Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO
Abstract
:1. Introduction
- 1.
- A flexible feature learning model for motor imagery EEG signal classification, namely frequency-spatial feature fusion (FSFF), is proposed. By using distinctive feature fusion with AS-LASSO, the model can flexibly capture multi-scale spatial information matched to a specific subject.
- 2.
- A joint frequency-domain and spatial-domain feature extraction strategy is developed for the CSP algorithm. By setting up a set of overlapping bandpass filters, we extracted spatial domain features at multiple scales to match the specific subject.
- 3.
- A novel feature selection algorithm is constructed that introduces the symmetric uncertainty and spatial information of features into adaptive LASSO, namely AS-LASSO. It can accurately select discriminative features and fully utilize the complementarity between features by mining task relevance and structural information.
- 4.
- Experiments on multiple public EEG datasets demonstrate that the proposed model excels in efficiently extracting discriminative features, potentially enhancing the flexibility and accuracy of EEG analysis. At the same time, it proves that the model provides a robust tool for BCI applications, such as auxiliary rehabilitation training.
2. Related Work
2.1. Discriminative Feature Extraction
2.2. LASSO-Based Feature Selection
3. Methods
3.1. Multi-scale Spatial Feature Extraction
3.2. Adaptive Feature Selection
3.2.1. Weight Measurement
3.2.2. LASSO-Based Feature Selection
3.2.3. A Learning Algorithm for the Proposed Method
Algorithm 1 Algorithm for AS-LASSO-based feature selection. |
Input: , , , . Output: .
|
3.3. Classification
4. Results and Discussion
4.1. EEG Datasets
- 1.
- BCI Competition IV Dataset IIa [46]: This dataset contains 22-channel EEG data from nine subjects who were asked to perform four categories of movements (left-hand, right-hand, foot, and tongue). Each subject conducted two sessions on different days. Each session can be subdivided into six runs (48 trials per run). All EEG signals were sampled at 250 Hz and bandpass-filtered between 0.5 and 100 Hz. In this work, only the EEG signals of the left-hand task and the right-hand task were selected for an appropriate comparison. Figure 3a shows the timeline of one trial on this dataset. We limited the time interval of one trial to a period of 2∼6 s.
- 2.
- SMR-BCI Dataset [47]: This dataset was provided by the Graz University of Technology in 2014. This dataset was collected from 14 subjects and included EEG signals of the right-hand and foot motor imagery. Each subject recorded 15 channels of EEG signals at a sampling frequency of 512 Hz. Data for each subject included 100 trials without training feedback and 60 trials with test feedback. The timeline of one trial on the SMR-BCI dataset is shown in Figure 3b. In this work, the signal was intercepted through a time window of 4∼8 s.
- 3.
- OpenBMI Dataset [48]: This dataset includes 62-channel EEG data from 54 subjects, which are sampled at 1000 Hz. All EEG data are from two sessions conducted on different days. Each session has a training phase and a test phase (100 trials per phase). Each phase contains 50 trials of the right-hand motor imagery task and 50 trials of the left-hand motor imagery task. Figure 3c shows the timeline of one trial on this dataset. In this work, signals are intercepted through a 4-s time window.
4.2. Experimental Evaluation
4.3. Experimental Setup
4.4. Performance of Different Classifiers
4.5. Comparisons with State-of-the-Art Models
- 1.
- FBCSP with SVM [25]: In the model, CSP is used to extract the spatial features of non-overlapping sub-band signals, and the mutual information-based feature selection is used to obtain features matching specific subjects. Finally, the feature subset is fed to the SVM classifier.
- 2.
- FBCSP with LDA [52]: The model first divides EEG signals into a series of non-overlapping sub-bands and then applies CSP and LDA classifier to each sub-band, respectively. Finally, score fusion and classification are performed.
- 3.
- Deep Convnet [10]: Deep Convnet is expected to achieve an accurate decoding of motor imagery through a general convolutional neural network designed using only a small amount of expert knowledge.
- 4.
- EEGnet [11]: EEGNet is a compact convolutional neural network for EEG-based BCI. By building an EEG-specific model using deep and separable convolutions, the model enables the feature extraction and classification of motor imagery.
- 5.
- EEG-TCNet [53]: EEG-TCNet is a deep learning-based model for motor imagery. EEG-TCNet achieves excellent performance while requiring a small number of trainable parameters by introducing a temporal convolutional network.
- 6.
- MIN2net [49]: MIN2Net is an end-to-end model that integrates deep metric learning into a multi-task autoencoder to learn the compact and discriminative latent representation from EEG.
