Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris
Abstract
:1. Introduction
2. Basic Methods
- (1)
- Obtain measurement data;
- (2)
- Preprocess measurement data to eliminate outliers;
- (3)
- Set parameters for each dynamic model;
- (4)
- Obtain the initial position velocity, and bring it into the mechanical model to obtain the acceleration for orbit integration calculations;
- (5)
- Obtain orbit prediction at the target time, incorporate observation values, and use appropriate algorithms for iterative calculations. In this experiment, the least squares method was applied to calculate the correction using observed data;
- (6)
- Calculate the difference between the position vector obtained from the iteration of the epoch time and the observation data. Determine whether the difference is less than the preset convergence limit, and, if it is less, the orbit determination calculation is completed. It is also possible to determine whether the orbit determination calculation is completed by iteratively calculating the correction value. If the correction value is less than the preset convergence limit, the orbit determination calculation is completed. This experiment uses correction values to determine convergence.
- (1)
- Obtain the initial range velocity (IRV). In this experiment, IRV refers to the position and velocity parameters of the experimental target at the beginning of the prediction;
- (2)
- Bring this IRV into the mechanical model to calculate the acceleration value of targets at this epoch;
- (3)
- Incorporate the position parameters, velocity parameters, and acceleration values into the orbit integrator to calculate the position and velocity parameters 30 s afterward. This experiment uses an Adam Cowell integrator with an integration period of 30 s;
- (4)
- From step 3, we can obtain new position and velocity parameters. Introduce new positional velocity parameters into the dynamic model to obtain the acceleration values at the new epoch;
- (5)
- Incorporate the position parameters, velocity parameters, and acceleration values obtained from step 4 into the orbit integrator to calculate position and velocity parameters 30 s afterwards;
- (6)
- Repeat steps 4 and 5 until the target time position is reached.
3. Selection of Experimental Data
- The 70-order JGM3 Earth gravity field model is used for the Earth gravity calculation [42];
- The planetary ephemeris DE200 provided by the Jet Propulsion Laboratory (JPL) of the United States is used to calculate the gravity of the solar, lunar, and other celestial bodies [43];
- The relativistic perturbation can be calculated using the following equation [44]:
- The non-conservative force solar light pressure and the Earth radiation pressure are related to the Sun–Earth position and the solar flux intensity; This study computes the Earth radiation pressure according to a Ph.D. dissertation by Knocke P, 1989 [45]; The solar radiation pressure in this study is modeled by the following equations [46]:k is the Earth shadow factor;is the unit vector from the satellite to the Sun;, , and the area-to-mass-ratio can be treated as the parameters related to the space target;Au is the astronomical unit in meters;r is the distance between the satellite and the Sun in meters;Ps is the solar radiation pressure near the Earth;
- The Cowell numerical integration method is adopted for integration calculation, and the calculation is carried out in 30 s steps;
- The initial orbit state vector calculated for orbit determination includes the position vector and the velocity vector at the initial time, both of which are calculated according to the TLE (tow line element) published by NORAD.
4. Data-Processing Results
5. Discussion
6. Conclusions
- The advantages and disadvantages of atmospheric density models vary at different orbital altitudes. For multi-station laser ranging data, the best-performing atmospheric density models at an altitude of 425 km are DTM2000 and RJ71; the best-performing atmospheric density model at an altitude of 485 km is NRLMSISE00; the best-performing atmospheric density model at an altitude of 720 km is JB2006; the best-performing atmospheric density model at an altitude of 815 km is DTM2000; and the best-performing atmospheric density model at an altitude of 1490 km is JB2006.
