Effects of Ballistocardiogram Peak Detection Jitters on the Quality of Heart Rate Variability Features: A Simulation-Based Case Study in the Context of Sleep Staging
Abstract
:1. Introduction
2. Related Work
Signal Used | Stages Classified | Acc. (%) | Sen. (%) | N | Cohen’s Kappa | Ref. |
---|---|---|---|---|---|---|
ECG | SWS vs. N-SWS | 90 | 69 | 45 | 0.56 | [27] |
BCG + Actigraphy | SWS vs. N-SWS | 93 | 81 | 4 | 0.62 | [19] |
ECG | REM vs. N-REM | 87 | 87 | 25 | 0.61 | [30] |
BCG + movement | REM vs. N-REM | 80 | N/A | 18 | 0.43 | [20] |
3. Methods
3.1. Data Description
3.2. HRV Features
3.2.1. Frequency-Domain Features
3.2.2. Time-Domain Features
3.3. Sleep Labels
3.4. Effects of HBI Error on HRV Feature Quality
3.4.1. Bayes Error Test
3.4.2. Classification Error Test
3.5. Brain and Body Sensing Laboratory Data
3.6. Comparing the Present Study with Previous Work: Simulated Versus Laboratory-Based ECG-BCG Timing Errors
4. Results
4.1. Classifier Baseline Performance
4.2. HBI Error Effects
4.3. BCG-Based HBI Error Limit
5. Discussion
5.1. Timing Jitter in Heartbeat Detection
5.2. HRV Feature Sensitivity to HBI MAE
5.3. Notes Regarding the Use of BCG-Based HBIs
5.4. Projected HBI-Based Sleep-Scoring Performance
5.5. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayano, J.; Yuda, E.; Yoshida, Y. Sleep stage classification by combination of actigraphic and heart rate signals. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taipei, Taiwan, 12–14 June 2017; pp. 387–388. [Google Scholar]
- Zink, M.D.; Brüser, C.; Stüben, B.O.; Napp, A.; Stöhr, R.; Leonhardt, S.; Marx, N.; Mischke, K.; Schulz, J.B.; Schiefer, J. Unobtrusive Nocturnal Heartbeat Monitoring by a Ballistocardiographic Sensor in Patients with Sleep Disordered Breathing. Sci. Rep. 2017, 7, 13175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.K.; Yoon, H.; Han, C.; Joo, K.M.; Park, K.S. Physiological Signal Monitoring Bed for Infants Based on Load-Cell Sensors. Sensors 2016, 16, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paalasmaa, J.; Toivonen, H.; Partinen, M. Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms. IEEE J. Biomed. Health Inform. 2015, 19, 1945–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brüser, C.; Winter, S.; Leonhardt, S. Robust inter-beat interval estimation in cardiac vibration signals. Physiol. Meas. 2013, 34, 123. [Google Scholar] [CrossRef] [PubMed]
- Brueser, C.; Winter, S.; Leonhardt, S. Unsupervised heart rate variability estimation from ballistocardiograms. In Proceedings of the 7th International Workshop on Biosignal Interpretation, Como, Italy, 2–4 July 2012. [Google Scholar]
- Brüser, C.; Stadlthanner, K.; de Waele, S.; Leonhardt, S. Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Hwang, S.H.; Chang, M.H.; Park, K.S. Heart rate variability analysis using a ballistocardiogram during Valsalva manoeuvre and post exercise. Physiol. Meas. 2011, 32, 1239. [Google Scholar] [CrossRef]
- Kortelainen, J.M.; Virkkala, J. FFT averaging of multichannel BCG signals from bed mattress sensor to improve estimation of heart beat interval. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 6685–6688. [Google Scholar]
- Arab, C.; Vanderlei, L.C.M.; da Silva Paiva, L.; Fulghum, K.L.; Fristachi, C.E.; Nazario, A.C.P.; Elias, S.; Gebrim, L.H.; Ferreira Filho, C.; Gidron, Y.; et al. Cardiac autonomic modulation impairments in advanced breast cancer patients. Clin. Res. Cardiol. 2018, 107, 924–936. [Google Scholar] [CrossRef]
- Boman, K. Heart Rate Variability: A Possible Measure of Subjective Wellbeing? 2018. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1229983 (accessed on 6 November 2022).
