Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindenthaler, J.R.; Rice, A.J.; Versey, N.G.; McKune, A.J.; Welvaert, M. Differences in Physiological Responses during Rowing and Cycle Ergometry in Elite Male Rowers. Front. Physiol. 2018, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Šarabon, N.; Kozinc, Ž.; Babič, J.; Marković, G. Effect of Rowing Ergometer Compliance on Biomechanical and Physiological Indicators during Simulated 2000-metre Race. J. Sports Sci. Med. 2019, 18, 264–270. [Google Scholar]
- Sousa, A.; Ribeiro, J.; Sousa, M.; Vilas-Boas, J.P.; Fernandes, R.J. Influence of prior exercise on VO2 kinetics subsequent exhaustive rowing performance. PLoS ONE 2014, 9, e84208. [Google Scholar] [CrossRef] [PubMed]
- Mäestu, J.; Jürimäe, J.; Jürimäe, T. Monitoring of performance and training in rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med. Sci. Sports Exerc. 1995, 27, 863–867. [Google Scholar] [CrossRef]
- Sousa, A.N.A.; Figueiredo, P.; Zamparo, P.; Pyne, D.B.; Vilas-Boas, J.P.; Fernandes, R.J. Exercise Modality Effect on Bioenergetical Performance at VO2max Intensity. Med. Sci. Sports Exerc. 2015, 47, 1705–1713. [Google Scholar] [CrossRef]
- Mello, F.D.; Bertuzzi, R.C.D.; Grangeiro, P.M.; Franchini, E. Energy systems contributions in 2,000 m race simulation: A comparison among rowing ergometers and water. Eur. J. Appl. Physiol. 2009, 107, 615–619. [Google Scholar] [CrossRef]
- Fohanno, V.; Nordez, A.; Smith, R.; Colloud, F. Asymmetry in elite rowers: Effect of ergometer design and stroke rate. Sports Biomech. 2015, 14, 310–322. [Google Scholar] [CrossRef]
- Greene, A.; Sinclair, P.; Dickson, M.; Colloud, F.; Smith, R. The effect of ergometer design on rowing stroke mechanics. Scand. J. Med. Sci. Sports 2011, 23, 468–477. [Google Scholar] [CrossRef]
- Fleming, N.; Donne, B.; Mahony, N. A comparison of electromyography and stroke kinematics during ergometer and on-water rowing. J. Sports Sci. 2014, 32, 1127–1138. [Google Scholar] [CrossRef]
- Lu, T.; Jones, M.; Yom, J.; Ishida, A.; White, J. Physiological and biomechanical responses to exercise on two different types of rowing ergometers in NCAA Division I oarswomen. Eur. J. Appl. Physiol. 2023, 123, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.; Piponnier, E.; Vincent, L.; Samozino, P.; Messonnier, L. Influence of Ergometer Design on Physiological Responses during Rowing. Int. J. Sports Med. 2015, 36, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Ingham, S.A.; Whyte, G.P.; Jones, K.; Nevill, A.M. Determinants of 2,000 m rowing ergometer performance in elite rowers. Eur. J. Appl. Physiol. 2002, 88, 243–246. [Google Scholar] [CrossRef]
- Benson, A.; Abendroth, J.; King, D.; Swensen, T. Comparison of rowing on a concept 2 stationary and dynamic ergometer. J. Sports Sci. Med. 2011, 10, 267–273. [Google Scholar] [PubMed]
- Boland, M.; Crotty, N.M.; Mahony, N.; Donne, B.; Fleming, N. A Comparison of Physiological Response to Incremental Testing on Stationary and Dynamic Rowing Ergometers. Int. J. Sports Physiol. Perform. 2022, 17, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, S.; Ayyadurai, P.; Perumal, S.; Janani, G.; Dhillon, S.; Thiagarajan, K.A. Rowing Injuries in Elite Athletes: A Review of Incidence with Risk Factors and the Role of Biomechanics in Its Management. Indian J. Orthop. 2020, 54, 246–255. [Google Scholar] [CrossRef]
