Smart Quantum Tunneling Composite Sensors to Monitor FKM and FFKM Seals
Abstract
:1. Introduction
2. Experimental: Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation
2.3. Test Methods
3. Results and Discussion
3.1. Formulations
3.2. Volume Resistivity of O-Rings
3.3. Volume Resistivity of Buttons
3.4. Volume Resistivity of FFKM O-Rings
3.5. Volume Resistivity of FFKM O-Rings without Carbon Black Fillers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Discover Composites. What Are Composites. Available online: https://discovercomposites.com/what-are-composites/ (accessed on 18 December 2020).
- Miracle, D.B.; Donaldson, S.L. ASM Handbook; ASM International: Almere, The Netherlands, 2001; pp. 914–921. [Google Scholar]
- Physics: Quantum Tunnelling Composite. Wikipedia. Available online: https://handwiki.org/wiki/Physics:Quantum_tunnelling_composite (accessed on 1 April 2019).
- Quantum Tunnelling Composite. Wikipedia. Available online: https://en.wikipedia.org/wiki/Quantum_tunnelling_composite (accessed on 1 December 2022).
- How Are Metals Made? Available online: https://coursehero.com/file/dot2.docx (accessed on 15 June 2022).
- Different Types of Composites in Construction and Their Uses. A Review Article in The Constructor-Building Ideas Website. Available online: https://theconstructor.org/composite/composites-construction-uses/1570/ (accessed on 9 March 2010).
- What is QTC? Peratech. 11 February 2016. Available online: www.peratech.com (accessed on 4 April 2019).
- Lussey, D. Quantum-Tunneling Composite Touch-Screen Technology. Inf. Disp. 2012, 28, 16–19. [Google Scholar]
- The institute of Materials, Minerals and Mining. Available online: https://www.scribd.com/document/327488665/Quantum-Tunnelling-Composite (accessed on 22 May 2019).
- Blokdyk, G. Quantum Tunnelling Composite Standard Requirements Practical Tools for Self-Assessment; Emerald Publishing: Bingley, UK, 2018; p. 284. [Google Scholar]
- Roebuck, K. QTC High Impact Strategies—What You Need to Know; Lightning Source Inc.: La Vergne, TN, USA, 2011; p. 178. [Google Scholar]
- Donnelly, D.; Donnelly, K.; Hands, P.J.; Laughlin, P.; Lussey, D. A metal–polymer composite with unusual properties. J. Phys. D Appl. Phys. 2005, 38, 2851–2860. [Google Scholar]
- Amarasinghe, Y.W.R.; Kulasekera, A.L.; Priyadarshana, T.G.P. Quantum tunneling composite (QTC) based tactile sensor array for dynamic pressure distribution measurement. In Proceedings of the Seventh International Conference on Sensing Technology, Wellington, New Zealand, 3–5 December 2013; pp. 396–399. [Google Scholar]
- Azaman, N.I.L.; Ayub, M.A.; Ahmad, A.A. Characteristic and Sensitivity of Quantum Tunneling Composite Material for Tactile Device Applications. In Proceedings of the IEEE 7th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 8 August 2016; pp. 7–11. [Google Scholar]
- Azuman, N.I.L. Resistance behavior of Quantum Tunneling Composite (QTC) pill for tactile sensor application. J. Mech. Eng. 2017, 4, 83. [Google Scholar]
- Lantada, A.D.; Lafont, P.; Muñoz Sanz, J.J.; Munoz-Guijosa, J.M.; Echavarri Otero, J. Quantum tunneling composites: Characterization and modeling to promote their applications as sensors. Sens. Actuators 2010, 164, 46–57. [Google Scholar] [CrossRef]
- Udayanaga, T.D.I.; Fernando, D.A.M.R.; Chaturanga, H.L.P.L.; Amarasinghe, Y.W.R.; Dao, D.V. Development of Quantum Tunneling Composite based 1-DOF Tactile Sensor. Int. J. Inf. Sci. Technol. 2015, 40, 1–4. [Google Scholar]
- Susuki, F.; Queisser, F. Quantum tunneling of composite object coupled with quantized radiation field. Class. Quantum Gravity 2019, 36, 17. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Han, B.; Ou, J. Ship-bridge collision monitoring system based on flexible quantum tunneling composite with cushioning capability. Smart Mater. Struct. 2018, 27, 075018. [Google Scholar] [CrossRef]
- Duan, L.; Fu, S.; Deng, H.; Zhang, Q.; Wang, K.; Chen, F.; Fu, Q. The resistivity-strain behavior of conductive polymer composites: Stability and sensitivity. J. Mater. Chem. A 2014, 2, 17085–17098. [Google Scholar] [CrossRef]
- Samanta, S.; Lee, M.; Kim, D.S.; Kim, J.; Wang, L. High pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of binary composite. Nano Res. 2019, 12, 1333–1338. [Google Scholar] [CrossRef]
- Dhote, S.; Behdinan, K.; Andrysek, J.; Bian, J. Experimental investigation of a hybrid nickel-carbon black polydimethylsiloxane conductive nanocomposite. J. Compos. Mater. 2020, 54, 2051–2063. [Google Scholar] [CrossRef]
- Pilkington, B. Properties and Applications of Quantum Polymers. Editorial Feature in Azo Quantum. Available online: https://www.azoquantum.com/Article.aspx (accessed on 20 December 2019).
