Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics
Abstract
:1. Introduction
2. Potential Biomarkers for Childhood Cancers
2.1. Leukemias
2.2. CNS Tumors
2.3. Neuroblastoma
2.4. Wilms Tumor
2.5. Lymphomas
3. Biosensors for Detection of Biomarkers
4. Developed Biosensors for Childhood Cancers in Clinical Practice
4.1. Electrochemical Biosensors
4.2. Optical Biosensors
4.3. Electrical Biosensors
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. CureAll Framework: WHO Global Initiative for Childhood Cancer: Increasing Access, Advancing Quality, Saving Lives; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Zhang, J.; Walsh, M.F.; Wu, G.; Edmonson, M.N.; Gruber, T.A.; Easton, J.; Hedges, D.; Ma, X.; Zhou, X.; Yergeau, D.A. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 2015, 373, 2336–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.G.; Howard, S.C.; Bouffet, E.; Pritchard-Jones, K. Science and health for all children with cancer. Science 2019, 363, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Magrath, I.; Steliarova-Foucher, E.; Epelman, S.; Ribeiro, R.C.; Harif, M.; Li, C.-K.; Kebudi, R.; Macfarlane, S.D.; Howard, S.C. Paediatric cancer in low-income and middle-income countries. Lancet Oncol. 2013, 14, e104–e116. [Google Scholar] [CrossRef]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; Bouzbid, S. International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef]
- Frangioni, J.V. New technologies for human cancer imaging. J. Clin. Oncol. 2008, 26, 4012. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, J.D.; Fisher, P.G.; Gibbs, P. Early detection of cancer: Past, present, and future. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stachowicz-Stencel, T.; Synakiewicz, A. Biomarkers for pediatric cancer detection: Latest advances and future perspectives. Biomark. Med. 2020, 14, 391–400. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Flammer, J. What are the biomarkers for glaucoma? Surv. Ophthalmol. 2007, 52, S155–S161. [Google Scholar] [CrossRef]
- Sawyers, C.L. The cancer biomarker problem. Nature 2008, 452, 548–552. [Google Scholar] [CrossRef]
- An, Q.; Fan, C.H.; Xu, S.M. Recent perspectives of pediatric leukemia–an update. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 31–36. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Hasanbegović, E. Modern approach to diagnosis and therapy in childhood leukemias. Med. Arh. 2004, 58, 59–60. [Google Scholar] [PubMed]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA A Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef]
- Kaplan, J.A. Leukemia in children. Pediatrics Rev. 2019, 40, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, S.; Zini, G.; Bassan, R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrusak, O.; Mejstrikova, E.; Zdrahalova, K.; Kramarzova, K.; Kovac, M.; Trka, J.; Stary, J. Prognosis of ProB ALL in Children. Blood 2008, 112, 2512. [Google Scholar] [CrossRef]
- Pui, C.-H.; Relling, M.V.; Downing, J.R. Acute lymphoblastic leukemia. N. Engl. J. Med. 2004, 350, 1535–1548. [Google Scholar] [CrossRef] [Green Version]
- Saletta, F.; Wadham, C.; Ziegler, D.S.; Marshall, G.M.; Haber, M.; McCowage, G.; Norris, M.D.; Byrne, J.A. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA Clin. 2014, 1, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, J.; Wu, P.; Feng, K.; Li, J.; Xie, Z.; Xue, P.; Cai, T.; Cui, Z.; Chen, X. Discovery and identification of potential biomarkers of pediatric acute lymphoblastic leukemia. Proteome Sci. 2009, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ghodousi, E.S.; Rahgozar, S. MicroRNA-326 and microRNA-200c: Two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J. Cell. Biochem. 2018, 119, 6024–6032. [Google Scholar] [CrossRef]