- For single-station laser ranging data from station number 7090, the best-performing atmospheric density model at an altitude of 485 km is DTM94; the best-performing atmospheric density model at an altitude of 720 km is JB2006; and the best-performing atmospheric density model at an altitude of 1490 km is MSIS86.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namgaladze, A.A.; Korenkov, Y.N.; Klimenko, V.V.; Karpov, I.V.; Bessarab, F.S.; Surotkin, V.A.; Glushchenko, T.A.; Naumova, N.M. Global model of the thermosphere-ionosphere-protonosphere system. Pure Appl. Geophys. 1988, 127, 219–254. [Google Scholar] [CrossRef]
- Vallado, D.A.; Finkleman, D. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut. 2014, 95, 141–165. [Google Scholar] [CrossRef]
- Picone, J.M.; Emmert, J.T.; Lean, J.L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets. J. Geophys. Res. Atmos. 2005, 110, A03301. [Google Scholar] [CrossRef]
- Schlegel, K.; Lühr, H.; St.-Maurice, J.-P.; St.-Maurice, J.-P.; Crowley, G.; Hackert, C. Thermospheric density structures over the polar regions observed with CHAMP. Ann. Geophys. 2005, 23, 1659–1672. [Google Scholar] [CrossRef]
- Ridley, A.; Deng, Y.; Tóth, G. The global ionosphere–thermosphere model. J. Atmos. Sol.-Terr. Phys. 2006, 68, 839–864. [Google Scholar] [CrossRef]
- Hedin, A.E.; Salah, J.E.; Evans, J.V.; Reber, C.A.; Newton, G.P.; Spencer, N.W.; Kayser, D.C.; Alcaydé, D.; Bauer, P.; Cogger, L.; et al. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 1. N2 density and temperature. J. Geophys. Res. Atmos. 1977, 82, 2139–2147. [Google Scholar] [CrossRef]
- Hedin, A.E. A Revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J. Geophys. Res. Atmos. 1983, 88, 10170–10188. [Google Scholar] [CrossRef]
- Hedin, A.E. MSIS-86 thermospheric model. J. Geophys. Res. Space Phys. 1987, 92, 4649–4662. [Google Scholar] [CrossRef]
- Nicholas, A.; Picone, J.; Thonnard, S.; Meier, R.; Dymond, K.; Drob, D. A methodology for using optimal MSIS parameters retrieved from SSULI data to compute satellite drag on LEO objects. J. Atmos. Sol.-Terr. Phys. 2000, 62, 1317–1326. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, SIA-15. [Google Scholar] [CrossRef]
- Barlier, F.; Berger, C.; Falin, J.L.; Kockarts, G.; Thuillier, G. A thermospheric model based on satellite drag data. Ann. Géophysique 1978, 34, 9–24. [Google Scholar]
- Roberts, C.E. An analytic model for upper atmosphere densities based upon Jacchia’s 1970 models. Celest. Mech. Dyn. Astron. 1971, 4, 368–377. [Google Scholar] [CrossRef]
- Jacchia, L.G. Variations in thermospheric composition: A model based on mass spectrometer and satellite drag data. J. Geophys. Res. Atmos. 1974, 79, 1923–1927. [Google Scholar] [CrossRef]
- Bowman, B.R.; Tobiska, W.K.; Marcos, F.A.; Valladares, C. The JB2006 empirical thermospheric density model. J. Atmos. Sol.-Terr. Phys. 2008, 70, 774–793. [Google Scholar] [CrossRef]
- Berger, C.; Biancale, R.; Barlier, F.; Ill, M. Improvement of the empirical thermospheric model DTM: DTM94—A comparative review of various temporal variations and prospects in space geodesy applications. J. Geod. 1998, 72, 161–178. [Google Scholar] [CrossRef]
- Bruinsma, S.L.; Sánchez-Ortiz, N.; Olmedo, E.; Guijarro, N. Evaluation of the DTM-2009 thermosphere model for benchmarking Purposes. Space Weather Space Clim. 2012, 2, A04. [Google Scholar] [CrossRef]
- Bruinsma, S. The DTM-2013 thermosphere model. J. Space Weather Space Clim. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Wei, L.I.; Jiancun, G.O.; Siqing, L.I.; Ronglan, W.A. Assessment of thermosphere models based on orbit prediction. Chin. J. Space Sci. 2019, 39, 757–763. (In Chinese) [Google Scholar]
- Qiu, H.; Wu, L.; Zhang, W. Comparison of atmospheric density models for LEO satellite orbit determination and orbit forecast. J. Spacecr. TT&C Technol. 2006, 25, 12–18. (In Chinese) [Google Scholar]
- Liu, W.; Wang, R.; Liu, S. Accuracy Analysis of LEO Forecast under Four Typical Space Environment. Manned Spacefl. 2017, 23, 177–184. (In Chinese) [Google Scholar] [CrossRef]
- Available online: ftp://edc.dgfi.tum.de/pub/slr/data/npt_crd/ (accessed on 3 April 2022).