- Ding, S.; Han, B.; Dong, X.; Yu, X.; Ni, Y.; Zheng, Q.; Ou, J. Pressure sensitive behaviors, mechanisms and model of field assisted quantum tunneling composites. Polymer 2017, 113, 105–118. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0032386117301829 (accessed on 21 January 2023). [CrossRef] [Green Version]
- Laulicht, B.; Traverso, G.; Deshpande, V.; Langer, R.; Karp, J.M. Simple battery armor to protect against gastrointestinal injury from accidental ingestion. Proc. Natl. Acad. Sci. USA 2014, 111, 16490–16495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matute, A.; Paredes-Madrid, L.; Moreno, G.; Cárdenas, F.; Palacio, C. A Novel inexpensive approach for force sensing based on piezocapacitance aimed at hysteresis error reduction. J. Sens. 2018, 2018, 6561901. [Google Scholar] [CrossRef] [Green Version]
- Azmal, C.M.; Cha, S.; Kim, W.; Faseela, K.P.; Yang, H.; Baik, S. Invariable resistance of conductive nanocomposite over 30% strain. Sci. Adv. 2022, 8, 3365. [Google Scholar]
- Quantum Tunnelling Composite, a New Facilitate Sensing and Switching Technology in Textile Keypad. Textile Today Associates; Fiber and Polymer, 1 January 2011. Bangladesh. Available online: https://www.textiletoday.com.bd/quantum-tunnelling-composite-a-new-facilitate-sensing-and-switching-technology-in-textile-keypad/ (accessed on 1 January 2011).
- Dahiya, R.S.; Metta, G.; Valle, M.; Sandini, G. Tactile sensing from humans to humanoids. QTC for “Robotics hands” applications. IEEE Trans. Robot. 2009, 26, 8. [Google Scholar]
- Martin, T.B.; Ambrose, R.O.; Diftler, M.A.; Plat, R.; Butzer, M.J. Tactile Gloves for Autonomous Grasping with the NASA/DARPA Robonaut. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 1713–1718. [Google Scholar]
- Gurevich, E.; Ux, B.; Luo, J.; Choi, W. Fluorine-Containing Elastomer Compositions Suitable for High Temperature Applications. US Patent 9,018,309 B2, 28 April 2015. [Google Scholar]
- Greene Tweed. What is FKM? What is FFKM? FKM Versus FFKM-A Comparison of Properties. Greene, Tweed & Co. Website. Available online: https://www.gtweed.com/materials/fkm-vs-ffkm/ (accessed on 17 October 2017).
- DuPont; Kalrez. Contamination Considerations for Perfluoroelastomer Seals Used in Deposition Processes; Technical Information-Paper; Paper Presented at IEEE. May 2008. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/kalrez/public/documents/en/Contamination_considerations_for_perfluoroelastomer_seals_used_in_deposition_processes.pdf (accessed on 5 April 2018).