- Zamani, A.; Dolatabadi, N.F.; Houshmand, M.; Nabavizadeh, N. miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia. Leuk. Res. 2021, 109, 106643. [Google Scholar] [CrossRef] [PubMed]
- Dinani, H.S.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Ebrahimi, S.A.S.; Shayeh, J.S.; Ghorbani, M. Fabrication of Au/Fe3O4/RGO based aptasensor for measurement of miRNA-128, a biomarker for acute lymphoblastic leukemia (ALL). Eng. Life Sci. 2022, 22, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, M.A.; Shamsipur, M.; Saber, R.; Sarkar, S. Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pdnano/PTCA/aptamer as labeled aptamer for the signal amplification. Anal. Chim. Acta 2017, 985, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Fleming, A.J.; Chi, S.N. Brain Tumors in Children 80. Curr. Probl. Pediatr. Adolesc. Health Care 2012, 42, 80–103. [Google Scholar] [CrossRef]
- Wells, E.M.; Packer, R.J. Pediatric brain tumors. CONTINUUM Lifelong Learn. Neurol. 2015, 21, 373–396. [Google Scholar] [CrossRef] [PubMed]
- Wilne, S.H.; Ferris, R.C.; Nathwani, A.; Kennedy, C.R. The presenting features of brain tumours: A review of 200 cases. Arch. Dis. Child. 2006, 91, 502–506. [Google Scholar] [CrossRef]
- El-Jawahri, A.; Patel, D.; Zhang, M.; Mladkova, N.; Chakravarti, A. Biomarkers of Clinical Responsiveness in Brain Tumor Patients. Mol. Diagn. Ther. 2008, 12, 199–208. [Google Scholar] [CrossRef]
- Baig, M.A.; Klein, J.P.; Mechtler, L.L. Imaging of brain tumors. CONTINUUM Lifelong Learn. Neurol. 2016, 22, 1529–1552. [Google Scholar] [CrossRef]
- Lehner, K.R.; Jiang, K.; Rincon-Torroella, J.; Perera, R.; Bettegowda, C. Cerebrospinal Fluid biomarkers in pediatric brain tumors: A systematic review. Neoplasia 2023, 35, 100852. [Google Scholar] [CrossRef]
- Spreafico, F.; Bongarzone, I.; Pizzamiglio, S.; Magni, R.; Taverna, E.; de Bortoli, M.; Ciniselli, C.M.; Barzanò, E.; Biassoni, V.; Luchini, A. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 2017, 8, 46177. [Google Scholar] [CrossRef] [Green Version]
- Bruschi, M.; Petretto, A.; Cama, A.; Pavanello, M.; Bartolucci, M.; Morana, G.; Ramenghi, L.A.; Garré, M.L.; Ghiggeri, G.M.; Panfoli, I. Potential biomarkers of childhood brain tumor identified by proteomics of cerebrospinal fluid from extraventricular drainage (EVD). Sci. Rep. 2021, 11, 1818. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraki, Y.; Mii, S.; Enomoto, A.; Momota, H.; Han, Y.-P.; Kato, T.; Ushida, K.; Kato, A.; Asai, N.; Murakumo, Y. Significance of perivascular tumour cells defined by CD109 expression in progression of glioma. J. Pathol. 2017, 243, 468–480. [Google Scholar] [CrossRef]
- Hashimoto, M.; Ichihara, M.; Watanabe, T.; Kawai, K.; Koshikawa, K.; Yuasa, N.; Takahashi, T.; Yatabe, Y.; Murakumo, Y.; Zhang, J. Expression of CD109 in human cancer. Oncogene 2004, 23, 3716–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Chen, Y.; Wu, Y.; Wang, Z.; Zhou, A.; Zhang, S.; Lin, K.; Aldape, K.; Majumder, S.; Lu, Z. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat. Commun. 2015, 6, 6156. [Google Scholar] [CrossRef] [Green Version]
- Collins, V.P.; Jones, D.T.W.; Giannini, C. Pilocytic astrocytoma: Pathology, molecular mechanisms and markers. Acta Neuropathol. 2015, 129, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Bookland, M.; Tang-Schomer, M.; Gillan, E.; Kolmakova, A. Circulating serum oncologic miRNA in pediatric juvenile pilocytic astrocytoma patients predicts mural nodule volume. Acta Neurochir. 2018, 160, 1571–1581. [Google Scholar] [CrossRef]