- Licata, R.J.; Mehta, P.M.; Tobiska, W.K. Impact of Space Weather Driver Forecast Uncertainty on Drag and Orbit Prediction. In Proceedings of the 2020 AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, CA, USA, 9–13 August 2020. [Google Scholar]
- Wang, K.; Liu, J.; Su, H.; El-Mowafy, A.; Yang, X. Real-Time LEO Satellite Orbits Based on Batch Least-Squares Orbit Determination with Short-Term Orbit Prediction. Remote Sens. 2022, 15, 133. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Wen, G.; Bai, S.; Cai, Y.; Huang, P.; Han, D. Atmospheric Density Model Optimization and Spacecraft Orbit Prediction Improvements Based on Q-Sat Orbit Data. arXiv 2021, arXiv:2112.03113. [Google Scholar] [CrossRef]
- Bussy-Virat, C.D.; Ridley, A.J. Estimation of the thermospheric density using ephemerides of the CYGNSS and Swarm constellations. J. Atmos. Sol.-Terr. Phys. 2021, 221, 105687. [Google Scholar] [CrossRef]
- Cordelli, E.; Vananti, A.; Schildknecht, T. Analysis of laser ranges and angular measurements data fusion for space debris orbit determination. Adv. Space Res. 2019, 65, 419–434. [Google Scholar] [CrossRef]
- Hobbs, D.; Bohm, P. Precise Orbit Determination for Low Earth Orbit Satellites. Ann. Marie Curie Fellowsh. Assoc. 2006, 4, 128–135. [Google Scholar]
- Müller, S.; Lühr, H.; Rentz, S. Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann. Geophys. 2009, 27, 2087–2099. [Google Scholar] [CrossRef]
- Walterscheid, R.L. Solar cycle effects on the upper atmosphere—Implications for satellite drag. J. Spacecr. Rocket. 1989, 26, 439–444. [Google Scholar] [CrossRef]
- Ponthieu, J.-J.; Killeen, T.L.; Lee, K.-M.; Carignan, G.R.; Hoegy, W.R.; Brace, L.H. Ionosphere-thermosphere momentum coupling at solar maximum and solar minimum from DE-2 and AE-C data. Phys. Scr. 1988, 37, 447–453. [Google Scholar] [CrossRef]
- Qian, L.; Burns, A.G.; Solomon, S.C.; Wang, W.; Zhang, Y. Solar cycle variations of thermospheric composition at the solstices. J. Geophys. Res. Space Phys. 2016, 121, 3740–3749. [Google Scholar] [CrossRef]
- Buonsanto, M.J.; Solomon, S.C.; Tobiska, W.K. Comparison of measured and modeled solar EUV flux and its effect on the E-F1 region ionosphere. J. Geophys. Res. Atmos. 1992, 97, 10513–10524. [Google Scholar] [CrossRef]
- Hedin, A.E. Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations. J. Geophys. Res. Atmos. 1984, 89, 9828–9834. [Google Scholar] [CrossRef]
- Tobiska, W.K.; Bouwer, S.D.; Bowman, B.R. The development of new solar indices for use in thermospheric density modeling. J. Atmos. Sol.-Terr. Phys. 2008, 70, 803–819. [Google Scholar] [CrossRef]
- Emmert, J.T.; Lean, J.L.; Picone, J.M. Record-low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett. 2010, 37, 245–269. [Google Scholar] [CrossRef]
- Available online: http://celestrak.org/SpaceData/ (accessed on 3 July 2023).
- Available online: https://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/index.html (accessed on 16 August 2023).
- Available online: https://www.space-track.org/#/gp (accessed on 16 August 2023).