- Yang, Z.; Liu, L.; Li, N.; Tian, J. Time Series Forecasting of Motor Bearing Vibration Based on Informer. Sensors 2022, 22, 5858. [Google Scholar] [CrossRef] [PubMed]
- LaRose, J.D.; Barker, J.; Finlay, B.; Trinidad, A.; Guyer, C.; Weinstein, J.; Conerney, B.; Ray, D.; Perry, J.; Tarnawskyj, W.; et al. Predictive Maintenance of Pump and Abatement Equipment in a 300 mm Semiconductor Fab. In Proceedings of the 32nd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Milpitas, CA, USA, 10–12 May 2021; pp. 1–4. [CrossRef]
- Zhao, Y.; Toothman, M.; Moyne, J.; Barton, K. An Adaptive Modeling Framework for Bearing Failure Prediction. Electronics 2022, 11, 257. [Google Scholar] [CrossRef]
- Quartapella, C.J.; Periyasamy, M.; Sassano, E.; Gregory, O.J.; Fischer, G.; Wei, T.; Kinzel, Z.; Burke, N.A. Smart seals for monitoring and Analysis of Seal Properties useful in Semiconductor Valves. US Patent 202003886A1, 3 December 2020. [Google Scholar]
- Kangjee, J.; Ha, J.; Ryu, J.; Lee, E.; Lee, H. DC 4-point Measurement for Total Conductivity of SOFC Cathode Material. Appl. Sci. 2021, 11, 4963. [Google Scholar] [CrossRef]
- Keithley Instruments Inc. Application Notes Number 2475. Available online: http://cspt.sinano.ac.cn/english/up/pic/2008959475197875.pdf (accessed on 21 January 2023).
- Parker Hannifin Corporation. Parker O-Ring Handbook. Available online: https://www.parker.com/Literature/O-Ring%20Division%20Literature/ORD%205700.pdf (accessed on 1 June 2021).
Components (PHR: parts per hundred of polymer) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Tecnoflon VPL X 75545 (FKM) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
N-990 Black | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Austin Black 325 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Cabot carbon nanostructure (CNS) | 4.8 | 6.0 | 7.2 | 8.4 | 9.6 | 4.8 | 4.0 | 4.2 | 4.5 |
TAIC DLC | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Varox DBPH-50 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Tensile strength, psi | 2149 | 2602 | 2859 | 2925 | 2962 | 1900 | 1847 | 1863 | 1935 |
Elongation, % | 136 | 110 | 80 | 77 | 63 | 148 | 158 | 143 | 154 |
Modulus @100%, psi | 1847 | 2538 | NA | NA | NA | 1556 | 1460 | 1522 | 1535 |
Modulus @50%, psi | 1104 | 1662 | 2168 | 2378 | 2608 | 889 | 843 | 882 | 844 |
Specific Gravity | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 |
Hardness, type A, pts | 75.8 | 79.4 | 83.2 | 85.2 | 85.4 | 76.3 | 76.0 | 74.6 | 75.9 |
Hardness, type M, pts | 79.1 | 84.0 | 86.6 | 88.1 | 90.5 | 81.2 | 78.8 | 81.8 | 81.5 |
Compression Set % | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
70 h @ 392 °F/200 °C 25% Deflection (avg.) | 36.8 | 41.2 | 45.6 | 48.5 | 51.4 | 40.0 | 38.6 | 38.6 | 44.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periyasamy, M.; Quartapella, C.J.; Piacente, N.P.; Reichl, G.; Lynn, B. Smart Quantum Tunneling Composite Sensors to Monitor FKM and FFKM Seals. Sensors 2023, 23, 1342. https://doi.org/10.3390/s23031342
Periyasamy M, Quartapella CJ, Piacente NP, Reichl G, Lynn B. Smart Quantum Tunneling Composite Sensors to Monitor FKM and FFKM Seals. Sensors. 2023; 23(3):1342. https://doi.org/10.3390/s23031342
Chicago/Turabian StylePeriyasamy, Mookkan, Carmen J. Quartapella, Nicholas P. Piacente, Gary Reichl, and Brian Lynn. 2023. "Smart Quantum Tunneling Composite Sensors to Monitor FKM and FFKM Seals" Sensors 23, no. 3: 1342. https://doi.org/10.3390/s23031342
APA StylePeriyasamy, M., Quartapella, C. J., Piacente, N. P., Reichl, G., & Lynn, B. (2023). Smart Quantum Tunneling Composite Sensors to Monitor FKM and FFKM Seals. Sensors, 23(3), 1342. https://doi.org/10.3390/s23031342