- Alexiou, G.A.; Vartholomatos, G.; Stefanaki, K.; Patereli, A.; Dova, L.; Karamoutsios, A.; Lallas, G.; Sfakianos, G.; Moschovi, M.; Prodromou, N. Expression of heat shock proteins in medulloblastoma. J. Neurosurg. Pediatr. 2013, 12, 452–457. [Google Scholar] [CrossRef]
- Millard, N.E.; de Braganca, K.C. Medulloblastoma. J. Child Neurol. 2016, 31, 1341–1353. [Google Scholar] [CrossRef] [Green Version]
- Matta, A.; Siu, K.M.; Ralhan, R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin. Ther. Targets 2012, 16, 515–523. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Qi, L.; Ding, L.; Jiang, H.; Yu, H. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via notch signaling pathway. Front. Mol. Neurosci. 2018, 11, 225. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, L.; Wu, S.; Pan, Y.; Dong, Y.; Zhu, S.; Yang, J.; Yin, Y.; Li, G. An electrochemical biosensor designed by using Zr-based metal–organic frameworks for the detection of glioblastoma-derived exosomes with practical application. Anal. Chem. 2020, 92, 3819–3826. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.S.; Park, J.R. Neuroblastoma: Paradigm for precision medicine. Pediatric Clin. 2015, 62, 225–256. [Google Scholar]
- Ross, I.L.; Louw, G.J. Embryological and molecular development of the adrenal glands. Clin. Anat. 2015, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.; Zhang, L.; Reddivalla, N.; Hetherington, M. Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors. Pediatric Hematol. Oncol. 2017, 34, 165–185. [Google Scholar] [CrossRef]
- London, W.B.; Castleberry, R.P.; Matthay, K.K.; Look, A.T.; Seeger, R.C.; Shimada, H.; Thorner, P.; Brodeur, G.; Maris, J.M.; Reynolds, C.P. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005, 23, 6459–6465. [Google Scholar] [CrossRef]
- Henderson, T.O.; Bhatia, S.; Pinto, N.; London, W.B.; McGrady, P.; Crotty, C.; Sun, C.-L.; Cohn, S.L. Racial and ethnic disparities in risk and survival in children with neuroblastoma: A Children’s Oncology Group study. J. Clin. Oncol. 2011, 29, 76. [Google Scholar] [CrossRef] [Green Version]
- Pollard, Z.F.; Greenberg, M.F.; Bordenca, M.; Lange, J. Atypical acquired pediatric Horner syndrome. Arch. Ophthalmol. 2010, 128, 937–940. [Google Scholar] [CrossRef] [Green Version]
- Dumba, M.; Jawad, N.; McHugh, K. Neuroblastoma and nephroblastoma: A radiological review. Cancer Imaging 2015, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Mueller, W.P.; Coppenrath, E.; Pfluger, T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr. Radiol. 2013, 43, 418–427. [Google Scholar] [CrossRef]
- Shawraba, F.; Hammoud, H.; Mrad, Y.; Saker, Z.; Fares, Y.; Harati, H.; Bahmad, H.F.; Nabha, S. Biomarkers in Neuroblastoma: An Insight into Their Potential Diagnostic and Prognostic Utilities. Curr. Treat. Opt. Oncol. 2021, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.J.; Raby, K.L.; Saini, H.K.; Bailey, S.; Wool, S.V.; Tunnacliffe, J.M.; Enright, A.J.; Nicholson, J.C.; Coleman, N. Solid Tumors of Childhood Display Specific Serum microRNA ProfilesSerum microRNAs in Childhood Tumors. Cancer Epidemiol. Biomark. Prev. 2015, 24, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z.; Lin, L.; Miao, L.; Li, M.; He, J. Advances in liquid biopsy in neuroblastoma. Fundam. Res. 2022, 2, 903–917. [Google Scholar] [CrossRef]
- Pastore, G.; Znaor, A.; Spreafico, F.; Graf, N.; Pritchard-Jones, K.; Steliarova-Foucher, E. Malignant renal tumours incidence and survival in European children (1978–1997): Report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 2006, 42, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.H.; Dave, S.; Izawa, J. Wilms’ tumor. Dis. DNA Repair 2010, 685, 196–209. [Google Scholar]
- Lange, J.; Peterson, S.M.; Takashima, J.R.; Grigoriev, Y.; Ritchey, M.L.; Shamberger, R.C.; Beckwith, J.B.; Perlman, E.; Green, D.M.; Breslow, N.E. Risk factors for end stage renal disease in non-WT1-syndromic Wilms tumor. J. Urol. 2011, 186, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Mullen, E.; Graf, N. Clinical Presentation; Renal Tumors of Childhood–Biology and Therapy; Kathy Pritchard-Jones and Jeff Dome; Springer: New York, NY, USA, 2014. [Google Scholar]
- Brok, J.; Treger, T.D.; Gooskens, S.L.; van den Heuvel-Eibrink, M.M.; Pritchard-Jones, K. Biology and treatment of renal tumours in childhood. Eur. J. Cancer 2016, 68, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Pritchard-Jones, K.; Dome, J.S. Renal Tumors of Childhood; Springer: New York, NY, USA, 2014. [Google Scholar]
- Kaste, S.C.; Dome, J.S.; Babyn, P.S.; Graf, N.M.; Grundy, P.; Godzinski, J.; Levitt, G.A.; Jenkinson, H. Wilms tumour: Prognostic factors, staging, therapy and late effects. Pediatr. Radiol. 2008, 38, 2–17. [Google Scholar] [CrossRef]
- da Costa e Silva, E.J.; da Silva, G.A.P. Eliminating unenhanced CT when evaluating abdominal neoplasms in children. Am. J. Roentgenol. 2007, 189, 1211–1214. [Google Scholar] [CrossRef]
- Grundy, P.E.; Breslow, N.E.; Li, S.; Penman, E.; Beckwith, J.B.; Ritchey, M.L.; Shamberger, R.C.; Haase, G.M.; D’Angio, G.J.; Donaldson, M. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: A report from the National Wilms Tumor Study Group. J. Clin. Oncol. 2005, 23, 7312–7321. [Google Scholar] [CrossRef] [PubMed]
- Routh, J.C.; Grundy, P.E.; Anderson, J.R.; Retik, A.B.; Kurek, K.C. B7-h1 as a biomarker for therapy failure in patients with favorable histology Wilms tumor. J. Urol. 2013, 189, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Sredni, S.T.; de Camargo, B.; Lopes, L.F.; Teixeira, R.; Simpson, A. Immunohistochemical detection of p53 protein expression as a prognostic indicator in Wilms tumor. Med. Pediatric Oncol. Off. J. SIOP—Int. Soc. Pediatric Oncol. Soc. Int. D’oncologie Pédiatrique 2001, 37, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, N.; Nourkami-Tutdibi, N.; Backes, C.; Lenhof, H.-P.; Graf, N.; Keller, A.; Meese, E. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr. Blood Cancer 2015, 62, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, P.; Akl, M.R.; Ayoub, N.M.; Tomiyama, T.; Cousins, T.; Tai, B.; Carroll, N.; Nyrenda, T.; Bhattacharyya, P.; Harris, M.B. Pediatric Hodgkin lymphoma–biomarkers, drugs, and clinical trials for translational science and medicine. Oncotarget 2016, 7, 67551. [Google Scholar] [CrossRef] [Green Version]
- McCarten, K.M.; Nadel, H.R.; Shulkin, B.L.; Cho, S.Y. Imaging for diagnosis, staging and response assessment of Hodgkin lymphoma and non-Hodgkin lymphoma. Pediatr. Radiol. 2019, 49, 1545–1564. [Google Scholar] [CrossRef]
- Johnson, S.A.; Kumar, A.; Matasar, M.J.; Schöder, H.; Rademaker, J. Imaging for staging and response assessment in lymphoma. Radiology 2015, 276, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.; Vari, F.; Keane, C.; Crooks, P.; Nourse, J.P.; Seymour, L.A.; Gottlieb, D.; Ritchie, D.; Gill, D.; Gandhi, M.K. Serum CD163 and TARC as disease response biomarkers in classical Hodgkin lymphoma. Clin. Cancer Res. 2013, 19, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, C.; Corrigan, D.K.; Dennany, L.; Jarrett, R.F.; Lake, A.; Baker, M.J. Development of an Electrochemical CCL17/TARC Biosensor toward Rapid Triage and Monitoring of Classic Hodgkin Lymphoma. ACS Sens. 2021, 6, 3262–3272. [Google Scholar] [CrossRef]