- 7.
- Spectral–Spatial with CNN [54]: Spectral–Spatial with CNN is a motor imagery classification model based on deep convolutional neural networks, whose discriminative features are expressed as a combination of the spectral–spatial input embedding the diversity of the EEG signals.
4.6. Ablation Experiments
4.6.1. Effect of the Feature Extraction Strategies
4.6.2. Effect of the Feature Selection Methods
4.7. Visualization of Selected Features
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, D.; Yadav, S.; Veer, K. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges. J. Neurosci. Methods 2020, 346, 108918. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Alyasseri, Z.A.A.; Abdulkareem, K.H.; Ali, N.S.; Al-Mhiqani, M.N.; Guger, C. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation. Comput. Biol. Med. 2021, 137, 104799. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, L.; Li, Y.; Chen, B.; Li, F.; Jiang, Y.; Gao, D.; Deng, L.; Lv, X.; Ma, X.; et al. Rehabilitation of motor function in children with cerebral palsy based on motor imagery. Cogn. Neurodyn. 2021, 15, 939–948. [Google Scholar] [CrossRef]
- Mane, R.; Chouhan, T.; Guan, C. BCI for stroke rehabilitation: Motor and beyond. J. Neural Eng. 2020, 17, 041001. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Xie, Z.; Wang, M.; Bao, W. Evaluation on game concentration with multi-scale fuzzy entropy based on EEG signals. Entertain. Comput. 2023, 46, 100570. [Google Scholar] [CrossRef]
- Sakkalis, V.; Krana, M.; Farmaki, C.; Bourazanis, C.; Gaitatzis, D.; Pediaditis, M. Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2960–2969. [Google Scholar] [CrossRef]
- Sharma, M.; Patel, S.; Acharya, U.R. Automated detection of abnormal EEG signals using localized wavelet filter banks. Pattern Recogn. Lett. 2020, 133, 188–194. [Google Scholar] [CrossRef]
- Albaqami, H.; Hassan, G.M.; Subasi, A.; Datta, A. Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree. Biomed. Signal Process. Control 2021, 70, 102957. [Google Scholar] [CrossRef]
- dos Santos, E.M.; Cassani, R.; Falk, T.H.; Fraga, F.J. Improved motor imagery brain-computer interface performance via adaptive modulation filtering and two-stage classification. Biomed. Signal Process. Control 2020, 57, 101812. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Ma, W.; Gong, Y.; Xue, H.; Liu, Y.; Lin, X.; Zhou, G.; Li, Y. A lightweight and accurate double-branch neural network for four-class motor imagery classification. Biomed. Signal Process. Control 2022, 75, 103582. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Jia, Z.; Zhang, R.; Yin, F. A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification. Biomed. Signal Process. Control 2023, 79, 104066. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Ertam, F.; Subasi, A. A novel ensemble local graph structure based feature extraction network for EEG signal analysis. Biomed. Signal Process. Control 2020, 61, 102006. [Google Scholar] [CrossRef]
- Khorshidtalab, A.; Salami, M.J.E.; Hamedi, M. Robust classification of motor imagery EEG signals using statistical time–domain features. Physiol. Meas. 2013, 34, 1563. [Google Scholar] [CrossRef]
- Rodríguez, A.N.; Mfuni-Tshimanga, Y.; Mavuela-Maniansa, R.; Castro, J.A.M.; Ruiz-Pinales, J.; Avina-Cervantes, J.G. EEG-BCI Features Discrimination between Executed and Imagined Movements Based on FastICA, Hjorth Parameters, and SVM. Mathematics 2023, 11, 4409. [Google Scholar] [CrossRef]
- Vecchiato, G.; Susac, A.; Margeti, S.; De Vico Fallani, F.; Maglione, A.G.; Supek, S.; Planinic, M.; Babiloni, F. High-resolution EEG analysis of power spectral density maps and coherence networks in a proportional reasoning task. Brain Topogr. 2013, 26, 303–314. [Google Scholar] [CrossRef]
