Atomic Magnetometer Achieves Visual Salience Analysis in Drosophila
Abstract
:1. Introduction
2. SERF AM
3. Results
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waddell, S.; Quinn, W.G. Flies, genes, and learning. Annu. Rev. Neurosci. 2001, 24, 1283–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dill, M.; Heisenberg, M. Visual pattern memory without shape recognition. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1995, 349, 143–152. [Google Scholar]
- Liu, L.; Wolf, R.; Ernst, R.; Heisenberg, M. Context generalization in drosophila visual learning requires the mushroom bodies. Nature 1999, 400, 753–756. [Google Scholar] [CrossRef] [PubMed]
- van Swinderen, B.; Greenspan, R.J. Salience modulates 20–30 Hz brain activity in drosophila. Nat. Neurosci. 2003, 6, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Juusola, M. Intrinsic activity in the fly brain gates visual information during behavioral choices. PLoS ONE 2010, 5, e14455. [Google Scholar] [CrossRef] [Green Version]
- Swinderen, B.V.; Nitz, D.A.; Greenspan, R.J. Uncoupling of brain activity from movement defines arousal states in drosophila. Curr. Biol. 2004, 14, 81–87. [Google Scholar] [CrossRef]
- van Swinderen, B. Attention-like processes in drosophila require short-term memory genes. Science 2007, 315, 1590–1593. [Google Scholar] [CrossRef]
- van Swinderen, B.; McCartney, A.; Kauffman, S.; Flores, K.; Kunal, A.; Wagner, J.; Paulk, A. Shared visual attention and memory systems in the drosophila brain. PLoS ONE 2009, 4, e5989. [Google Scholar] [CrossRef]
- Wolf, R.; Wittig, T.; Liu, L.; Wustmann, G.; Eyding, D.; Heisenberg, M. Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn. Mem. 1998, 5, 166–178. [Google Scholar] [CrossRef]
- Wu, Z.; Gong, Z.; Feng, C.; Guo, A. An emergent mechanism of selective visual attention in drosophila. Biol. Cybern. 2000, 82, 61–68. [Google Scholar] [CrossRef]
- Araújo, D.B.D.; Baffa, O.; Wakai, R.T. Theta oscillations and human navigation: A magnetoencephalography study. J. Cogn. Neurosci. 2002, 14, 70–78. [Google Scholar] [CrossRef]
- Barry, D.N.; Tierney, T.M.; Holmes, N.; Boto, E.; Roberts, G.; Leggett, J.; Bowtell, R.; Brookes, M.J.; Barnes, G.R.; Maguire, E.A. Imaging the human hippocampus with optically-pumped magnetoencephalography. Neuroimage 2019, 203, 116192. [Google Scholar] [CrossRef] [PubMed]
- Joon, L.H.; Hyun, S.J.; Seb, M.H.; Kiwoong, K. Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback. Opt. Express 2014, 22, 19887–19894. [Google Scholar]
- Li, R.; Perrella, C.; Luiten, A. Repumping atomic media for an enhanced sensitivity atomic magnetometer. Opt. Express 2022, 30, 31752–31765. [Google Scholar] [CrossRef] [PubMed]
- Bozheng, X.; Chang, S.; Ziao, L.; Junpeng, Z.; Jixi, L.; Bangcheng, H.; Ming, D. Probe noise characteristics of the spin-exchange relaxation-free (SERF) magnetometer. Opt. Express 2021, 29, 5055–5067. [Google Scholar]
- Han, Y.; Yang, L.; Danyue, M.; Jiashu, C.; Junpeng, Z.; Ding, M. Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method. Opt. Express 2018, 26, 28682–28692. [Google Scholar]
- Koshev, N.; Butorina, A.; Skidchenko, E.; Kuzmichev, A.; Ossadtchi, A.; Ostras, M.; Fedorov, M.; Vetoshko, P. Evolution of MEG: A first meg-feasible fluxgate magnetometer. Hum. Brain Mapp. 2021, 42, 4844–4856. [Google Scholar] [CrossRef]
- Cohen, D. Magnetoencephalography: Detection of the brain’s electrical activity with a superconducting magnetometer. Science 1972, 175, 664–666. [Google Scholar] [CrossRef]
- Jas, M.; Jones, S.R.; Hämäläinen, M.S. Whole-head OPM-MEG enables noninvasive assessment of functional connectivity. Trends Neurosci. 2021, 44, 510–512. [Google Scholar] [CrossRef]
- Iivanainen, J.; Zetter, R.; Grön, M.; Hakkarainen, K.; Parkkonen, L. On-scalp meg system utilizing an actively shielded array of optically-pumped magnetometers. Neuroimage 2019, 194, 244–258. [Google Scholar] [CrossRef]
