Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums
Abstract
:1. Introduction
- We designed a risk prediction model based on random forest algorithm with SHapley Additive exPlanations strategy and developed a stadium fire risk assessment model. It can effectively identify and visually explain the importance and contribution of various fire risk factors to four different stadium fire risk assessment models.
- We designed an indicator attribute threshold interval to quantify and grade the fire risk assessment indicators.
2. Related Work
2.1. Application and Research Status of Forest Fire
2.2. Application and Research Status of Urban Building Fire
3. Methodology
3.1. Data Collection and Preprocessing
3.2. Comparison and Selection of Machine Learning Algorithms
3.3. SHapley Additive exPlanations (SHAP) Approach
3.4. Approach for Interpretable Machine Learning
4. Experimental Results and Discussion
4.1. Experimental Environment
4.2. Identification of Importance Factors for Fire Risk Assessment Modes of Stadiums
4.3. Identification of Importance Factors for Equipment Management Assessment Modes
4.4. Comparison with Other Study
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Attribute Name | Description | Data Type and Value |
---|---|---|
Fire risk of stadiums: | Nominal-Ideal safety mode, Safety mode, Critical mode, Hazardous mode | |
BIS | Building inherent safety | Numerical |
SPM | Safety personnel management | Numerical |
FPBD | Fire protection base data | Numerical |
EM | Equipment management | Numerical |
HDM | Hidden danger management | Numerical |
Appendix B
Attribute Name | Description | Data Type and Value |
---|---|---|
Equipment management: | Nominal-Ideal safety mode, Safety mode, Critical mode, Hazardous mode | |
FFHS | Fire fighting host status | Nominal-Normal, no data, offline duration (≤24 h), offline duration (>24 h) |
FR | Fire host failure ratio | Numerical-% |
SR | Fire host shielding ratio | Numerical-% |
FAC/IR | Integrity rate of fire alarm controller | Numerical-% |
Spray_CCS | Spray control cabinet status | Nominal-Automatic/ manual/offline/disconnected |
nrWaterPressure | Normal rate of water pressure at the end of sprinkler system | Numerical-% |
WPFH | Worst point fire hydrant water pressure | Numerical- MPa |
FHP_CCS | Fire hydrant pump control cabinet status | Nominal-Automatic/ manual/offline/disconnected |
FDO_IR | Fire door operating integrity ratio | Numerical-% |
FSR_IR | Fire shutter running integrity ratio | Numerical-% |
Smoke_CCS | Smoke control cabinet status | Nominal-Automatic/ manual/offline/disconnected |
FWTL | Fire water tank level | Numerical- mm |
FPL | Fire pool level | Numerical- mm |
References
- Cheng, X.Q.; Jin, X.L.; Wang, Y.Z.; Guo, J.F.; Zhang, T.Y.; Li, G.-J. Survey on big data system and analytic technology. Ruan Jian Xue Bao/J. Softw. 2014, 25, 1889–1908. [Google Scholar]
- Iban, M.C. An explainable model for the mass appraisal of residences: The application of tree-based Machine Learning algorithms and interpretation of value determinants. Habitat Int. 2022, 128, 102660. [Google Scholar] [CrossRef]
- Bamonte, P.; Felicetti, R. Fire Scenario and Structural Behaviour in Underground Parking Garages. J. Struct. Fire Eng. 2012, 3, 199–214. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, S.; Weng, M.; Liu, Y. Fire risk assessment for large-scale commercial buildings based on structure entropy weight method. Saf. Sci. 2017, 94, 26–40. [Google Scholar] [CrossRef]
- Surya, L. Risk Analysis Model That Uses Machine Learning to Predict the Likelihood of a Fire Occurring at A Given Property. Int. J. Creat. Res. Thoughts 2017, 5, 2320–2882. [Google Scholar]
- Anderson-Bell, J.; Schillaci, C.; Lipani, A. Predicting non-residential building fire risk using geospatial information and convolutional neural networks. Remote Sens. Appl. Soc. Environ. 2021, 21, 100470. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Y.; Wang, S. Interpretable boosting tree ensemble method for multisource building fire loss prediction. Reliab. Eng. Syst. Saf. 2022, 225, 108587. [Google Scholar] [CrossRef]