- Chatterjee, R.; Bandyopadhyay, T. EEG Based Motor Imagery Classification Using SVM and MLP. In Proceedings of the 2016 2nd International Conference on Computational Intelligence and Networks (CINE), Bhubaneswar, India, 11 January 2016; pp. 84–89. [Google Scholar] [CrossRef]
- Chaudhary, S.; Taran, S.; Bajaj, V.; Siuly, S. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications. Comput. Methods Programs Biomed. 2020, 187, 105325. [Google Scholar] [CrossRef]
- Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G. An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface. IEEE Sens. J. 2019, 19, 6938–6947. [Google Scholar] [CrossRef]
- Yu, X.; Aziz, M.Z.; Sadiq, M.T.; Jia, K.; Fan, Z.; Xiao, G. Computerized multidomain EEG classification system: A new paradigm. IEEE J. Biomed. Health Inform. 2022, 26, 3626–3637. [Google Scholar] [CrossRef]
- Ghritlahare, R.; Sahu, M.; Kumar, R. Classification of two-class motor imagery EEG signals using empirical mode decomposition and hilbert–huang transformation. In Computing and Network Sustainability: Proceedings of IRSCNS 2018; Springer: Singapore, 2019; pp. 375–386. [Google Scholar] [CrossRef]
- Bagh, N.; Reddy, M.R. Hilbert transform-based event-related patterns for motor imagery brain computer interface. Biomed. Signal Process. Control 2020, 62, 102020. [Google Scholar] [CrossRef]
- Luo, J.; Gao, X.; Zhu, X.; Wang, B.; Lu, N.; Wang, J. Motor imagery EEG classification based on ensemble support vector learning. Comput. Methods Programs Biomed. 2020, 193, 105464. [Google Scholar] [CrossRef]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 2390–2397. [Google Scholar] [CrossRef]
- Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R.B.; Wang, H. A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 4002709. [Google Scholar] [CrossRef]
- Xu, M.; Chen, Y.; Wang, D.; Wang, Y.; Zhang, L.; Wei, X. Multi-objective optimization approach for channel selection and cross-subject generalization in RSVP-based BCIs. J. Neural Eng. 2021, 18, 046076. [Google Scholar] [CrossRef]
- Kirar, J.S.; Agrawal, R. Relevant feature selection from a combination of spectral-temporal and spatial features for classification of motor imagery EEG. J. Med. Syst. 2018, 42, 78. [Google Scholar] [CrossRef]
- Aarabi, A.; Wallois, F.; Grebe, R. Automated neonatal seizure detection: A multistage classification system through feature selection based on relevance and redundancy analysis. Clin. Neurophysiol. 2006, 117, 328–340. [Google Scholar] [CrossRef]
- Rodríguez-Bermúdez, G.; García-Laencina, P.J.; Roca-González, J.; Roca-Dorda, J. Efficient feature selection and linear discrimination of EEG signals. Neurocomputing 2013, 115, 161–165. [Google Scholar] [CrossRef]
- Miao, Y.; Jin, J.; Daly, I.; Zuo, C.; Wang, X.; Cichocki, A.; Jung, T.P. Learning common time-frequency-spatial patterns for motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 699–707. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.; Chen, X.; Yin, E.; Jin, J.; Wang, X.; Cichocki, A. Sparse group representation model for motor imagery EEG classification. IEEE J. Biomed. Health Inform. 2018, 23, 631–641. [Google Scholar] [CrossRef]
- Wagh, K.P.; Vasanth, K. Performance evaluation of multi-channel electroencephalogram signal (EEG) based time frequency analysis for human emotion recognition. Biomed. Signal Process. Control 2022, 78, 103966. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 2011, 59, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Kainolda, Y.; Abibullaev, B.; Sameni, R.; Zollanvari, A. Is Riemannian geometry better than Euclidean in averaging covariance matrices for CSP-based subject-independent classification of motor imagery? In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 910–914. [Google Scholar] [CrossRef]