- Wilson, F.; Gissane, C.; Gormley, J.; Simms, C. Sagittal plane motion of the lumbar spine during ergometer and single scull rowing. Sports Biomech. 2013, 12, 132–142. [Google Scholar] [CrossRef]
- Cardoso, R.; Rios, M.; Carvalho, D.; Monteiro, A.S.; Soares, S.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Mechanics and Energetic Analysis of Rowing with Big Blades with Randall Foils. Int. J. Sports Med. 2023, 44, 1043–1048. [Google Scholar] [CrossRef]
- Sousa, A.; Rodríguez, F.; Machado, L.; Vilas-Boas, J.P.; Fernandes, R. Exercise modality effect on VO2 off-transient kinetics at VO2max intensity. Exp. Physiol. 2015, 100. [Google Scholar] [CrossRef]
- Monteiro, A.S.; Carvalho, D.D.; Elói, A.; Silva, F.; Vilas-Boas, J.P.; Buzzachera, C.F.; Fernandes, R.J. Repeatability of ventilatory, metabolic and biomechanical responses to an intermittent incremental swimming protocol. Physiol. Meas. 2022, 43, 075009. [Google Scholar] [CrossRef]
- Cardoso, R.; Rios, M.; Cardoso, F.; Fonseca, P.; Ferreira, F.A.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study. Appl. Sci. 2024, 14, 4273. [Google Scholar] [CrossRef]
- Gomes, B.B.; Mourão, L.; Massart, A.; Figueiredo, P.; Vilas-Boas, J.P.; Santos, A.M.; Fernandes, R.J. Gross efficiency and energy expenditure in kayak ergometer exercise. Int. J. Sports Med. 2012, 33, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.S.; Magalhães, J.; Knechtle, B.; Buzzachera, C.; Vilas-Boas, J.P.; Fernandes, R. Acute ventilatory responses to swimming at increasing intensities. PeerJ 2023, 11, e15042. [Google Scholar] [CrossRef]
- Rios, M.; Becker, K.M.; Monteiro, A.S.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Effect of the Fran CrossFit Workout on Oxygen Uptake Kinetics, Energetics, and Postexercise Muscle Function in Trained CrossFitters. Int. J. Sports Physiol. Perform. 2024, 19, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Timón, R.; Olcina, G.; Camacho-Cardeñosa, M.; Camacho-Cardenosa, A.; Martinez-Guardado, I.; Marcos-Serrano, M. 48-hour recovery of biochemical parameters and physical performance after two modalities of CrossFit workouts. Biol. Sport 2019, 36, 283–289. [Google Scholar] [CrossRef]
- Keller, V.T.; Outerleys, J.B.; Kanko, R.M.; Laende, E.K.; Deluzio, K.J. Clothing condition does not affect meaningful clinical interpretation in markerless motion capture. J. Biomech. 2022, 141, 111182. [Google Scholar] [CrossRef]
- Andrade, D.; Fonseca, P.; Sousa, F.; Gutierres, M. Does Anterior Cruciate Ligament Reconstruction with a Hamstring Tendon Autograft Predispose to a Knee Valgus Alignment on Initial Contact during Landing? A Drop Vertical Jump Movement Analysis. Appl. Sci. 2023, 13, 7363. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Vinther, A.; Alkjaer, T.; Kanstrup, I.L.; Zerahn, B.; Ekdahl, C.; Jensen, K.; Holsgaard-Larsen, A.; Aagaard, P. Slide-based ergometer rowing: Effects on force production and neuromuscular activity. Scand. J. Med. Sci. Sports 2013, 23, 635–644. [Google Scholar] [CrossRef]