- Sang, J.; Li, B.; Chen, J.; Zhang, P.; Ning, J. Analytical representations of precise orbit predictions for Earth orbiting space objects. Adv. Space Res. 2016, 59, 698–714. [Google Scholar] [CrossRef]
- Li, B.; Sang, J.; Zhang, Z. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris. Sensors 2016, 16, 962. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Sang, J.; Ning, J. A multiscaling-based semi-analytic orbit propagation method for the catalogue maintenance of space debris. J. Spat. Sci. 2020, 65, 123–145. [Google Scholar] [CrossRef]
- Sośnica, K.; Thaller, D.; Jäggi, A.; Dach, R.; Beutler, G. Sensitivity of Lageos Orbits to Global Gravity Field Models. Artif. Satell. 2012, 47, 47–65. [Google Scholar] [CrossRef]
- Standish, E.M. Orientation of the JPL Ephemerides, DE 200/LE 200, to the dynamical equinox of J 2000. Astron. Astrophys. 1982, 114, 297–302. [Google Scholar]
- McCarthy, D.D. IERS Conventions 1996; IERS Technical Note 21; U.S. Naval Observatory: Washington, DC, USA, 1996. [Google Scholar]
- Knocke, P.C. Earth Radiation Pressure Effects on Satellites. Ph.D. Theis, The University of Texas at Austin, Austin, TX, USA, 1989. [Google Scholar]
- Belkin, S.O.; Kuznetsov, E.D. Orbital flips due to solar radiation pressure for space debris in near-circular orbits. Acta Astronaut. 2021, 178, 360–369. [Google Scholar] [CrossRef]
Name | NORADID | Apogee/km | Orbit | Inclination/° | Windward Area/m2 | Mass/kg |
---|---|---|---|---|---|---|
SpinSat | 40,314 | 425 | Circle | 51.6 | 0.2452 | 52.65 |
GRACE-A | 27,391 | 485 | Circle | 89 | 1.005~1.06 | 432 |
CryoSat-2 | 36,508 | 720 | Circle | 92 | 1.5648 | 711 |
Stella | 22,824 | 804 | Near Circle | 98.6 | 0.4524 | 48 |
Ajisai | 16,908 | 1490 | Circle | 50 | 3.6305 | 685 |
Day of Year | DTM78 (m) | DTM94 (m) | DTM2000 (m) | J71 (m) | RJ71 (m) | MSIS86 (m) | NRLMSISE00 (m) | JB2006 (m) |
---|---|---|---|---|---|---|---|---|
4 | 1931.600133 | 3079.920804 | 1458.919706 | 2116.757042 | 2079.199273 | 1763.564414 | 1947.077307 | None |
7 | 2413.552003 | 1449.132559 | 7373.937369 | 2428.190075 | 2541.417706 | 5225.252596 | 4168.514523 | None |
10 | 6523.702123 | 4318.961777 | 6975.571103 | 7509.519426 | 7584.702847 | 6534.514692 | 6453.941776 | None |
13 | 878.6535121 | 1569.094311 | 186.8271987 | 1168.365429 | 1184.146046 | 348.8813334 | 732.8545937 | None |
16 | 4732.151926 | 1248.865147 | 3901.123424 | 4848.155709 | 4833.616385 | 4067.938681 | 4417.50813 | None |
19 | 5333.990435 | 1918.635851 | 3617.147013 | 5489.835638 | 5448.790281 | 4725.461779 | 4862.629035 | None |
22 | 1195.261982 | 3492.042957 | 2231.433994 | 1507.844551 | 1534.013338 | 1402.649516 | 1546.57513 | None |
25 | 2774.171141 | 1602.739092 | 2233.519238 | 2363.856728 | 2344.851527 | 2760.252276 | 2477.83181 | None |
28 | 3569.166135 | 3059.533481 | 2987.73538 | 3768.047339 | 3764.942462 | 3380.587181 | 3582.752166 | None |