- Yuda, E.; Yoshida, Y.; Sasanabe, R.; Tanaka, H.; Shiomi, T.; Hayano, J. Sleep Stage Classification by a Combination of Actigraphic and Heart Rate Signals. J. Low Power Electron. Appl. 2017, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Nurmi, S.; Saaresranta, T.; Koivisto, T.; Meriheinä, U.; Palva, L. Validation of an Accelerometer Based BCG Method for Sleep Analysis; Aalto University: Espoo, Finland, 2016. [Google Scholar]
- Ni, H.; Zhao, T.; Zhou, X.; Wang, Z.; Chen, L.; Yang, J. Analyzing Sleep Stages in Home Environment Based on Ballistocardiography. In Health Information Science; Yin, X., Ho, K., Zeng, D., Aickelin, U., Zhou, R., Wang, H., Eds.; Number 9085 in Lecture Notes in Computer Science; Springer International Publishing: New York, NY, USA, 2015; pp. 56–68. [Google Scholar]
- Xiao, M.; Yan, H.; Song, J.; Yang, Y.; Yang, X. Sleep stages classification based on heart rate variability and random forest. Biomed. Signal Process. Control 2013, 8, 624–633. [Google Scholar] [CrossRef]
- Dong, Z.; Li, X.; Chen, W. Frequency-network analysis of heart rate variability for obstructive apnea patient detection. IEEE J. Biomed. Health Inform. 2018, 22, 1895–1905. [Google Scholar] [CrossRef]
- Jung, D.W.; Hwang, S.H.; Yoon, H.N.; Lee, Y.J.; Jeong, D.U.; Park, K.S. Nocturnal Awakening and Sleep Efficiency Estimation Using Unobtrusively Measured Ballistocardiogram. IEEE Trans. Biomed. Eng. 2014, 61, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Watanabe, K. Noncontact method for sleep stage estimation. IEEE Trans. Biomed. Eng. 2004, 51, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.H.; Chung, G.S.; Lee, J.S.; Jeong, D.U.; Park, K.S. Slow-wave sleep estimation on a load-cell-installed bed: A non-constrained method. Physiol. Meas. 2009, 30, 1163. [Google Scholar] [CrossRef] [PubMed]
- Kortelainen, J.M.; Mendez, M.O.; Bianchi, A.M.; Matteucci, M.; Cerutti, S. Sleep staging based on signals acquired through bed sensor. IEEE Trans. Inform. Technol. Biomed. 2010, 14, 776–785. [Google Scholar] [CrossRef]
- Suliman, A.; Carlson, C.; Warren, S.; Thompson, D. Performance Evaluation of Processing Methods for Ballistocardiogram Peak Detection. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 502–505. [Google Scholar]
- Suliman, A.; Carlson, C.; Ade, C.; Warren, S.; Thompson, D.E. Performance Comparison for Ballistocardiogram Peak Detection Methods. IEEE Access 2019. [Google Scholar] [CrossRef]
- Dean, D.A.; Goldberger, A.L.; Mueller, R.; Kim, M.; Rueschman, M.; Mobley, D.; Sahoo, S.S.; Jayapandian, C.P.; Cui, L.; Morrical, M.G.; et al. Scaling up scientific discovery in sleep medicine: The National Sleep Research Resource. Sleep 2016, 39, 1151–1164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Cui, L.; Mueller, R.; Tao, S.; Kim, M.; Rueschman, M.; Mariani, S.; Mobley, D.; Redline, S. The National Sleep Research Resource: Towards a sleep data commons. J. Am. Med. Inform. Assoc. 2018, 25, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The sleep heart health study: Design, rationale, and methods. Sleep 1997, 20, 1077–1085. [Google Scholar]
- Redline, S.; Sanders, M.H.; Lind, B.K.; Quan, S.F.; Iber, C.; Gottlieb, D.J.; Bonekat, W.H.; Rapoport, D.M.; Smith, P.L.; Kiley, J.P. Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. Sleep 1998, 21, 759–767. [Google Scholar]
