Detection of Road Risk Sources Based on Multi-Scale Lightweight Networks
Abstract
:1. Introduction
2. Construction and Augmentation of Road Risk Source Datasets
2.1. Grayscale Images of Risk Sources
2.2. Crack Image Denoising
2.3. Enhancement of the Fracture Image
3. Recognition Algorithm Based on Lightweight Network
3.1. Improve the Trunk Feature Extraction Network
3.2. Improve Loss Function
4. Dimension Estimation of Disease
4.1. Camera Parameter Acquisition
4.2. Camera Pose Estimation
5. Experiment
5.1. Datasets
5.2. Experimental Environment
5.3. Analysis of Experimental Results
5.4. Experimental Results of Disease Dimension Estimation
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, B.; Pei, J.; Zhang, J.; Wang, C. Joint design and load transfer capacity analysis of photovoltaic/thermal integrated pavement unit. J. Clean. Prod. 2022, 380, 135029. [Google Scholar] [CrossRef]
- The Comprehensive Department of the Ministry of Transport of the People’s Republic of China. 2023 Statistical Bulletin of Transportation Industry Development; Ministry of Transport of the People’s Republic of China: Beijing, China, 2024.
- Hsieh, Y.A.; Tsai, Y.J. Machine learning for crack detection: Review and model performance comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Oh, H.; Garrick, N.W.; Achenie, L. Segmentation Algorithm Using Iterative Clipping for Processing Noisy Pavement Images. In Imaging Technologies; American Society of Civil Engineers: Reston, VA, USA, 1998. [Google Scholar]
- Li, Y.; Huang, Q.; Hou, Z. Research on Improved OSTU Algorithm Based on Hough Transform for Pavement Crack Detection. Electron. Des. Eng. 2016, 24, 4. [Google Scholar]
- Sun, L.; Xing, J.; Xie, L.; Wang, J. Research on Crack Detection Method based on Adaptive Threshold Canny Algorithm. Microcomput. Appl. 2017, 36, 4. [Google Scholar]
- Zhang, J.; Kang, X.; Ni, H.; Ren, F. Surface defect detection of steel strips based on classification priority YOLOv3-dense network. Ironmak. Steelmak. 2021, 48, 547–558. [Google Scholar] [CrossRef]
- Li, S.; Gu, X.; Xu, X.; Xu, D.; Zhang, T.; Liu, Z.; Dong, Q. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm. Constr. Build. Mater. 2021, 273, 121949. [Google Scholar] [CrossRef]
- Fei, Y.; Wang, K.C.P.; Zhang, A.; Chen, C.; Li, J.Q.; Liu, Y.; Yang, G.; Li, B. Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V. IEEE Trans. Intell. Transp. Syst. 2019, 21, 273–284. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, J.; Lu, X.; Xie, R.; Li, L. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 2019, 338, 139–153. [Google Scholar] [CrossRef]
- Meng, D.; Cao, G.; Duan, Y.; Zhu, M.; Tu, L.; Xu, D.; Xu, J. Tongue images classification based on constrained high dispersal network. Evid.-Based Complement. Altern. Med. 2017, 2017, 7452427. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. Deepcrack: Learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 2018, 28, 1498–1512. [Google Scholar] [CrossRef] [PubMed]
- Subirats, P.; Dumoulin, J.; Legeay, V.; Barba, D. Automation of Pavement Surface Crack Detection using the Continuous Wavelet Transform. In Proceedings of the 2006 IEEE International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006. [Google Scholar]