- Mahony, N.; Donne, B.; O’Brien, M. A comparison of physiological responses to rowing on friction-loaded and air-braked ergometers. J. Sports Sci. 1999, 17, 143–149. [Google Scholar] [CrossRef]
- Treff, G.; Mentz, L.; Mayer, B.; Winkert, K.; Engleder, T.; Steinacker, J.M. Initial Evaluation of the Concept-2 Rowing Ergometer’s Accuracy Using a Motorized Test Rig. Front. Sports Act. Living 2021, 3, 801617. [Google Scholar] [CrossRef] [PubMed]
- Vogler, A.J.; Rice, A.J.; Gore, C.J. Physiological responses to ergometer and on-water incremental rowing tests. Int. J. Sports Physiol. Perform. 2010, 5, 342–358. [Google Scholar] [CrossRef]
- Holsgaard-Larsen, A.; Jensen, K. Ergometer rowing with and without slides. Int. J. Sports Med. 2010, 31, 870–874. [Google Scholar] [CrossRef]
- Kleshnev, V. Biomechanics of Rowing, Revised, 2nd ed.; The Crowood Press Ltd.: Wiltshire, UK, 2020. [Google Scholar]
- Bernstein, I.A.; Webber, O.; Woledge, R. An ergonomic comparison of rowing machine designs: Possible implications for safety. Br. J. Sports Med. 2002, 36, 108–112. [Google Scholar] [CrossRef] [PubMed]
- McGregor, A.H.; Patankar, Z.S.; Bull, A.M. Longitudinal changes in the spinal kinematics of oarswomen during step testing. J. Sports Sci. Med. 2007, 6, 29–35. [Google Scholar] [PubMed]
- Thornton, J.S.; Vinther, A.; Wilson, F.; Lebrun, C.M.; Wilkinson, M.; Di Ciacca, S.R.; Orlando, K.; Smoljanovic, T. Rowing Injuries: An Updated Review. Sports Med. 2017, 47, 641–661. [Google Scholar] [CrossRef]
- Smilios, I.; Häkkinen, K.; Tokmakidis, S.P. Power Output and Electromyographic Activity During and After a Moderate Load Muscular Endurance Session. J. Strength Cond. Res. 2010, 24, 2122–2131. [Google Scholar] [CrossRef]
- Rios, M.; Zacca, R.; Azevedo, R.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Bioenergetic Analysis and Fatigue Assessment during the Fran Workout in Experienced Crossfitters. Int. J. Sports Physiol. Perform. 2023, 18, 786–792. [Google Scholar] [CrossRef]
Variables | Low | Moderate | Heavy | Severe | Extreme | |||||
---|---|---|---|---|---|---|---|---|---|---|
Biorower | Concept2 | Biorower | Concept2 | Biorower | Concept2 | Biorower | Concept2 | Biorower | Concept2 | |
Power (W) | 189.13 ± 41.66 | 193.88 ± 40.69 | 229.88 ± 48.66 | 232.81 ± 45.49 | 266.25 ± 53.24 | 268.13 ± 47.16 | 293.00 ± 52.91 | 296.28 ± 47.83 | 386.1 ± 75.19 | 397.6 ± 95.60 |
Oxygen uptake (mL/min/kg) | 43.58 ± 7.03 | 45.65 ± 6.69 | 51.60 ± 7.55 | 50.87 ± 7.26 | 56.56 ± 9.05 | 54.39 ± 6.22 | 60.36 ± 8.40 | 58.14 ± 7.55 | 56.30 ± 9.42 | 53.60 ± 8.38 |
Respiratory frequency (b/min) | 39.89 ± 7.94 | 40.16 ± 7.94 | 47.01 ± 8.41 | 43.28 ± 8.71 | 52.32 ± 10.78 | 50.62 ± 9.90 | 60.11 ± 10.58 | 57.04 ± 11.27 | 64.72 ± 15.53 | 68.02 ± 17.93 |
Ventilation (L/min) | 76.69 ± 18.17 | 80.39 ± 18.23 | 100.04 ± 25.23 | 97.38 ± 21.99 | 124.75 ± 32.57 | 119.56 ± 27.34 | 144.09 ± 32.30 | 136.62 ± 30.69 | 146 ± 36.57 | 147.73 ± 37.22 |
Respiratory quotient | 0.88 ± 0.10 | 0.91 ± 0.13 | 0.94 ± 0.10 | 0.98 ± 0.13 | 1.03 ± 0.08 | 1.06 ± 0.14 | 1.10 ± 0.12 | 1.12 ± 0.12 | 1.02 ± 0.10 | 1.09 ± 0.16 |