- Arvaneh, M.; Guan, C.; Ang, K.K.; Quek, C. Mutual information-based optimization of sparse spatio-spectral filters in brain-computer interface. Neural Comput. Appl. 2014, 25, 625–634. [Google Scholar] [CrossRef]
- Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. A sparse-group lasso. J. Comput. Graph. Statist. 2013, 22, 231–245. [Google Scholar] [CrossRef]
- Wang, J.J.; Xue, F.; Li, H. Simultaneous channel and feature selection of fused EEG features based on sparse group lasso. BioMed Res. Int. 2015, 2015, 703768. [Google Scholar] [CrossRef] [PubMed]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Patil, A.R.; Park, B.K.; Kim, S. Adaptive lasso with weights based on normalized filtering scores in molecular big data. J. Theor. Comput. Chem. 2020, 19, 2040010. [Google Scholar] [CrossRef]
- Sethi, J.K.; Mittal, M. An efficient correlation based adaptive LASSO regression method for air quality index prediction. Earth Sci. Informat. 2021, 14, 1777–1786. [Google Scholar] [CrossRef]
- Sosa-Cabrera, G.; García-Torres, M.; Gómez-Guerrero, S.; Schaerer, C.E.; Divina, F. A multivariate approach to the symmetrical uncertainty measure: Application to feature selection problem. Inf. Sci. 2019, 494, 1–20. [Google Scholar] [CrossRef]
- Meng, J.; Liu, G.; Huang, G.; Zhu, X. Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 February 2009; pp. 2290–2294. [Google Scholar] [CrossRef]
- Qi, F.; Wu, W.; Yu, Z.L.; Gu, Z.; Wen, Z.; Yu, T.; Li, Y. Spatiotemporal-filtering-based channel selection for single-trial EEG classification. IEEE Trans. Cybern. 2020, 51, 558–567. [Google Scholar] [CrossRef]
- Tangermann, M.; Müller, K.R.; Aertsen, A.; Birbaumer, N.; Braun, C.; Brunner, C.; Leeb, R.; Mehring, C.; Miller, K.J.; Mueller-Putz, G.; et al. Review of the BCI competition IV. Front. Neurosci. 2012, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Steyrl, D.; Scherer, R.; Förstner, O.; Müller-Putz, G.R. Motor imagery brain-computer interfaces: Random forests vs regularized LDA-non-linear beats linear. In Proceedings of the 6th International Brain-Computer Interface Conference, Graz, Austria, 16–19 September 2014; pp. 241–244. Available online: https://graz.elsevierpure.com/en/publications/motor-imagery-brain-computer-interfaces-random-forests-vs-regular (accessed on 21 December 2023).
- Lee, M.H.; Kwon, O.Y.; Kim, Y.J.; Kim, H.K.; Lee, Y.E.; Williamson, J.; Fazli, S.; Lee, S.W. EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy. GigaScience 2019, 8, giz002. [Google Scholar] [CrossRef] [PubMed]
- Autthasan, P.; Chaisaen, R.; Sudhawiyangkul, T.; Rangpong, P.; Kiatthaveephong, S.; Dilokthanakul, N.; Bhakdisongkhram, G.; Phan, H.; Guan, C.; Wilaiprasitporn, T. MIN2Net: End-to-end multi-task learning for subject-independent motor imagery EEG classification. IEEE Trans. Biomed. Eng. 2021, 69, 2105–2118. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R. Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 607–616. [Google Scholar] [CrossRef]
- Pal, A.K.; Mondal, P.K.; Ghosh, A.K. High dimensional nearest neighbor classification based on mean absolute differences of inter-point distances. Pattern Recogn. Lett. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Rasheed, S.; Mumtaz, W. Classification of Hand-Grasp Movements of Stroke Patients using EEG Data. In Proceedings of the 2021 International Conference on Artificial Intelligence (ICAI), Islamabad, Pakistan, 5–7 April 2021; pp. 86–90. [Google Scholar] [CrossRef]
- Ingolfsson, T.M.; Hersche, M.; Wang, X.; Kobayashi, N.; Cavigelli, L.; Benini, L. EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 2958–2965. [Google Scholar] [CrossRef]