- Sarkar, S.; Pramanik, A.; Maiti, J.; Reniers, G. Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data. Saf. Sci. 2020, 125, 104616. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, W.C.; Wang, K.C.; Shih, S.Y. Applying building information modeling to support fire safety management. Autom. Constr. 2015, 59, 158–167. [Google Scholar] [CrossRef]
- Hou, X.; Ming, J.; Qin, R.; Zhu, J. Analysis of the Fire Risk in Wildland-Urban Interface with Random Forest Model. Sci. Silvae Sin. 2019, 55, 194–200. [Google Scholar]
- Vasconcelos, M.J.P.D.; Silva, S.; Tome, M.; Alvim, M.; Pereira, J.M.C. Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogramm. Eng. Remote Sens. 2001, 67, 73–81. [Google Scholar]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 19, 253–271. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Pham, Q.B.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area—ScienceDirect. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Tuyen, T.T.; Jaafari, A.; Yen HP, H.; Nguyen-Thoi, T.; Van Phong, T.; Nguyen, H.D.; Van Le, H.; Phuong, T.T.M.; Nguyen, S.H.; Prakash, I. Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm—ScienceDirect. Ecol. Inform. 2021, 63, 101292. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Zhang, J.Y.; Wang, J. Research on Building Fire Risk Fast Assessment Method Based on Fuzzy comprehensive evaluation and SVM. Procedia Eng. 2018, 211, 1141–1150. [Google Scholar] [CrossRef]
- Lau, C.K.; Lai, K.K.; Lee, Y.P.; Du, J. Fire risk assessment with scoring system, using the support vector machine approach. Fire Saf. J. 2015, 78, 188–195. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Li, X.-Y.; Jomaas, G. Identifying community fire hazards from citizen communication by applying transfer learning and machine learning techniques. Fire Technol. 2021, 57, 2809–2838. [Google Scholar] [CrossRef]
- Madaio, M.; Chen, S.-T.; Haimson, O.L.; Zhang, W.; Cheng, X.; Hinds-Aldrich, M.; Chau, D.H.; Dilkina, B. Firebird: Predicting fire risk and prioritizing fire inspections in Atlanta. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 185–194. [Google Scholar]
- Palar, P.S.; Zuhal, L.R.; Shimoyama, K. Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations. Reliab. Eng. Syst. Saf. 2023, 232, 109045. [Google Scholar] [CrossRef]
- Ui, T. A Shapley Value Representation of Potential Games. Games Econ. Behav. 2000, 31, 121–135. [Google Scholar] [CrossRef]
- Vega García, M.; Aznarte, J.L. Shapley additive explanations for NO2 forecasting. Ecol. Inform. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Wang, S.C.; Qian, Y.; Leung, L.R.; Zhang, Y. Identifying Key Drivers of Wildfires in the Contiguous US Using Machine Learning and Game Theory Interpretation. Earth’s Future 2021, 9, e2020EF001910. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Lu, Y.; Fan, X.; Zhao, Z.; Jiang, X. Dynamic Fire Risk Classification Prediction of Stadiums: Multi-Dimensional Machine Learning Analysis Based on Intelligent Perception. Appl. Sci. 2022, 12, 6607. [Google Scholar] [CrossRef]
- Abdusalomov, A.B.; Islam, B.M.S.; Nasimov, R.; Mukhiddinov, M.; Whangbo, T.K. An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach. Sensors 2023, 23, 1512. [Google Scholar] [CrossRef]
- Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, T.K. An Improvement of the Fire Detection and Classification Method Using YOLOv3 for Surveillance Systems. Sensors 2021, 21, 6519. [Google Scholar] [CrossRef]
- Kim, D.H. A study on the development of a fire site risk prediction model based on initial information using big data analysis. J. Soc. Disaster Inf. 2021, 17, 245–253. [Google Scholar]
- Poh, C.Q.; Ubeynarayana, C.U.; Goh, Y.M. Safety leading indicators for construction sites: A machine learning approach. Autom. Constr. 2018, 93, 375–386. [Google Scholar] [CrossRef]
- Gholizadeh, P.; Esmaeili, B.; Memarian, B. Evaluating the performance of machine learning algorithms on construction accidents: An application of ROC curves. In Construction Research Congress 2018; ASCE: New Orleans, LA, USA, 2018. [Google Scholar]