- Yoon, H.; Hwang, S.H.; Choi, J.W.; Lee, Y.J.; Jeong, D.U.; Park, K.S. Slow-wave sleep estimation for healthy subjects and OSA patients using R–R intervals. IEEE J. Biomed. Health Inform. 2018, 22, 119–128. [Google Scholar] [CrossRef]
- Long, X.; Fonseca, P.; Aarts, R.; Haakma, R.; Rolink, J.; Leonhardt, S. Detection of Nocturnal Slow Wave Sleep Based on Cardiorespiratory Activity in Healthy Adults. IEEE J. Biomed. Health Inform. 2016, 21, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, P.; Long, X.; Radha, M.; Haakma, R.; Aarts, R.M.; Rolink, J. Sleep stage classification with ECG and respiratory effort. Physiol. Meas. 2015, 36, 2027. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Hwang, S.H.; Choi, J.W.; Lee, Y.J.; Jeong, D.U.; Park, K.S. REM sleep estimation based on autonomic dynamics using R–R intervals. Physiol. Meas. 2017, 38, 631. [Google Scholar] [CrossRef] [PubMed]
- Vehkaoja, A.; Rajala, S.; Kumpulainen, P.; Lekkala, J. Correlation approach for the detection of the heartbeat intervals using force sensors placed under the bed posts. J. Med. Eng. Technol. 2013, 37, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Waltisberg, D. Sleep Assessment Using Bed-Mounted Sensors. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2017. [Google Scholar]
- Mack, D.C.; Patrie, J.T.; Felder, R.A.; Suratt, P.M.; Alwan, M. Sleep assessment using a passive ballistocardiography-based system: Preliminary validation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; pp. 4319–4322. [Google Scholar]
- Mack, D.C.; Patrie, J.T.; Suratt, P.M.; Felder, R.A.; Alwan, M. Development and preliminary validation of heart rate and breathing rate detection using a passive, ballistocardiography-based sleep monitoring system. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 111–120. [Google Scholar] [CrossRef]
- Park, K.S.; Yoon, H. Ballistocardiography. In Seamless Healthcare Monitoring; Springer: Berlin/Heidelberg, Germany, 2018; pp. 127–155. [Google Scholar]
- Samy, L.; Huang, M.C.; Liu, J.J.; Xu, W.; Sarrafzadeh, M. Unobtrusive sleep stage identification using a pressure-sensitive bed sheet. IEEE Sens. J. 2014, 14, 2092–2101. [Google Scholar] [CrossRef]
- Yi, R.; Enayati, M.; M Keller, J.; Popescu, M.; Skubic, M. Non-Invasive In-Home Sleep Stage Classification Using a Ballistocardiography Bed Sensor. In Proceedings of the IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–12 May 2019; pp. 1–4. [Google Scholar]
- Kinnunen, H.; Rantanen, A.; Kenttä, T.; Koskimäki, H. Feasible assessment of recovery and cardiovascular health: Accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol. Meas. 2020, 41, 04NT01. [Google Scholar] [CrossRef]
- van Gilst, M.; Wulterkens, B.; Fonseca, P.; Radha, M.; Ross, M.; Moreau, A.; Cerny, A.; Anderer, P.; Long, X.; van Dijk, J.; et al. Direct application of an ECG-based sleep staging algorithm on reflective photoplethysmography data decreases performance. BMC Res. Notes 2020, 13, 1–5. [Google Scholar] [CrossRef]
- Clifford, G. ECGtools/ecgBag. 2003. Available online: http://www.robots.ox.ac.uk/~gari/CODE/ECGtools/ecgBag/ (accessed on 16 September 2019).