- Hou, Y.; Zhang, H.; Gao, Z.; Wang, D.; Liu, P.; Oeser, M.; Wang, L.; Chen, N. Research and comparison of intelligent pavement disease detection methods based on data depth enhancement. J. Beijing Univ. Technol. 2022, 48, 13. [Google Scholar]
- Huang, F.H.; Cao, Y.S.; Jiang, Y.S. Progress of research application of machine learning in bridge disease detection and identification. Road Traffic Sci. Technol. Appl. Technol. Ed. 2019, 114–116. [Google Scholar]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Xu, Z.; Guan, H.; Kang, J.; Lei, X.; Ma, L.; Yu, Y.; Chen, Y.; Li, J. Pavement crack detection from CCD images with a locally enhanced transformer network. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102825. [Google Scholar] [CrossRef]
- Nguyen, T.S.; Begot, S.; Duculty, F.; Avila, M. Free-form anisotropy: A new method for crack detection on pavement surface images. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011. [Google Scholar]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Chen, F.C.; Jahanshahi, R. NB-CNN: Convolutional Neural Network and Naive Bayes Data Fusion Using Deep Learn-based Crack Detection. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [Google Scholar] [CrossRef]
- Carr, T.A.; Jenkins, M.D.; Iglesias, M.I.; Buggy, T.; Morison, G. Road crack detection using a single stage detector based deep neural network. In Proceedings of the 2018 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Salerno, Italy, 21–22 June 2020. [Google Scholar]
- Pang, R.; Yang, Y.; Huang, A.; Liu, Y.; Zhang, P.; Tang, G. Multi-scale feature fusion model for bridge appearance defects detection. Big Data Min. Anal. 2024, 7, 1–11. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 2999–3007. [Google Scholar]
- Liu, R.; Huang, M.; Wang, L.; Bi, C.; Tao, Y. PDT-YOLO: A Roadside Object-Detection Algorithm for Multiscale and Occluded Targets. Sensors 2024, 24, 2302. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Sun, Z.; Pei, L.; Li, W.; Ding, M.; Hao, X. Super-Resolution Reconstruction Method of Pavement Crack Images Based on an Improved Generative Adversarial Network. Sensors 2022, 22, 9092. [Google Scholar] [CrossRef] [PubMed]
- Rehana, K.C.; Remya, G. Road Damage Detection and Classification Using YOLOv5. In Proceedings of the 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 11–12 August 2022; pp. 489–494. [Google Scholar]
- Kang, D.; Benipal, S.S.; Gopal, D.L.; Cha, Y.J. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning. Autom. Constr. 2020, 118, 103291. [Google Scholar] [CrossRef]
- He, J.; Erfani, S.; Ma, X.; Bailey, J.; Chi, Y.; Hua, X.S. Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression. Adv. Neural Inf. Process. Syst. 2021, 34, 20230–20242. [Google Scholar] [CrossRef]
- Leng, Z.; Tan, M.; Liu, C.; Cubuk, E.D.; Shi, X.; Cheng, S.; Anguelov, D. PolyLoss: A Polynomial Expansion Perspective of Classification Loss Functions. arXiv arXiv:2204.12511, 2022. [CrossRef]
- Chandraker, M.; Song, S.; Lin, Y.; Wang, X. Moving Object Localization in 3D Using a Single Camera. US2014270484A1, 30 June 2015. [Google Scholar]