- Zhu, R.; Hu, X.; Hou, J.; Li, X. Application of machine learning techniques for predicting the consequences of construction accidents in China. Process Saf. Environ. Prot. 2021, 145, 293–302. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Guo, B.; Hao, Z.; Zhou, Y.; Sun, J.; Yu, Z.; Zheng, Y. CityGuard: Citywide fire risk forecasting using a machine learning approach. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–21. [Google Scholar] [CrossRef]
- Yz, A.; Pg, A.; Cbs, B.; Bam, C. Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustain. Energy Technol. Assess. 2021, 45, 100986. [Google Scholar]
- Xie, Y.; Peng, M. Forest fire forecasting using ensemble learning approaches. Neural Comput. Appl. 2019, 31, 4541–4550. [Google Scholar] [CrossRef]
Response Variable | Input Features | Level I [90–100] | Level II [80–90) | Level III [70–80) | Level IV [60–70) | Level V (<60) |
---|---|---|---|---|---|---|
Equipment management | Fire host status | Normal | — | No data | Offline time ≤ 24 h | Offline time > 24 h |
Spray control cabinet status | Automatic | Manual | Offline | — | Disconnected | |
Integrity rate of fire alarm controller | 100% | [95%, 100%) | [90%, 95%) | [80%, 90%) | <80% | |
Failure ratio | 0% | (0%, 5%] | (5%, 10%] | (10%, 20%] | >20% | |
Shielding ratio | 0% | (0%, 5%] | (5%, 10%] | (10%, 20%] | >20% | |
Smoke control cabinet status | Automatic | Manual | Offline | — | Disconnected | |
Worst point fire hydrant water pressure | ≥0.05 MPa | <0.05 MPa | ||||
Fire water tank level | [0, 50 mm) | [50 mm, 100 mm) | >100 mm | |||
Fire pool level | [0, 50 mm) | [50 mm, 100 mm) | >100 mm |
Dataset | Training Set | Testing Set | Total |
---|---|---|---|
Stadium fire risk | 123 | 53 | 176 |
Equipment management | 202 | 87 | 289 |
Machine Learning Algorithms | Weighted Performance Metrics | |||
---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | |
Naive Bayes | 0.49 | 0.65 | 0.49 | 0.46 |
K-nearest neighbors | 0.75 | 0.74 | 0.75 | 0.74 |
Decision tree | 0.74 | 0.74 | 0.74 | 0.73 |
AdaBoost | 0.62 | 0.61 | 0.62 | 0.58 |
Light GBM | 0.81 | 0.81 | 0.80 | 0.80 |
Random forest | 0.83 | 0.86 | 0.85 | 0.82 |
Hardware | Detailed Specifications |
---|---|
Processor | Intel Core i7-10750H 260 GHz |
GPU | NVIDIA Quadro T2000, |
Memory | 16 GB DDR4 |
Motherboard | SDK0L77769 WIN |
Storage | 1024 GB M.2, 4 TB Hard Drive |
Operating system | Windows 12 Pro |
Power | LGC 5B10W13958 |
Risk Assessment Mode | Risk Value | Attribute Requirements | ||
---|---|---|---|---|
Hidden Dangers Frequency | Fire Frequency | Casualties/Property Losses | ||
Ideal Safety mode | [90–100] | Extremely low | Extremely low | No/No |
Safety mode | [80–90) | Low | Low | No/Minor |
Critical mode | [70–80) | Medium | Medium | Partial/Large |
Hazardous mode | [60–70) | High | High | Partial/Major |
Algorithm | Accuracy | Recall | F1-Score | Precision |
---|---|---|---|---|
Detectron2 [26] | — | 99.4% | 95.5% | 99.3% |
Improved YOLOv3 [27] | — | 99.2% | 99.5% | 98.1% |
Deep neural network [28] | 75.1% | — | — | — |
SVM [29] | 78.0% | — | — | — |
AdaBoost [30] | 71.0% | — | 69.0% | — |
Logistic regression [31] | — | 80.3% | 78.3% | — |
Neural networks [32] | 72.5% | 55.8% | 40.0% | 76.3% |
Our method (random forest) | 83.0% | 85.0% | 82.0% | 86.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Fan, X.; Zhang, Y.; Wang, Y.; Jiang, X. Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums. Sensors 2023, 23, 2151. https://doi.org/10.3390/s23042151
Lu Y, Fan X, Zhang Y, Wang Y, Jiang X. Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums. Sensors. 2023; 23(4):2151. https://doi.org/10.3390/s23042151
Chicago/Turabian StyleLu, Ying, Xiaopeng Fan, Yi Zhang, Yong Wang, and Xuepeng Jiang. 2023. "Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums" Sensors 23, no. 4: 2151. https://doi.org/10.3390/s23042151
APA StyleLu, Y., Fan, X., Zhang, Y., Wang, Y., & Jiang, X. (2023). Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums. Sensors, 23(4), 2151. https://doi.org/10.3390/s23042151