna that moves under gravity and maintains point contact with an object, based on lumped-mass discretization of the rod; (b) we prove the robust stability property of the closed-loop system using the Routh stability criterion; and (c) based on this property, we design a robust force control system that performs efficiently regardless of the contact point with the object. We built a mechanical device replicating this sensing organ. It is a flexible link connected at one end to a 3D force–torque sensor, which is attached to a mechanical structure with two DC motors, providing azimuthal and elevation movements to the antenna. Our experiments in contact situations demonstrate the effectiveness of our control method. Full article
(This article belongs to the Special Issue Bionic Design & Lightweight Engineering)
Show Figures

Figure 1

15 pages, 6393 KB  
Article
Flexible Graphene Film-Based Antenna Sensor for Large Strain Monitoring of Steel Structures
by Shun Weng, Jingqi Zhang, Ke Gao, Hongping Zhu and Tingjun Peng
Sensors 2024, 24(13), 4388; https://doi.org/10.3390/s24134388 - 6 Jul 2024
Viewed by 1855
Abstract
In the field of wireless strain monitoring, it is difficult for the traditional metal-made antenna sensor to conform well with steel structures and monitor large strain deformation. To solve this problem, this study proposes a flexible antenna strain sensor based on a ductile [...] Read more.
In the field of wireless strain monitoring, it is difficult for the traditional metal-made antenna sensor to conform well with steel structures and monitor large strain deformation. To solve this problem, this study proposes a flexible antenna strain sensor based on a ductile graphene film, which features a 6.7% elongation at break and flexibility due to the microscopic wrinkle structure and layered stacking structure of the graphene film. Because of the use of eccentric embedding in the feeding form, the sensor can be miniaturized and can simultaneously monitor strain in two directions. The sensing mechanism of the antenna is analyzed using a void model, and an antenna is designed based on operating frequencies of 3 GHz and 3.5 GHz. The embedding size is optimized using a Smith chart and impedance matching principle. Both the simulation and experimental results verify that the resonant frequency and strain magnitude are linearly inversely proportional. The experimental results show that the strain sensitivity is 1.752 kHz/με along the geometric length and 1.780 kHz/με along the width, with correlation coefficients of 0.99173 and 0.99295, respectively. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

25 pages, 3990 KB  
Review
Underground Ink: Printed Electronics Enabling Electrochemical Sensing in Soil
by Kuan-Yu Chen, Jeneel Kachhadiya, Sharar Muhtasim, Shuohao Cai, Jingyi Huang and Joseph Andrews
Micromachines 2024, 15(5), 625; https://doi.org/10.3390/mi15050625 - 7 May 2024
Cited by 11 | Viewed by 3072
Abstract
Improving agricultural production relies on the decisions and actions of farmers and land managers, highlighting the importance of efficient soil monitoring techniques for better resource management and reduced environmental impacts. Despite considerable advancements in soil sensors, their traditional bulky counterparts cause difficulty in [...] Read more.
Improving agricultural production relies on the decisions and actions of farmers and land managers, highlighting the importance of efficient soil monitoring techniques for better resource management and reduced environmental impacts. Despite considerable advancements in soil sensors, their traditional bulky counterparts cause difficulty in widespread adoption and large-scale deployment. Printed electronics emerge as a promising technology, offering flexibility in device design, cost-effectiveness for mass production, and a compact footprint suitable for versatile deployment platforms. This review overviews how printed sensors are used in monitoring soil parameters through electrochemical sensing mechanisms, enabling direct measurement of nutrients, moisture content, pH value, and others. Notably, printed sensors address scalability and cost concerns in fabrication, making them suitable for deployment across large crop fields. Additionally, seamlessly integrating printed sensors with printed antenna units or traditional integrated circuits can facilitate comprehensive functionality for real-time data collection and communication. This real-time information empowers informed decision-making, optimizes resource management, and enhances crop yield. This review aims to provide a comprehensive overview of recent work related to printed electrochemical soil sensors, ultimately providing insight into future research directions that can enable widespread adoption of precision agriculture technologies. Full article
Show Figures

Figure 1

21 pages, 16843 KB  
Article
Coplanar Waveguide (CPW) Loaded with Symmetric Circular and Polygonal Split-Ring Resonator (SRR) Shapes
by Supakorn Harnsoongnoen, Saksun Srisai and Pongsathorn Kongkeaw
Symmetry 2024, 16(5), 534; https://doi.org/10.3390/sym16050534 - 29 Apr 2024
Cited by 2 | Viewed by 4156
Abstract
This paper investigates the performance of coplanar waveguide (CPW) structures loaded with symmetric circular and polygonal split-ring resonators (SRRs) for microwave and RF applications, leveraging their unique electromagnetic properties. These properties make them suitable for metamaterials, sensors, filters, resonators, antennas, and communication systems. [...] Read more.
This paper investigates the performance of coplanar waveguide (CPW) structures loaded with symmetric circular and polygonal split-ring resonators (SRRs) for microwave and RF applications, leveraging their unique electromagnetic properties. These properties make them suitable for metamaterials, sensors, filters, resonators, antennas, and communication systems. The objectives of this study are to analyze the impact of different SRR shapes on the transmission characteristics of CPWs and to explore their potential for realizing compact and efficient microwave components. The CPW-SRR structures are fabricated on a dielectric substrate, and their transmission properties and spectrogram are experimentally characterized in the frequency range of 4 GHz to 10 GHz with the rotation angles of the SRR gap. The simulation results demonstrate that the resonant frequencies and magnitude of the transmission coefficient of the CPW-SRR structures are influenced by the geometry of the SRR shapes and the rotation angles of the SRR gap, with certain shapes exhibiting enhanced performance characteristics compared to others. Moreover, the symmetric circular and polygonal SRRs offer design flexibility and enable the realization of miniaturized microwave components with improved performance metrics. Overall, this study provides valuable insights into the design and optimization of CPW-based microwave circuits utilizing symmetric SRR shapes, paving the way for advancements in the miniaturization and integration of RF systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop