Mixed-Species Cover Crop Biomass Estimation Using Planet Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Experiment Description
2.2. Biomass and Hyperspectral Data Collection and Processing
2.3. Planet Imagery Download and Processing
2.4. Statistical Analysis and Random Forest Model Building
3. Results
3.1. Weather and Management Effect on Cover Crop Biomass
3.2. Planet Imagery and Cover Crop Biomass Relationship
3.3. Planet Imagery and Cover Crop Biomass—ANOVA
3.4. Biomass Prediction Using Random Forest Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groff, S. The past, present, and future of the cover crop industry. J. Soil Water Conserv. 2015, 70, 130A–133A. [Google Scholar] [CrossRef]
- Chu, M.; Jagadamma, S.; Walker, F.R.; Eash, N.S.; Bushermohle, M.J.; Duncan, L.A. Effect of multispecies cover crop mixture on soil properties and crop yield. Agric. Environ. Lett. 2017, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhou, L.; Wei, J.; Xu, H.; Tang, Q.; Tang, J. Integrating cover crops with chicken grazing to improve soil nitrogen in rice fields and increase economic output. Sci. Total Environ. 2020, 713, 135–218. [Google Scholar] [CrossRef]
- Schappert, A.; Messelhäuser, M.H.; Saile, M.; Peteinatos, G.G.; Gerhards, R. Weed suppressive ability of cover crop mixtures compared to repeated stubble tillage and glyphosate treatments. Agriculture 2018, 18, 144. [Google Scholar] [CrossRef] [Green Version]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using Winter Cover Crops to Improve Soil and Water Quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Worsham, A.D. Role of cover crops in weed management and water quality. In Weed and Disease Management; Soil & Water Conservation Society: Ankeny, IA, USA, 1991; pp. 141–156. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2ef2218aa3c587f2f96ef1a9deb2d83384d33fd6 (accessed on 25 November 2022).
- Sharpley, A.N.; Daniel, T.; Gibson, G.; Bundy, L.; Cabrera, M.; Sims, T.; Stevens, R.; Lemunyon, J.; Kleinman, P.; Parry, R. Best Management Practices to Minimize Agricultural Phosphorus Impacts on Water Quality; ARS-163; USDA-ARS: Washington, DC, USA, 2006.
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733. [Google Scholar] [CrossRef]
- Wagger, M.G. Time of desiccation effects on plant composition and subsequent nitrogen release from several winter annual cover crops. Agron. J. 1989, 81, 236–241. [Google Scholar] [CrossRef]
- Hoffman, M.L.; Weston, L.A.; Snyder, J.C.; Regnier, E.E. Allelopathic influence of germinating seeds and seedlings of cover crops on weed species. Weed Sci. 1996, 44, 579–584. [Google Scholar] [CrossRef]
- Mcgourty, G.; Rganold, J.P. Managing vineyard soil organic matter with cover crops. In Proceedings of the Soil Environment and Vine Mineral Nutrietion, San Diego, CA, USA, 29–30 June 2004; American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 145–151. [Google Scholar]
- Redfearn, D. Is Nitrogen Fixation Oversold with Legume Cover Crops? University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, Cropwatch: Lincoln, NE, USA, 2016; Available online: https://cropwatch.unl.edu/2016/nitrogen-fixation-oversold-legume-cover-crops (accessed on 16 November 2022).
- Rundquist, S.; Carlson, S. Mapping Cover Crops on Corn and Soybeans in Illinois, Indiana and Iowa, 2015–2016; Environmental Working Group: Washington, DC, USA, 2017. [Google Scholar]
- Tao, Y.; You, F. Prediction of Cover Crop Adoption through Machine Learning Models using Satellite-derived Data. IFAC Pap. 2019, 52, 137–142. [Google Scholar] [CrossRef]
- Seifert, C.A.; Azzari, G.; Lobell, D.B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 2018, 14, 064033. [Google Scholar] [CrossRef]
- Thieme, A.; Yadav, S.; Oddo, P.C.; Fitz, J.M.; McCartney, S.; King, L.A.; Keppler, J.; McCarty, G.W.; Hively, W.D. Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed. Remote Sens. Environ. 2020, 248, 111943. [Google Scholar] [CrossRef]
- Hively, W.D.; Duiker, S.; McCarty, G.; Prabhakara, K. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania. J. Soil Water Conserv. 2015, 70, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Hively, W.D.; Lang, M.; McCarty, G.W.; Keppler, J.; Sadeghi, A.; McConnell, L.L. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. J. Soil Water Conserv. 2009, 64, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Vrieling, A.; Muller, B.; Nelson, A. Winter cover crops in Dutch maize fields: Variability in quality and its drivers assessed from multi-temporal Sentinel-2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102139. [Google Scholar] [CrossRef]
- Planet Team. Planet Application Program Interface; Space for Life on Earth: San Francisco, CA, USA, 2017; Available online: https://api.planet.com (accessed on 15 June 2022).
- Frazier, A.E.; Hemingway, B. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Huete, A.R. Remote sensing for environmental monitoring. In Environmental Monitoring and Characterization; Elsevier: Amsterdam, The Netherlands, 2004; pp. 183–206. [Google Scholar] [CrossRef]
- Fernandes, A.; Melo-Pinto, P.; Millan, B.; Tardaguila, J.; Diago, M. Automatic discrimination of grapevine (Vitis vinifera L.) clones using leaf hyperspectral imaging and partial least squares. J. Agric. Sci. 2015, 153, 455–465. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 July 2022).
- Lehnert, L.W.; Meyer, H.; Obermeier, W.A.; Silva, B.; Regeling, B.; Thies, B.; Bendix, J. Hyperspectral Data Analysis in R: The hsdar Package. J. Stat. Softw. 2019, 89, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 2, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; Leeuwen van, W.A. Comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band Enhanced Vegetation Index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Liu, J.; Pattry, E.; Jego, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rondeaux, G.; Baret, F. Optimization of soil-induced vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xu, X.; Han, J.; Zhang, L.; Bian, C.; Jin, L.; Liu, J. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods. 2019, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhang, J.; Yang, C.; Zhou, G.; Ding, Y.; Shi, Y.; Zhang, D.; Xie, J.; Liao, Q. Rapeseed seedling stand counting and seeding performance evaluation at two early growth stages based on unmanned aerial vehicle imagery. Front. Plant Sci. 2018, 9, 1362. [Google Scholar] [CrossRef]
- Dhakal, M.; Huang, Y.; Locke, M.A.; Reddy, K.R.; Moore, M.T.; Krutz, L.J.; Gholson, D.; Bajgain, R. Assessment of cotton and sorghum stand establishment using UAV-based multispectral and DSLR-based RGB imagery. Agrosyst. Geosci. Environ. 2022, 5, e20247. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News. 2002, 2, 18–22. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-93. 2022. Available online: https://CRAN.R-project.org/package=caret (accessed on 10 July 2022).
- Garrity, S.R.; Eitel, J.U.H.; Vierling, L.A. Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content. Remote Sens. Environ. 2011, 115, 628–635. [Google Scholar] [CrossRef]
- Galvao, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in southeaster Brazil with EO-1 Hyperion data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 2004, 25, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Pushnik, J.C.; Dobrowski, S.; Ustin, S.L. Steady-state chlorophyll fluorescence detection from canopy derivative reflectance and double-peak effects. Remote Sens. Environ. 2003, 84, 283–294. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P.; Law, B.E.; Treuhaft, R.N. Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. J. Geophy. Res. Atmosp. 2001, 106, 5151–5160. [Google Scholar] [CrossRef] [Green Version]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Murrell, E.G.; Schipanski, M.E.; Finney, D.M.; Hunter, M.C.; Burgess, M.; LaChance, J.C.; Baraibar, B.; White, C.M.; Mortensen, D.A.; Kaye, J.P. Achieving Diverse Cover Crop Mixtures: Effects of Planting Date and Seeding Rate. Agron. J. 2017, 109, 259–271. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hecor, A.; Srivastave, S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Lacey, C.G.; Armstrong, S.D. The feasibility of satellite remote sensing and spatial interpolation to estimate cover crop biomass and nitrogen uptake in a small watershed. J. Soil Water Conserv. 2018, 73, 682–692. [Google Scholar] [CrossRef]
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Swoish, M.; Da Cunha Leme Filho, J.F.; Reiter, M.S.; Campbell, J.B.; Thomason, W.E. Comparing satellites and vegetation indices for cover crop biomass estimation. Comp. Electron. Agri. 2022, 196, 106900. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Algarni, M.; Mansour, R.F.; Gupta, D.; Ilayarja, M. Quantum neural network-based multilabel image classification in high-resolution unmanned aerial vehicle imagery. Soft Comput. 2021, 1–12. [Google Scholar] [CrossRef]
- Mehmood, M.; Shahzad, A.; Zafar, B.; Shabbir, A.; Ali, N. Remote sensing image classification: A comprehensive review and application. Math. Probl. Eng. 2022, 2022, 5880959. [Google Scholar] [CrossRef]
Study Site | Treatment | Seeding Rate | Planting | Biomass Sampling | FieldSpec Scanning | GDD (0 °C) | GDD (4 °C) |
---|---|---|---|---|---|---|---|
Kg ha−1 | Date | Date | Date | Days | Days | ||
1 | R * | 162 | 4 November 2021 | 28 April 2021 | 1908 | 1269 ** | |
R + C | 200 | 27 October 2022 | 4 May 2022 | 28 April 2022 | 2201 | 1515 | |
F | 0 | ||||||
2, 3 | LoMix-C | 50 | 6 November 2021 | 21 April 2021 | 1749 | 1147 | |
LoMix-L | 50 | 8 November 2022 | 22 April 2022 | 27 April 2022 | 1852 | 1250 | |
HiMix-LC | 135 | ||||||
F | 0 | ||||||
4 | R | 162 | 3 November 2021 | 22 April 2021 | 1805 | 1186 | |
C | 38 | 9 November 2022 | 20 April 2022 | 28 April 2022 | 1792 | 1202 | |
V | 80 | ||||||
R + C | 200 | ||||||
R + V | 242 | ||||||
C + V | 118 | ||||||
R + C + V | 280 | ||||||
F | 0 |
VIs | Expression # | Source |
---|---|---|
Normalized difference vegetation index (NDVI) | [25] | |
Enhanced vegetation index (EVI) | [26] | |
Two-band enhanced vegetation index (EVI2) | [27,28] | |
Optimized soil adjusted vegetation index (OSAVI) | [29,30] | |
Simple ratio (SR) | [31] | |
Modified simple ratio (MSR) | [32] | |
Excess green index (ExG) | [33,34] | |
Excess red index (ExR) | [33,35] |
Bands and VIs | Nov | March | April_A | April_B | Nov | March | April_A | April_B |
---|---|---|---|---|---|---|---|---|
Correlation with biomass | Correlation with seeding rate | |||||||
-------------------- r --------------------------- | ---------------------- r ----------------------- | |||||||
Blue | −0.01 | −0.34 | −0.54 * | −0.54 * | −0.03 | −0.35 | −0.48 | −0.47 |
Green | −0.15 | −0.24 | −0.54 * | −0.54 * | −0.11 | −0.26 | −0.48 | −0.48 |
Red | 0.02 | −0.42 | −0.53 * | −0.42 | −0.02 | −0.42 | −0.46 | −0.40 |
NIR | 0.41 | 0.74 * | 0.55 * | 0.39 | 0.26 | 0.57 * | 0.39 | 0.24 |
NDVI | 0.21 | 0.56 * | 0.57 * | 0.43 | 0.13 | 0.52 * | 0.46 | 0.34 |
EVI | 0.32 | 0.66 * | 0.57 * | 0.44 | 0.21 | 0.57 * | 0.42 | 0.35 |
EVI2 | 0.41 | 0.62 * | 0.57 * | 0.43 | 0.25 | 0.52 * | 0.43 | 0.33 |
MSR | −0.13 | 0.00 | 0.27 | 0.50 * | −0.05 | 0.24 | 0.33 | 0.43 |
OSAVI | 0.35 | 0.61 * | 0.57 * | 0.42 | 0.23 | 0.54 * | 0.44 | 0.31 |
SR | 0.20 | 0.60 * | 0.56 * | 0.45 | 0.13 | 0.56 * | 0.45 | 0.34 |
ExG | −0.35 | 0.33 | 0.25 | 0.03 | −0.23 | 0.21 | 0.16 | 0.03 |
ExR | 0.08 | −0.44 | −0.47 | −0.31 | 0.06 | −0.48 | −0.45 | −0.31 |
CC | Seeding | Biomass | Red | NIR | NDVI | EVI | OSAVI |
---|---|---|---|---|---|---|---|
Kg ha−1 | Mg ha−1 | % | % | ||||
Study site 1 | |||||||
R | 163 | 4.45 b | 0.07 a | 0.33 a | 0.64 a | 0.45 a | 0.46 a |
R + C | 201 | 5.88 a | 0.07 a | 0.33 a | 0.63 a | 0.44 a | 0.45 a |
F | 0 | 2.48 c | 0.07 a | 0.32 a | 0.63 a | 0.44 a | 0.45 a |
Study site 2 | |||||||
LoMix-L | 50 | 3.15 a | 0.08 a | 0.31 a | 0.59 a | 0.40 a | 0.42 a |
LoMix-C | 50 | 3.58 a | 0.08 a | 0.30 a | 0.57 a | 0.39 a | 0.40 a |
HiMix-LC | 135 | 2.88 a | 0.08 a | 0.30 a | 0.58 a | 0.40 a | 0.41 a |
Study site 3 | |||||||
LoMix-L | 50 | 3.08 b | 0.09 a | 0.30 a | 0.54 a | 0.37 a | 0.39 a |
LoMix-C | 50 | 3.30 ab | 0.09 a | 0.30 a | 0.52 a | 0.36 ab | 0.37 a |
HiMix-LC | 135 | 3.50 a | 0.09 a | 0.29 b | 0.52 a | 0.35 b | 0.37 a |
Study site 4 | |||||||
R | 163 | 5.36 bc | 0.09 a | 0.33 ab | 0.57 cd | 0.40 bc | 0.41 cd |
C | 38 | 4.19 d | 0.08 b | 0.33 ab | 0.59 bc | 0.43 ab | 0.43 bc |
V | 81 | 4.14 d | 0.08 b | 0.34 a | 0.62 ab | 0.45 ab | 0.45 ab |
R + C | 201 | 6.02 ab | 0.08 b | 0.34 a | 0.61 abc | 0.45 ab | 0.45 ab |
R + V | 243 | 6.29 a | 0.08 b | 0.34 a | 0.61 abc | 0.45 ab | 0.44 abc |
C + V | 119 | 4.5 cd | 0.08 b | 0.34 a | 0.63 ab | 0.46 a | 0.45 ab |
R + C + V | 281 | 6.65 a | 0.07 c | 0.35 a | 0.65 a | 0.48 a | 0.47 a |
F | 0 | 2.42 e | 0.10 a | 0.32 b | 0.53 d | 0.37 c | 0.38 d |
Data Source | Time Period | Predictors | # of Predictors | R2 | MSE |
---|---|---|---|---|---|
Planet Imagery | November | Bands + VI | 12 | 0.12 | 2.60 |
Planet Imagery | March | Bands + VI | 12 | 0.25 | 2.72 |
Planet Imagery | April_A | Bands + VI | 12 | 0.12 | 3.03 |
Planet Imagery | April_B | Bands + VI | 12 | 0.00 | 2.98 |
Planet Imagery | November | Bands + VI + CC | 13 | 0.60 | 1.26 |
Planet Imagery | March | Bands + VI + CC | 13 | 0.61 | 1.50 |
Planet Imagery | April_A | Bands + VI + CC | 13 | 0.57 | 1.51 |
Planet Imagery | April_B | Bands + VI + CC | 13 | 0.36 | 1.50 |
FieldSpec | April | Bands | 164 | 0.35 | 2.9 |
FieldSpec | April | Bands + CC | 165 | 0.36 | 1.23 |
FieldSpec | April | VI | 115 | 0.46 | 1.26 |
FieldSpec | April | VI + CC | 116 | 0.44 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharel, T.P.; Bhandari, A.B.; Mubvumba, P.; Tyler, H.L.; Fletcher, R.S.; Reddy, K.N. Mixed-Species Cover Crop Biomass Estimation Using Planet Imagery. Sensors 2023, 23, 1541. https://doi.org/10.3390/s23031541
Kharel TP, Bhandari AB, Mubvumba P, Tyler HL, Fletcher RS, Reddy KN. Mixed-Species Cover Crop Biomass Estimation Using Planet Imagery. Sensors. 2023; 23(3):1541. https://doi.org/10.3390/s23031541
Chicago/Turabian StyleKharel, Tulsi P., Ammar B. Bhandari, Partson Mubvumba, Heather L. Tyler, Reginald S. Fletcher, and Krishna N. Reddy. 2023. "Mixed-Species Cover Crop Biomass Estimation Using Planet Imagery" Sensors 23, no. 3: 1541. https://doi.org/10.3390/s23031541
APA StyleKharel, T. P., Bhandari, A. B., Mubvumba, P., Tyler, H. L., Fletcher, R. S., & Reddy, K. N. (2023). Mixed-Species Cover Crop Biomass Estimation Using Planet Imagery. Sensors, 23(3), 1541. https://doi.org/10.3390/s23031541