Heart rate (bpm) | 151.47 ± 14.08 | 155.83 ± 14.46 | 166.64 ± 14.81 | 168.30 ± 14.56 | 177.42 ± 11.96 | 177.32 ± 15.23 | 183.15 ± 11.83 | 183.21 ± 13.70 | 184.39 ± 13.73 | 183.15 ± 12.98 |
Blood lactate (mmol/L) | 1.97 ± 0.58 | 1.84 ± 0.58 | 2.83 ± 0.85 | 2.83 ± 0.92 | 4.46 ± 0.95 | 4.97 ± 1.85 | 7.41 ± 1.85 | 7.66 ± 3.02 | 11.49 ± 3.76 | 13.35 ± 3.60 * |
Rowing rate (cycles/min) | 20.63 ± 2.43 | 20.44 ± 1.93 | 24.00 ± 2.53 | 23.06 ± 2.05 | 27.88 ± 3.22 | 25.69 ± 1.99 * | 30.63 ± 3.18 | 28.94 ± 2.29 * | 42.38 ± 4.78 | 41.38 ± 4.99 |
Mean cycle time (s) | 2.88 ± 0.31 | 2.88 ± 0.26 | 2.51 ± 0.29 | 2.60 ± 0.22 | 2.15 ± 0.25 | 2.28 ± 0.17 * | 1.94 ± 0.20 | 2.03 ± 0.15 * | 1.34 ± 0.13 | 1.40 ± 0.13 |
Propulsive phase duration (s) | 1.17 ± 013 | 1.04 ± 0.13 * | 1.10 ± 0.11 | 0.97 ± 0.08 * | 1.02 ± 0.09 | 0.95 ± 0.10 * | 0.97 ± 0.08 | 0.87 ± 0.06 * | 0.76 ± 0.06 | 0.70 ± 0.70 * |
Rowing ratio | 0.70 ± 0.09 | 0.55 ± 0.07 * | 0.80 ± 0.11 | 0.61 ± 0.07 * | 0.94 ± 0.14 | 0.69 ± 0.08 * | 1.05 ± 0.14 | 0.76 ± 0.09 * | 1.31 ± 0.16 | 1.0 ± 0.07 * |
Propulsive phase length (m) | 1.18 ± 0.05 | 1.42 ± 0.07 * | 1.19 ± 0.04 | 1.42 ± 0.07 * | 1.19 ± 0.04 | 1.41 ± 0.06 * | 1.18 ± 0.04 | 1.40 ± 0.06 * | 1.06 ± 0.09 | 1.21 ± 0.06 * |
Maximal handle velocity (m/s) | 1.68 ± 0.15 | 1.81 ± 0.15 * | 1.77 ± 0.14 | 1.90 ± 0.15 * | 1.85 ± 0.15 | 1.98 ± 0.14 * | 1.91 ± 0.18 | 2.04 ± 0.12 * | 1.99 ± 0.15 | 2.16 ± 0.18 * |
Maximal seat velocity (m/s) | 1.00 ± 0.16 | 1.16 ± 0.15 * | 1.10 ± 0.14 | 1.22 ± 0.13 * | 1.19 ± 0.17 | 1.28 ± 0.13 * | 1.26 ± 0.15 | 1.23 ± 0.31 | 1.31 ± 0.12 | 1.25 ± 0.08 * |
Thorax angle at catch (°) | −29.32 ± 4.5 | −25.66 ± 5.18 * | −30.29 ± 3.01 | −26.76 ± 4.57 * | −29.84 ± 4.71 | −27.34 ± 5.61 | −31.52 ± 5.74 | −27.89 ± 5.75 * | −34.94 ± 5.29 | −34.01 ± 5.85 |
Thorax angle at finish (°) | 19.53 ± 3.78 | 27.46 ± 6.87 * | 19.88 ± 4.53 | 27.19 ± 7.18 * | 19.44 ± 4.49 | 27.51 ± 7.59 * | 18.30 ± 5.63 | 26.57 ± 6.86 * | 10.66 ± 5.00 | 15.66 ± 7.09 * |
Knee angle at catch (°) | 132.50 ± 7.14 | 136.51 ± 5.37 * | 132.00 ± 7.46 | 135.20 ± 7.12 | 133.70 ± 7.45 | 136.10 ± 7.45 | 134.10 ± 7.39 | 134.61 ± 6.76 | 118.30 ± 10.28 | 117.70 ± 20.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, R.; Rios, M.; Fonseca, P.; Leão, J.; Cardoso, F.; Abraldes, J.A.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors 2024, 24, 5686. https://doi.org/10.3390/s24175686
Cardoso R, Rios M, Fonseca P, Leão J, Cardoso F, Abraldes JAA, Gomes BB, Vilas-Boas JP, Fernandes RJ. Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors. 2024; 24(17):5686. https://doi.org/10.3390/s24175686
Chicago/Turabian StyleCardoso, Ricardo, Manoel Rios, Pedro Fonseca, Joana Leão, Filipa Cardoso, Jose Arturo Abraldes Abraldes, Beatriz B. Gomes, João Paulo Vilas-Boas, and Ricardo J. Fernandes. 2024. "Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise" Sensors 24, no. 17: 5686. https://doi.org/10.3390/s24175686
APA StyleCardoso, R., Rios, M., Fonseca, P., Leão, J., Cardoso, F., Abraldes, J. A. A., Gomes, B. B., Vilas-Boas, J. P., & Fernandes, R. J. (2024). Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors, 24(17), 5686. https://doi.org/10.3390/s24175686