31 | 3743.680387 | 1925.404499 | 2369.868958 | 3689.234171 | 3658.263772 | 3411.715633 | 3373.188497 | None |
34 | 4704.853081 | 2050.631091 | 2429.282375 | 3981.901854 | 3927.73963 | 4354.482803 | 4091.370207 | None |
37 | 1220.040145 | 407.3317976 | 377.0501051 | 179.8727984 | 165.5032465 | 671.248745 | 511.4899832 | None |
46 | 1831.734102 | 889.4722385 | 1495.626767 | 1970.517863 | 1926.734394 | 1743.008323 | 1811.290293 | None |
49 | 7680.866673 | 8635.615291 | 8246.155763 | 7455.445173 | 7511.144962 | 7610.631855 | 7632.910916 | None |
52 | 2597.16714 | 1569.410387 | 1605.946106 | 2860.033677 | 2790.721418 | 2703.001168 | 2687.572104 | None |
55 | 7656.145474 | 8490.292897 | 8117.931219 | 7541.922492 | 7558.769213 | 7581.568843 | 7560.633819 | None |
85 | 2360.890646 | 2459.110409 | 3800.377898 | 2652.62701 | 2691.752874 | 2253.842598 | 2335.697072 | None |
100 | 11,636.09167 | 10,427.33168 | 11,430.33493 | 11,445.45271 | 11,421.74373 | 11,604.20247 | 11,547.13792 | None |
109 | 11,424.47437 | 9916.908893 | 8437.244075 | 11,491.33912 | 11,452.2517 | 10,836.0404 | 10,916.44246 | None |
112 | 7181.635438 | 9147.320387 | 10,179.04015 | 8196.492788 | 8227.888443 | 7768.549827 | 7818.857253 | None |
115 | 12,757.81725 | 10,045.68352 | 7822.872368 | 11,273.22851 | 11,247.70294 | 12,250.68636 | 12,074.74769 | None |
124 | 932.5633444 | 814.011423 | 1349.889184 | 1265.836975 | 1240.740571 | 737.3913414 | 642.4145322 | None |
142 | 15,895.02702 | 17,169.73294 | 14,002.43708 | 15,879.05673 | 15,799.69467 | 15,280.89231 | 15,263.56853 | None |
145 | 830.95509 | 1968.245401 | 2114.269351 | 994.4573895 | 1004.565394 | 1002.741409 | 940.1047626 | None |
148 | 581.2062897 | 642.9255554 | 2177.784802 | 629.8109069 | 629.9201598 | 704.3030868 | 657.0174016 | None |
151 | 1211.973606 | 988.409299 | 556.9590948 | 931.7087737 | 947.4996212 | 1072.230125 | 1038.708581 | None |
154 | 789.1508336 | 619.5120045 | 352.9180023 | 604.809844 | 643.0717759 | 840.0688151 | 672.8206851 | None |
157 | 2883.022325 | 2525.966774 | 3323.514894 | 3009.237086 | 2964.038334 | 2692.66321 | 2863.215203 | None |
160 | 11,798.37263 | 11,128.4576 | 11,517.00753 | 11,835.79413 | 11,792.88253 | 11,909.58912 | 11,889.76281 | None |
163 | 1889.706197 | 1766.398949 | 2484.120815 | 1703.919178 | 1718.600351 | 1389.751668 | 1694.680473 | None |
166 | 3758.600669 | 5197.474592 | 1698.531248 | 3469.507424 | 3468.187086 | 4570.164283 | 4267.055289 | None |
178 | 6743.051 | 7119.971186 | 7569.97595 | 6305.745448 | 6316.016906 | 6805.619408 | 6677.656748 | None |
181 | 6793.72063 | 6051.937709 | 5905.723973 | 6953.320515 | 6946.827446 | 6683.637648 | 6704.240135 | None |
190 | 362.4262961 | 504.1228635 | 573.7563068 | 138.1085118 | 140.5458193 | 397.175753 | 243.0272944 | None |
199 | 4058.895637 | 3380.960822 | 3700.687258 | 4045.152743 | 3995.112412 | 3936.560189 | 3894.248654 | None |
202 | 2693.146161 | 1725.500802 | 2405.482228 | 2583.293282 | 2548.014167 | 2253.71296 | 2272.572876 | None |