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Tumer, K.; Ghosh, J. Bayes error rate estimation using classifier ensembles. Int. J. Smart Eng. Syst. Des. 2003, 5, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Prakash, P.; Kuehl, P.; McWilliams, B.; Rubenthaler, S.; Schnell, E.; Singleton, G.; Warren, S. Sensors and instrumentation for unobtrusive sleep quality assessment in autistic children. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 800–803. [Google Scholar]
- Warren, S.; Prakash, P.; Brokesh, E.; Singleton, G.; Fowler, K. Design projects to quantify the health and development of autistic children. In Proceedings of the 2014 Annual Conference & Exposition, Indianapolis, IN, USA, 15–18 June 2014; pp. 15–18. [Google Scholar]
- Carlson, C.; Suliman, A.; Prakash, P.; Thompson, D.; Wang, S.; Natarajan, B.; Warren, S. Bed-based instrumentation for unobtrusive sleep quality assessment in severely disabled autistic children. In Proceedings of the 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4909–4912. [Google Scholar]
- Carlson, C.; Suliman, A.; Alivar, A.; Prakash, P.; Thompson, D.; Natarajan, B.; Warren, S. A Pilot Study of an Unobtrusive Bed-Based Sleep Quality Monitor for Severely Disabled Autistic Children. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 4343–4346. [Google Scholar]
- Carlson, C. Development of a Bed-Based Nighttime Monitoring Toolset. Ph.D. Thesis, Kennesaw State University in Georgia, Kennesaw, GA, USA, 2019. [Google Scholar]
Wake | S1 | S2 | S3 | REM |
---|---|---|---|---|
30.0% | 2.6% | 41.1% | 11.6% | 14.7% |
Labeling | (%) | (%) |
---|---|---|
Micro-Labeling | 24 | 36 |
Macro-Labeling | 17 | 27 |
Features | HR | SDNN | LF | HF | LFHF | MedFiltLFHF | Label |
---|---|---|---|---|---|---|---|
Slopes (%/s) | 4.37 | 27.10 | 19.66 | 58.74 | 30.32 | 31.78 | Micro |
4.43 | 27.26 | 19.44 | 59.02 | 30.37 | 32.01 | Macro |
Mean (ms) | Median (ms) | Min (ms) | Max (ms) | |
---|---|---|---|---|
7.16 | 6.09 | 0.94 | 44.44 | |
8.77 | 8.26 | 1.27 | 23.60 | |
15.93 | 14.35 | 2.21 | 68.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suliman, A.; Mowla, M.R.; Alivar, A.; Carlson, C.; Prakash, P.; Natarajan, B.; Warren, S.; Thompson, D.E. Effects of Ballistocardiogram Peak Detection Jitters on the Quality of Heart Rate Variability Features: A Simulation-Based Case Study in the Context of Sleep Staging. Sensors 2023, 23, 2693. https://doi.org/10.3390/s23052693
Suliman A, Mowla MR, Alivar A, Carlson C, Prakash P, Natarajan B, Warren S, Thompson DE. Effects of Ballistocardiogram Peak Detection Jitters on the Quality of Heart Rate Variability Features: A Simulation-Based Case Study in the Context of Sleep Staging. Sensors. 2023; 23(5):2693. https://doi.org/10.3390/s23052693
Chicago/Turabian StyleSuliman, Ahmad, Md Rakibul Mowla, Alaleh Alivar, Charles Carlson, Punit Prakash, Balasubramaniam Natarajan, Steve Warren, and David E. Thompson. 2023. "Effects of Ballistocardiogram Peak Detection Jitters on the Quality of Heart Rate Variability Features: A Simulation-Based Case Study in the Context of Sleep Staging" Sensors 23, no. 5: 2693. https://doi.org/10.3390/s23052693
APA StyleSuliman, A., Mowla, M. R., Alivar, A., Carlson, C., Prakash, P., Natarajan, B., Warren, S., & Thompson, D. E. (2023). Effects of Ballistocardiogram Peak Detection Jitters on the Quality of Heart Rate Variability Features: A Simulation-Based Case Study in the Context of Sleep Staging. Sensors, 23(5), 2693. https://doi.org/10.3390/s23052693