- Farruggia, P.; Puccio, G.; Sala, A.; Todesco, A.; Buffardi, S.; Garaventa, A.; Bottigliero, G.; Bianchi, M.; Zecca, M.; Locatelli, F. The prognostic value of biological markers in paediatric Hodgkin lymphoma. Eur. J. Cancer 2016, 52, 33–40. [Google Scholar] [CrossRef]
- Yu, R.; Cheng, L.; Yang, S.; Liu, Y.; Zhu, Z. iTRAQ-Based Proteomic Analysis Reveals Potential Serum Biomarkers for Pediatric Non-Hodgkin’s Lymphoma. Front. Oncol. 2022, 12, 848286. [Google Scholar] [CrossRef]
- Arya, S.K.; Estrela, P. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors 2018, 18, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.H.; Sadroddiny, E. Application of immuno-PCR for the detection of early stage cancer. Mol. Cell. Probes 2016, 30, 106–112. [Google Scholar] [CrossRef]
- Mahmood, T.; Yang, P.-C. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012, 4, 429. [Google Scholar] [PubMed]
- Orfao, A.; Ciudad, J.; Gonzalez, M.; Lopez, A.; Del Mar Abad, M.; Paz Bouza, J.I.; Cruz, J.J.; Alonso, A.G.; San Miguel, J.F. Flow cytometry in the diagnosis of cancer. Scand. J. Clin. Lab. Investig. 1995, 55, 145–152. [Google Scholar] [CrossRef]
- Zhao, L.-J.; Yu, R.-J.; Ma, W.; Han, H.-X.; Tian, H.; Qian, R.-C.; Long, Y.-T. Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics 2017, 7, 876. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Zourob, M.; Elwary, S.; Khademhosseini, A. Recognition Receptors in Biosensors; Springer: New York, NY, USA, 2010; ISBN 1441909192. [Google Scholar]
- Hamzah, A.A.; Nadzirah, S. Biosensors Development. In Encyclopedia of Sensors and Biosensors, 1st ed.; Narayan, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 3, pp. 209–217. [Google Scholar]
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Sharifianjazi, F.; Rad, A.J.; Esmaeilkhanian, A.; Niazvand, F.; Bakhtiari, A.; Bazli, L.; Abniki, M.; Irani, M.; Moghanian, A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): A systematic review. Biomed. Mater. 2021, 17, 012002. [Google Scholar] [CrossRef]
- Li, X.; Ma, F.; Yang, M.; Zhang, J. Nanomaterial based analytical methods for breast cancer biomarker detection. Mater. Today Adv. 2022, 14, 100219. [Google Scholar] [CrossRef]
- Tothill, I.E. Biosensors for cancer markers diagnosis. Semin. Cell Dev. Biol. 2009, 20, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Falahi, S.; Rafiee-Pour, H.-A.; Zarejousheghani, M.; Rahimi, P.; Joseph, Y. Non-coding RNA-based biosensors for early detection of liver cancer. Biomedicines 2021, 9, 964. [Google Scholar] [CrossRef] [PubMed]
- Mazloum-Ardakani, M.; Barazesh, B.; Moshtaghiun, S.M. A distinguished cancer-screening package containing a DNA sensor and an aptasensor for early and certain detection of acute lymphoblastic leukemia. Clin. Chim. Acta 2019, 497, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Avelino, K.Y.; Frias, I.A.M.; Lucena-Silva, N.; Gomes, R.G.; de Melo, C.P.; Oliveira, M.D.L.; Andrade, C.A.S. Attomolar electrochemical detection of the BCR/ABL fusion gene based on an amplifying self-signal metal nanoparticle-conducting polymer hybrid composite. Colloids Surf. B Biointerfaces 2016, 148, 576–584. [Google Scholar] [CrossRef]
- RáGonšales, V.; JustináGooding, J. Ultrasensitive detection of programmed death-ligand 1 (PD-L1) in whole blood using dispersible electrodes. Chem. Commun. 2021, 57, 2559–2562. [Google Scholar]
- Huang, L.; Wang, D.-B.; Singh, N.; Yang, F.; Gu, N.; Zhang, X.-E. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale 2018, 10, 20289–20295. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Wang, Y.; Lu, H.; Wu, S.; Lu, Y.; Shi, S.; Li, L.; Jiang, S.; Zhao, M. Label-free and specific detection of soluble programmed death ligand-1 using a localized surface plasmon resonance biosensor based on excessively tilted fiber gratings. Biomed. Opt. Express 2019, 10, 5136–5148. [Google Scholar] [CrossRef]