205 | 3768.638487 | 4312.106629 | 3708.680637 | 3883.418707 | 3886.545139 | 3795.290052 | 3728.824543 | None |
208 | 1627.227411 | 1878.738075 | 1024.786763 | 1673.68751 | 1670.832731 | 1579.634453 | 1533.613801 | None |
211 | 1180.538253 | 806.5945208 | 1820.368453 | 824.4971614 | 846.3165552 | 1335.26865 | 1222.439084 | None |
214 | 354.7834503 | 498.5327752 | 796.0710677 | 365.5853363 | 355.1858976 | 677.7189817 | 479.4927719 | None |
217 | 2982.863162 | 2943.435226 | 3015.421628 | 2829.626528 | 2865.154406 | 3215.472864 | 3131.683215 | None |
220 | 5280.901633 | 4798.360784 | 5471.066765 | 4884.023698 | 4850.413792 | 4764.003451 | 4712.07914 | None |
223 | 5841.227621 | 5440.541323 | 5389.325079 | 6247.024148 | 6222.983625 | 6294.259962 | 6573.475359 | None |
232 | 2464.611291 | 2945.164304 | 2890.109141 | 2556.961499 | 2569.458218 | 2516.085143 | 2543.160569 | None |
235 | 2462.61968 | 2768.264944 | 2783.260805 | 2531.838449 | 2544.492688 | 2303.792588 | 2442.334603 | None |
238 | 3525.873948 | 3249.666221 | 3284.946579 | 3570.243744 | 3567.128888 | 3324.488449 | 3395.378844 | None |
241 | 4290.110658 | 5908.756547 | 6039.836157 | 4571.28022 | 4595.245094 | 5396.097679 | 5247.266835 | None |
244 | 445.0045812 | 1039.234089 | 1187.321279 | 631.2764643 | 645.777949 | 711.9517264 | 748.6355443 | None |
247 | 5188.714791 | 4664.543176 | 4446.207533 | 4775.978815 | 4761.820946 | 4772.874603 | 4743.768285 | None |
250 | 962.5071078 | 915.6541998 | 751.6987707 | 709.7216693 | 708.1754737 | 794.7870124 | 781.5375739 | None |
277 | 4415.028285 | 6162.817672 | 5850.337504 | 4946.86744 | 4984.38439 | 4723.122808 | 4796.552915 | None |
280 | 3479.326832 | 2862.906281 | 3141.925644 | 3194.272299 | 3182.501624 | 3370.330644 | 3324.178701 | None |
283 | 14,380.75618 | 14,919.46064 | 14,254.47307 | 14,973.85354 | 14,972.03744 | 14,564.98197 | 14,610.56452 | None |
286 | 7715.086151 | 7684.165182 | 8269.420855 | 7535.406173 | 7550.867783 | 7720.544424 | 7712.679961 | None |
289 | 1853.708908 | 1562.230413 | 3254.182394 | 1687.526303 | 1736.083023 | 1858.457603 | 1898.565426 | None |
292 | 12,071.70545 | 11,193.74813 | 14,047.09718 | 11,459.18475 | 11,529.01707 | 12,072.6877 | 12,147.0764 | None |
295 | 2366.193566 | 1287.840352 | 4650.255211 | 2302.487535 | 2283.016581 | 2423.567814 | 2321.464863 | None |
298 | 3455.771606 | 4916.251338 | 312.1307575 | 3667.102817 | 3671.81249 | 3279.71035 | 3429.087875 | None |
301 | 2654.726524 | 3442.258596 | 1140.981472 | 2565.748038 | 2599.176146 | 2874.191043 | 2839.872177 | None |
304 | 2620.823237 | 2773.493033 | 2152.471575 | 3050.380065 | 2997.998836 | 2444.734105 | 2566.006423 | None |
307 | 4526.15703 | 5529.274445 | 6878.556217 | 4498.979455 | 4582.189076 | 4729.666843 | 4455.28715 | None |
319 | 7820.199407 | 9510.78637 | 10083.96285 | 8586.681294 | 8611.426113 | 8959.493111 | 8762.753366 | None |