- Kwon, O.Y.; Lee, M.H.; Guan, C.; Lee, S.W. Subject-independent brain-computer interfaces based on deep convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3839–3852. [Google Scholar] [CrossRef]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Neural Syst. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef]
Dataset | Classifier | Accuracy | F1-Score | Precision |
---|---|---|---|---|
BCI Competition IV Dataset IIa | KNN | 79.03 ± 13.69 | 78.77 ± 15.28 | 80.28 ± 15.06 |
LDA | 73.77 ± 13.12 | 70.88 ± 19.93 | 77.73 ± 15.08 | |
RF | 71.81 ± 11.87 | 68.46 ± 15.23 | 77.42 ± 15.63 | |
DT | 67.15 ± 11.85 | 68.18 ± 11.47 | 67.79 ± 13.45 | |
SVM | 80.40 ± 13.42 | 79.10 ± 18.55 | 81.52 ± 15.31 | |
SMR-BCI Dataset | KNN | 77.79 ± 15.35 | 76.52 ± 17.23 | 79.90 ± 15.81 |
LDA | 72.31 ± 16.53 | 71.66 ± 18.09 | 73.79 ± 17.48 | |
RF | 73.71 ± 17.02 | 70.09 ± 21.20 | 77.51 ± 18.18 | |
DT | 71.95 ± 17.89 | 72.35 ± 17.73 | 73.14 ± 19.18 | |
SVM | 77.81 ± 15.08 | 74.60 ± 19.01 | 82.78± 15.73 | |
OpenBMI Dataset | KNN | 67.12± 16.32 | 66.79 ± 16.95 | 67.59 ± 16.47 |
LDA | 67.39 ± 15.84 | 68.81 ± 30.95 | 67.95 ± 16.10 | |
RF | 65.95 ± 15.59 | 62.88 ± 17.74 | 68.20 ± 16.47 | |
DT | 63.63 ± 14.68 | 63.55 ± 14.97 | 64.17 ± 15.15 | |
SVM | 68.05 ± 16.54 | 67.91 ± 17.75 | 68.43 ± 16.87 |
Dataset | Method | Accuracy | F1-Score |
---|---|---|---|
BCI Competition IV Dataset IIa | FBCSP with SVM | 75.93 ± 14.76 | 74.49 ± 18.47 |
FBCSP with LDA | 73.75 ± 18.22 | 75.72 ± 25.59 | |
Deep ConvNet | 64.34 ± 17.89 | 60.17 ± 22.70 | |
EEGNet | 65.68 ± 18.22 | 64.18 ± 25.59 | |
EEG-TCNet | 84.15 ± 14.01 | 84.49 ± 13.54 | |
MIN2Net | 65.46 ± 15.60 | 64.54 ± 18.35 | |
Spectral-Spatial with CNN | 76.84 ± 13.63 | 76.95 ± 15.28 | |
Ours | 80.40 ± 13.42 | 79.10 ± 18.55 | |
SMR-BCI Dataset | FBCSP with SVM | 74.26 ± 17.45 | 70.80 ± 22.26 |
FBCSP with LDA | 74.38 ± 19.48 | 71.87 ± 21.95 | |
Deep ConvNet | 61.52 ± 15.87 | 55.90 ± 21.48 | |
EEGNet | 67.76 ± 17.96 | 68.05 ± 20.96 | |
EEG-TCNet | 68.50 ± 20.13 | 67.67 ± 21.62 | |
MIN2Net | 64.88 ± 15.09 | 62.70 ± 16.56 | |
Spectral-Spatial with CNN | 75.88 ± 17.01 | 69.80 ± 26.99 | |
Ours | 77.81 ± 15.08 | 74.60 ± 19.01 | |
OpenBMI Dataset | FBCSP with SVM | 66.69 ± 16.22 | 65.88 ± 18.41 |
FBCSP with LDA | 66.05 ± 16.21 | 65.73 ± 17.56 | |
Deep ConvNet | 60.17 ± 16.52 | 61.69 ± 18.38 | |
EEGNet | 60.42 ± 17.08 | 56.81 ± 23.49 | |
EEG-TCNet | 63.32 ± 16.36 | 62.73 ± 17.94 | |
MIN2Net | 59.78 ± 13.92 | 62.17 ± 14.22 | |
Spectral-Spatial with CNN | 65.33 ± 15.98 | 67.56 ± 15.81 | |
Ours | 68.05 ± 16.54 | 67.91 ± 17.75 |
Feature Extraction | Accuracy | F1-Score | Precision |
---|---|---|---|
CSP | 69.09 | 64.41 | 72.44 |
FBCSP | 78.10 | 77.89 | 79.54 |
Our strategy | 80.40 | 79.10 | 81.52 |
Weight Measurement | Accuracy | F1-Score | Precision |
---|---|---|---|
LASSO | 78.12 | 77.78 | 78.42 |
Symmetric uncertainty | 79.72 | 78.88 | 80.76 |
Spatial information | 79.18 | 77.39 | 81.92 |
Our strategy | 80.40 | 79.10 | 81.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Liu, X.; Yang, W.; Li, Y.; Sun, Q.; Kong, X. Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO. Sensors 2024, 24, 3755. https://doi.org/10.3390/s24123755
Huang W, Liu X, Yang W, Li Y, Sun Q, Kong X. Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO. Sensors. 2024; 24(12):3755. https://doi.org/10.3390/s24123755
Chicago/Turabian StyleHuang, Weihai, Xinyue Liu, Weize Yang, Yihua Li, Qiyan Sun, and Xiangzeng Kong. 2024. "Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO" Sensors 24, no. 12: 3755. https://doi.org/10.3390/s24123755
APA StyleHuang, W., Liu, X., Yang, W., Li, Y., Sun, Q., & Kong, X. (2024). Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO. Sensors, 24(12), 3755. https://doi.org/10.3390/s24123755