Dataset | Number | Image Size |
Training set | 5000 | 1080 × 720 |
Validation set | 1000 | 1080 × 720 |
Test set | 1000 | 1080 × 720 |
IOU | Sample Classification | Tag |
---|---|---|
>0.7 | Positive samples | 1 |
[0.3, 0.7] | Negative samples | −1 |
<0.3 | Abandon the sample | 0 |
The Size of the Batch | Basis Vector | Vector Attenuation Way | The Weight Damping Item | Learning Rate Parameter | Training Number of Rounds |
---|---|---|---|---|---|
12 | 0.01 | Step | 0.0005 | 0.1 | 200 |
Algorithm | Backbone | Loss Function | Training Time/min | MAP | Model Parameters | FPS |
---|---|---|---|---|---|---|
Faster RCNN | RseNet50 | L1 Loss + cross-entropy loss | 148.2 | 61.2% | 82385006 | 24 |
MF RCNN | MobileNetV2 | L1 Loss + cross-entropy loss | 105.3 | 61.1% | 61352281 | 27 |
PF RCNN | RseNet50 | PolyLoss | 135.1 | 61.8% | 62746534 | 27 |
AF1 RCNN | RseNet50 | Alpha IOU | 135 | 62.0% | 67894657 | 26 |
AF2 RCNN | RseNet50 | Alpha IOU | 134.9 | 61.9% | 68456536 | 26 |
MSLN(ours) | MobileNetV2 | PolyLoss + Alpha IOU | 101.2 | 63.1% | 53845968 | 32 |
Type | Number | True Length (cm) | True Width (cm) | Estimated Length (cm) | Estimated Width (cm) | Length Error | Width Error | Average Error |
---|---|---|---|---|---|---|---|---|
Scattered objects | Disease 1 (pos1) | 11 | 11 | 16 | 13 | 5 | 2 | 34.1% |
Disease 1 (pos2) | 11 | 11 | 7 | 15 | 4 | 4 | ||
Disease 2 (pos1) | 18 | 7 | 20 | 13 | 2 | 5 | 39.1% | |
Disease 2 (pos2) | 18 | 7 | 21 | 12 | 3 | 4 | ||
Disease 3 (pos1) | 41 | 15 | 30 | 15 | 9 | 0 | 9.6% | |
Disease 3 (pos2) | 41 | 15 | 37 | 16 | 4 | 1 | ||
Disease 4 (pos1) | 7 | 18 | 10 | 21 | 3 | 3 | 25.4% | |
Disease 4 (pos2) | 7 | 18 | 8 | 23 | 1 | 5 | ||
Disease 5 (pos1) | 53 | 30 | 60 | 35 | 7 | 5 | 12.7% | |
Disease 5 (pos2) | 53 | 30 | 59 | 26 | 4 | 4 | ||
Pothole | Disease 6 (pos1) | 41 | 41 | 57 | 37 | 16 | 4 | 20.7% |
Disease 6 (pos2) | 41 | 41 | 27 | 14 | 14 | 0 | ||
Disease 7 (pos1) | 19 | 6 | 25 | 9 | 6 | 3 | 41.0% | |
Disease 7 (pos2) | 19 | 6 | 22 | 10 | 3 | 4 | ||
Disease 8 (pos1) | 18 | 7 | 13 | 10 | 5 | 3 | 25.4% | |
Disease 8 (pos2) | 18 | 7 | 15 | 6 | 3 | 1 | ||
Disease 9 (pos1) | 12 | 6 | 10 | 9 | 2 | 3 | 39.6% | |
Disease 9 (pos2) | 12 | 6 | 11 | 11 | 1 | 5 | ||
Disease 10 (pos1) | 8 | 4 | 11 | 5 | 3 | 1 | 34.3% | |
Disease 10 (pos2) | 8 | 4 | 12 | 3 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, R.; Ning, J.; Yang, Y.; Zhang, P.; Wang, J.; Liu, J. Detection of Road Risk Sources Based on Multi-Scale Lightweight Networks. Sensors 2024, 24, 5577. https://doi.org/10.3390/s24175577
Pang R, Ning J, Yang Y, Zhang P, Wang J, Liu J. Detection of Road Risk Sources Based on Multi-Scale Lightweight Networks. Sensors. 2024; 24(17):5577. https://doi.org/10.3390/s24175577
Chicago/Turabian StylePang, Rong, Jiacheng Ning, Yan Yang, Peng Zhang, Jilong Wang, and Jingxiao Liu. 2024. "Detection of Road Risk Sources Based on Multi-Scale Lightweight Networks" Sensors 24, no. 17: 5577. https://doi.org/10.3390/s24175577
APA StylePang, R., Ning, J., Yang, Y., Zhang, P., Wang, J., & Liu, J. (2024). Detection of Road Risk Sources Based on Multi-Scale Lightweight Networks. Sensors, 24(17), 5577. https://doi.org/10.3390/s24175577