- Liu, L.; Thakur, A.; Li, W.K.; Qiu, G.; Yang, T.; He, B.; Lee, Y.; Wu, C.-M.L. Site specific biotinylated antibody functionalized Ag@ AuNIs LSPR biosensor for the ultrasensitive detection of exosomal MCT4, a glioblastoma progression biomarker. Chem. Eng. J. 2022, 446, 137383. [Google Scholar] [CrossRef]
- Khan, A.; Di, K.; Khan, H.; He, N.; Li, Z. Rapid Capturing and Chemiluminescent Sensing of Programmed Death Ligand-1 Expressing Extracellular Vesicles. Biosensors 2022, 12, 281. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, F.; Zhou, D.; Chen, D.; Hai, H.; Li, J. An aptamer biosensor for leukemia marker mRNA detection based on polymerase-assisted signal amplification and aggregation of illuminator. Anal. Bioanal. Chem. 2019, 411, 139–146. [Google Scholar] [CrossRef]
- Doucey, M.-A.; Carrara, S. Nanowire sensors in cancer. Trends Biotechnol. 2019, 37, 86–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, Y.D.; Pleshakova, T.O.; Malsagova, K.A.; Kozlov, A.F.; Kaysheva, A.L.; Shumov, I.D.; Galiullin, R.A.; Kurbatov, L.K.; Popov, V.P.; Naumova, O.V. Detection of marker miRNAs in plasma using SOI-NW biosensor. Sens. Actuators B Chem. 2018, 261, 566–571. [Google Scholar] [CrossRef]
- Elfström, N.; Karlström, A.E.; Linnros, J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett. 2008, 8, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Malsagova, K.A.; Pleshakova, T.O.; Popov, V.P.; Kupriyanov, I.N.; Galiullin, R.A.; Kozlov, A.F.; Shumov, I.D.; Kaysheva, A.L.; Tikhonenko, F.V.; Archakov, A.I. Optical monitoring of the production quality of si-nanoribbon chips intended for the detection of ASD-associated oligonucleotides. Micromachines 2021, 12, 147. [Google Scholar] [CrossRef]
- Bao, Z.; Sun, J.; Zhao, X.; Li, Z.; Cui, S.; Meng, Q.; Zhang, Y.; Wang, T.; Jiang, Y. Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection. Int. J. Nanomed. 2017, 12, 4623. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.D.; Malsagova, K.A.; Popov, V.P.; Pleshakova, T.O.; Kozlov, A.F.; Galiullin, R.A.; Shumov, I.D.; Kapustina, S.I.; Tikhonenko, F.V.; Ziborov, V.S. Nanoribbon-based electronic detection of a glioma-associated circular miRNA. Biosensors 2021, 11, 237. [Google Scholar] [CrossRef]
Biosensor Material | Detection Method | Biomarker | Ref. |
---|---|---|---|
DNA-aptamer/COD 1-Au NPs | Electrochemical | BCR-ABL1/CEA | [88] |
NA/Au-NPs- PANI 2 | Electrochemical | BCR-ABL | [89] |
Aptamer/Au NPs-Fe3O4-rGO 3 | Electrochemical | miRNA-128 | [23] |
Aptamer/PEDOT 4-Au NPs | Electrochemical | CCRF-CEM cells | [24] |
Aptamer/Au NPs-Fe3O4-rGO | Electrochemical | CCL17/TARC | [72] |
Protein/Zr-MOFs 5 Antibody/labeled DNA/Au NPs Antibody/ExTFG-Au 6 Antibody/Ag@AuNIs 7 Aptamer/Fe3O4@TiO2 Aptamer/Fe3O4@Au NPs DNA/silicon | Electrochemical Electrochemical Optical Optical Optical Optical Optical Electrical | GBM-derived exosome PD-L1 leukemia-derived exosomes PD-L1 MCT4 8 PD-L1 miRNA-16 circNFIX 9 | [43] [90] [91] [92] [93] [94] [95] [101] |
Abbreviation | Explanation | Abbreviation | Explanation |
---|---|---|---|
LMICs | Low- and middle-income countries | AML1-ETO | Fusion protein resulting from t(8;21)(q22;q22) translocation |
CNS | Central nervous system | PML-RARA | Promyelocytic leukemia/retinoic acid receptor alpha |
CSF | Cerebrospinal fluid | PF4 | Platelet factor 4 |
CT | Computed tomography | CTAP III | Connective tissue-activating peptide III |