322 | 3619.487502 | 3064.643892 | 616.4473538 | 2438.125387 | 2418.368213 | 2749.788236 | 2619.950892 | None |
325 | 8792.96411 | 9704.18663 | 4119.912245 | 7680.191562 | 7665.423885 | 8328.169259 | 7986.019216 | None |
328 | 3449.395612 | 6271.79717 | 279.4746186 | 2497.473109 | 2518.442123 | 3601.928059 | 3365.094898 | None |
331 | 217.9783104 | 2910.17943 | 3312.678835 | 861.1899993 | 835.6972508 | 180.4582137 | 168.7785088 | None |
334 | 941.8044225 | 1786.292102 | 2007.639369 | 1247.93625 | 1210.451103 | 963.2524674 | 733.4894426 | None |
337 | 3680.017576 | 4334.610395 | 3531.894377 | 3114.393267 | 3121.323663 | 3219.553245 | 3405.502959 | None |
340 | 9437.666525 | 8727.028693 | 7116.148402 | 9319.746918 | 9313.644902 | 9809.397596 | 9664.515033 | None |
343 | 4884.999263 | 5503.695338 | 7342.026747 | 4839.368191 | 4817.709983 | 4684.456979 | 4677.949205 | None |
346 | 6950.305951 | 7938.067944 | 4047.450982 | 6649.403855 | 6703.780536 | 6794.532829 | 6973.470208 | None |
349 | 11,322.25148 | 10,726.56432 | 10,350.80818 | 11,221.36822 | 11,278.78786 | 11,288.75473 | 11,397.6071 | None |
352 | 7371.244204 | 8101.553627 | 6221.025583 | 7244.05491 | 7208.557565 | 7186.48702 | 7277.367959 | None |
Day of Year | DTM78 | DTM94 | DTM2000 | J71 | RJ71 | MSIS86 | NRLMSISE00 | JB2006 |
---|---|---|---|---|---|---|---|---|
4 | 6 | 2 | 8 | 3 | 4 | 7 | 5 | 1 |
7 | 7 | 8 | 2 | 6 | 5 | 3 | 4 | 1 |
10 | 6 | 8 | 4 | 3 | 2 | 5 | 7 | 1 |
13 | 5 | 2 | 8 | 4 | 3 | 7 | 6 | 1 |
16 | 4 | 8 | 7 | 2 | 3 | 6 | 5 | 1 |
19 | 4 | 8 | 7 | 2 | 3 | 6 | 5 | 1 |
22 | 8 | 2 | 3 | 6 | 5 | 7 | 4 | 1 |
25 | 2 | 8 | 7 | 5 | 6 | 3 | 4 | 1 |
28 | 5 | 7 | 8 | 2 | 3 | 6 | 4 | 1 |
31 | 2 | 8 | 7 | 3 | 4 | 5 | 6 | 1 |
34 | 2 | 8 | 7 | 5 | 6 | 3 | 4 | 1 |
37 | 2 | 5 | 6 | 7 | 8 | 3 | 4 | 1 |
46 | 4 | 8 | 7 | 2 | 3 | 6 | 5 | 1 |
49 | 4 | 2 | 3 | 8 | 7 | 6 | 5 | 1 |
52 | 6 | 8 | 7 | 2 | 3 | 4 | 5 | 1 |
55 | 4 | 2 | 3 | 8 | 7 | 5 | 6 | 1 |
85 | 6 | 5 | 2 | 4 | 3 | 8 | 7 | 1 |
100 | 2 | 8 | 6 | 5 | 7 | 3 | 4 | 1 |
109 | 4 | 7 | 8 | 2 | 3 | 6 | 5 | 1 |
112 | 8 | 3 | 2 | 5 | 4 | 7 | 6 | 1 |
115 | 2 | 7 | 8 | 5 | 6 | 3 | 4 | 1 |
124 | 5 | 6 | 2 | 3 | 4 | 7 | 8 | 1 |
142 | 3 | 2 | 8 | 4 | 5 | 6 | 7 | 1 |
145 | 8 | 3 | 2 | 6 | 4 | 5 | 7 | 1 |
148 | 8 | 5 | 2 | 7 | 6 | 3 | 4 | 1 |
151 | 2 | 5 | 8 | 7 | 6 | 3 | 4 | 1 |
154 | 3 | 6 | 8 | 7 | 5 | 2 | 4 | 1 |
157 | 5 | 8 | 2 | 3 | 4 | 7 | 6 | 1 |
160 | 5 | 8 | 7 | 4 | 6 | 2 | 3 | 1 |
163 | 3 | 4 | 2 | 6 | 5 | 8 | 7 | 1 |
166 | 5 | 2 | 8 | 6 | 7 | 3 | 4 | 1 |
178 | 5 | 3 | 2 | 8 | 7 | 4 | 6 | 1 |
181 | 4 | 7 | 8 | 2 | 3 | 6 | 5 | 1 |
190 | 5 | 3 | 2 | 8 | 7 | 4 | 6 | 1 |
199 | 2 | 8 | 7 | 3 | 4 | 5 | 6 | 1 |
202 | 2 | 8 | 5 | 3 | 4 | 7 | 6 | 1 |
205 | 6 | 2 | 8 | 4 | 3 | 5 | 7 | 1 |
208 | 5 | 2 | 8 | 3 | 4 | 6 | 7 | 1 |
211 | 5 | 8 | 2 | 7 | 6 | 3 | 4 | 1 |
214 | 8 | 4 | 2 | 6 | 7 | 3 | 5 | 1 |
217 | 5 | 6 | 4 | 8 | 7 | 2 | 3 | 1 |
220 | 3 | 6 | 2 | 4 | 5 | 7 | 8 | 1 |
223 | 6 | 7 | 8 | 4 | 5 | 3 | 2 | 1 |