- Borna, A.; Carter, T.R.; Goldberg, J.D.; Colombo, A.P.; Jau, Y.; Berry, C.; McKay, J.; Stephen, J.; Weisend, M.; D Schwindt, P.D. A 20-channel magnetoencephalography system based on optically pumped magnetometers. Phys. Med. Biol. 2017, 62, 8909. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, K.; Wang, Y.; Yang, K.; Zhai, Y.; Lu, J. Fast extraction of the electron spin-relaxation rate in the SERF magnetometer from a transient response. Opt. Express 2022, 30, 17383–17391. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Bo, L.; Jixi, L.; Mao, Y.; Xiaolin, N.; Bangcheng, H. Scanning a multi-channel spin-exchange relaxation-free atomic magnetometer with high spatial and time resolution. Opt. Lett. 2022, 47, 3908–3911. [Google Scholar]
- Seltzer, S.J. Developments in Alkali-Metal Atomic Magnetometry; Princeton University: Princeton, NJ, USA, 2008. [Google Scholar]
- Fang, X.; Wei, K.; Zhao, T.; Zhai, Y.; Ma, D.; Xing, B.; Liu, Y.; Xiao, Z. High spatial resolution multi-channel optically pumped atomic magnetometer based on a spatial light modulator. Opt. Express 2020, 28, 26447–26460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, T.; Zhou, W.; Tang, J.; Zhou, B.; Jin, G.; Han, B.; Zou, S. Evaluation of optical parameters for a microminiature Rb vapor cell in a dual-beam SERF magnetometer. Opt. Express 2022, 30, 23587–23599. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Lu, J.; Zhang, S.; Lu, F.; Yin, K.; Wang, K.; Zhou, B.; Liu, G. Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Opt. Express 2022, 30, 18300–18309. [Google Scholar] [CrossRef]
- Ledbetter, M.P.; Savukov, I.M.; Acosta, V.M.; Budker, D.; Romalis, M.V. Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A 2008, 77, 033408. [Google Scholar] [CrossRef] [Green Version]
- Shah, V.; Romalis, M.V. Spin-exchange relaxation-free magnetometry using elliptically polarized light. Phys. Rev. A 2009, 80, 1050–2947. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Jie, Y.; Wang, Z.; Lu, G.; Luo, H. Optically pumped rubidium atomic magnetometer with elliptically polarized light. Phys. Rev. A 2016, 127, 5270–5273. [Google Scholar] [CrossRef]
- Chen, D.-M.; Stark, W.S. Effects of temperature on visual receptors in temperature-sensitive paralytic shibire (shits) mutants of drosophila. J. Insect Physiol. 1993, 39, 385–392. [Google Scholar] [CrossRef]
- Tanaka, N.K.; Ito, K.; Stopfer, M. Odor-evoked neural oscillations in drosophila are mediated by widely branching interneurons. J. Neurosci. 2009, 29, 8595–8603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, S.; Desplan, C.; Heisenberg, M. Contribution of photoreceptor subtypes to spectral wavelength preference in drosophila. Proc. Natl. Acad. Sci. USA 2010, 107, 5634–5639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonekura, T.; Yamauchi, J.; Morimoto, T.; Seki, Y. Spectral response properties of higher visual neurons in drosophila melanogaster. J. Comp. Physiol. A 2020, 206, 217–232. [Google Scholar] [CrossRef]
- Grabowska, M.J.; Jeans, R.; Steeves, J.; Van Swinderen, B. Oscillations in the central brain of drosophila are phase locked to attended visual features. Proc. Natl. Acad. Sci. USA 2020, 117, 29925–29936. [Google Scholar] [CrossRef]
- Mimura, K. Discrimination of some visual patterns indrosophila melanogaster. J. Comp. Physiol. 1982, 146, 229–233. [Google Scholar] [CrossRef]
- Prieto-Godino, L.L.; De Polavieja, G.G. Brain activity at 70–80 Hz changes during olfactory stimulation protocols in drosophila. PLoS ONE 2010, 5, e12867. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Li, D.; Li, Y.; Xiang, Z.; Chen, Y.; Xu, Z.; Lin, Q.; Ruan, Y. Atomic Magnetometer Achieves Visual Salience Analysis in Drosophila. Sensors 2023, 23, 1092. https://doi.org/10.3390/s23031092
Liu F, Li D, Li Y, Xiang Z, Chen Y, Xu Z, Lin Q, Ruan Y. Atomic Magnetometer Achieves Visual Salience Analysis in Drosophila. Sensors. 2023; 23(3):1092. https://doi.org/10.3390/s23031092
Chicago/Turabian StyleLiu, Fan, Dongmei Li, Yixiao Li, Zhao Xiang, Yuhai Chen, Zhenyuan Xu, Qiang Lin, and Yi Ruan. 2023. "Atomic Magnetometer Achieves Visual Salience Analysis in Drosophila" Sensors 23, no. 3: 1092. https://doi.org/10.3390/s23031092
APA StyleLiu, F., Li, D., Li, Y., Xiang, Z., Chen, Y., Xu, Z., Lin, Q., & Ruan, Y. (2023). Atomic Magnetometer Achieves Visual Salience Analysis in Drosophila. Sensors, 23(3), 1092. https://doi.org/10.3390/s23031092