US | Ultrasound | C3a | Complement component 3a |
MRI | Magnetic resonance imaging | miRNA | Micro ribonucleic acid |
US | Ultrasonography | CCRF-CEM | Human leukemic lymphoblast |
SPECT | Single-photon emission computed tomography | MB | Medulloblastoma |
PET | Positron emission tomography | TMSB4X | Tripartite motif-containing protein 33 |
DNA | Deoxyribonucleic acid | HSPs | Heat shock proteins |
RNA | Ribonucleic acid | GBM | Glioblastoma |
WBCALL | White blood cell Acute lymphoblastic leukemia | ALK | Anaplastic lymphoma receptor tyrosine kinase gene |
AML | Acute lymphoblastic leukemia | MIBG | Meta-iodobenzylguanidine |
CML | Chronic myeloid leukemia | NB | Neuroblastoma |
CD | Cluster of differentiation | FDG | Fluorodeoxyglucose |
TDT | Terminal deoxyribonucleotidyl transferase | MYCN | N-myc proto-oncogene protein |
T-ALL | Thymic ALL | PIM kinase | Pim-1 proto-oncogene, serine/threonine kinase |
BCR-ABL | Chimeric gene of BCR and ABL | TARC | Thymus and activation-regulated chemokine |
TEL-AML1 | Fusion gene resulting from t(12;21) translocation | CCL17/TARC | C-C Motif Chemokine Ligand 17/thymus and activation-regulated chemokine |
FUBP1 | Far-Upstream Element-Binding Protein 1 | cHL | Classic Hodgkin lymphoma |
UCHL1 | Ubiquitin C-Terminal Hydrolase L1 | NF-κB | Nuclear Factor Kappa B |
TMOD | Tropomodulin1 | S100A8 | S100 calcium-binding protein A8 |
NSE | Neuron-specific enolase | LRG1 | Leucine-rich alpha-2-glycoprotein 1 |
CTCs | Circulating tumor cells | ELISA | Enzyme-linked immunosorbent assay |
3-MT | 3-Methoxytyramine | ||
HVA | Homovanillic acid | PCR | Polymerase chain reaction |
VMA | Vanillylmandelic acid | CEA | Carcinoembryonic antigen |
NMN | Normetanephrine | Au NPs | Gold nanoparticles |
VLA | Vanillactic acid | Fe3O4 | Iron oxide |
WT | Wilms tumor | ||
WAGR | Wilms tumor, aniridia, genitourinary problems and range of developmental delays | rGO | Reduced graphene oxide |
LOH | Loss of heterozygosity | H2O2 | Hydrogen peroxide |
PD-L1 | Programmed death-ligand 1 | Sulfo-LC-SPDP | Sulfosuccinimidyl 6-[3′-(2- pyridyldithio)propionamido]hexanoate |
HL | Hodgkin lymphomas | Zr-MOFs | Zr/metal-organic frameworks |
NHL | Non-Hodgkin lymphomas | EGFR | Epidural growth factor receptor |
Au@MNPs Fc SPR LSPR CL ALS ECL circNFIX NR | Gold-coated magnetic nanoparticles Ferrocenemethanol Surface plasmon resonance Localized surface plasmon resonance Chemiluminescence Alkaline phosphates Electrochemiluminescence Circular RNA nuclear factor IX nanoribbon | HRP RCA FAM ExTFG Au NIs MCT4 EVs TiO2 Ru(bpy)32+ | Horseradish peroxidase Rolling circle amplification Fluorescent-label Excessively tilted fiber grating Au nano-islands Monocarboxylate transporter 4 Extracellular vehicles Titanium dioxide Pyridine ruthenium complex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharehzadehshirazi, A.; Zarejousheghani, M.; Falahi, S.; Joseph, Y.; Rahimi, P. Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. Sensors 2023, 23, 1482. https://doi.org/10.3390/s23031482
Gharehzadehshirazi A, Zarejousheghani M, Falahi S, Joseph Y, Rahimi P. Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. Sensors. 2023; 23(3):1482. https://doi.org/10.3390/s23031482
Chicago/Turabian StyleGharehzadehshirazi, Azadeh, Mashaalah Zarejousheghani, Sedigheh Falahi, Yvonne Joseph, and Parvaneh Rahimi. 2023. "Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics" Sensors 23, no. 3: 1482. https://doi.org/10.3390/s23031482
APA StyleGharehzadehshirazi, A., Zarejousheghani, M., Falahi, S., Joseph, Y., & Rahimi, P. (2023). Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. Sensors, 23(3), 1482. https://doi.org/10.3390/s23031482