232 | 8 | 2 | 3 | 5 | 4 | 7 | 6 | 1 |
235 | 6 | 3 | 2 | 5 | 4 | 8 | 7 | 1 |
238 | 4 | 8 | 7 | 2 | 3 | 6 | 5 | 1 |
241 | 8 | 3 | 2 | 7 | 6 | 4 | 5 | 1 |
244 | 8 | 3 | 2 | 7 | 6 | 5 | 4 | 1 |
247 | 2 | 7 | 8 | 3 | 5 | 4 | 6 | 1 |
250 | 2 | 3 | 6 | 7 | 8 | 4 | 5 | 1 |
277 | 8 | 2 | 3 | 5 | 4 | 7 | 6 | 1 |
280 | 2 | 8 | 7 | 5 | 6 | 3 | 4 | 1 |
283 | 7 | 4 | 8 | 2 | 3 | 6 | 5 | 1 |
286 | 4 | 6 | 2 | 8 | 7 | 3 | 5 | 1 |
289 | 5 | 8 | 2 | 7 | 6 | 4 | 3 | 1 |
292 | 5 | 8 | 2 | 7 | 6 | 4 | 3 | 1 |
295 | 4 | 8 | 2 | 6 | 7 | 3 | 5 | 1 |
298 | 5 | 2 | 8 | 4 | 3 | 7 | 6 | 1 |
301 | 5 | 2 | 8 | 7 | 6 | 3 | 4 | 1 |
304 | 5 | 4 | 8 | 2 | 3 | 7 | 6 | 1 |
307 | 6 | 3 | 2 | 7 | 5 | 4 | 8 | 1 |
319 | 8 | 3 | 2 | 7 | 6 | 4 | 5 | 1 |
322 | 2 | 3 | 8 | 6 | 7 | 4 | 5 | 1 |
325 | 3 | 2 | 8 | 6 | 7 | 4 | 5 | 1 |
328 | 4 | 2 | 8 | 7 | 6 | 3 | 5 | 1 |
331 | 6 | 3 | 2 | 4 | 5 | 7 | 8 | 1 |
334 | 7 | 3 | 2 | 4 | 5 | 6 | 8 | 1 |
337 | 3 | 2 | 4 | 8 | 7 | 6 | 5 | 1 |
340 | 4 | 7 | 8 | 5 | 6 | 2 | 3 | 1 |
343 | 4 | 3 | 2 | 5 | 6 | 7 | 8 | 1 |
346 | 4 | 2 | 8 | 7 | 6 | 5 | 3 | 1 |
349 | 3 | 7 | 8 | 6 | 5 | 4 | 2 | 1 |
352 | 3 | 2 | 8 | 5 | 6 | 7 | 4 | 1 |
Model | DTM78 | DTM94 | DTM2000 | MSIS86 | NRLMSISE00 | J71 | RJ71 | JB2006 | |
---|---|---|---|---|---|---|---|---|---|
Target | |||||||||
SpinSat (425 km) | 341 | 360 | 377 | 368 | 373 | 358 | 378 | 73 | |
GRACE-A (425 km) | 493 | 486 | 499 | 500 | 515 | 501 | 499 | 179 | |
CryoSat2 (720 km) | 471 | 472 | 499 | 473 | 486 | 519 | 500 | 540 | |
Stella (804 km) | 489 | 493 | 524 | 514 | 509 | 494 | 493 | 516 | |
Ajisai (1490 km) | 458 | 404 | 449 | 409 | 435 | 423 | 457 | 493 |
Model | DTM78 | DTM94 | DTM2000 | MSIS86 | NRLMSISE00 | J71 | RJ71 | JB2006 | |
---|---|---|---|---|---|---|---|---|---|
Target | |||||||||
GRACE-A (485 km) | 358 | 391 | 376 | 373 | 384 | 360 | 366 | 154 | |
CryoSat2 (720 km) | 344 | 375 | 405 | 392 | 401 | 409 | 419 | 444 | |
Ajisai (1490 km) | 504 | 423 | 520 | 535 | 524 | 504 | 529 | 457 |
Model | Score |
---|---|
DTM2000 | 3649 |
RJ71 | 3641 |
NRLMSISE00 | 3627 |
J71 | 3568 |
MSIS86 | 3564 |
DTM78 | 3458 |
DTM94 | 3404 |
JB2006 | 2856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Li, Z.; Liu, C.; Kang, Z.; Sun, M.; Sun, J.; Chen, L. Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris. Sensors 2023, 23, 8993. https://doi.org/10.3390/s23218993
Ding Y, Li Z, Liu C, Kang Z, Sun M, Sun J, Chen L. Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris. Sensors. 2023; 23(21):8993. https://doi.org/10.3390/s23218993
Chicago/Turabian StyleDing, Yigao, Zhenwei Li, Chengzhi Liu, Zhe Kang, Mingguo Sun, Jiannan Sun, and Long Chen. 2023. "Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris" Sensors 23, no. 21: 8993. https://doi.org/10.3390/s23218993
APA StyleDing, Y., Li, Z., Liu, C., Kang, Z., Sun, M., Sun, J., & Chen, L. (2023). Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris. Sensors, 23(21), 8993. https://doi.org/10.3390/s23218993