Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindenthaler, J.R.; Rice, A.J.; Versey, N.G.; McKune, A.J.; Welvaert, M. Differences in Physiological Responses during Rowing and Cycle Ergometry in Elite Male Rowers. Front. Physiol. 2018, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Šarabon, N.; Kozinc, Ž.; Babič, J.; Marković, G. Effect of Rowing Ergometer Compliance on Biomechanical and Physiological Indicators during Simulated 2000-metre Race. J. Sports Sci. Med. 2019, 18, 264–270. [Google Scholar]
- Sousa, A.; Ribeiro, J.; Sousa, M.; Vilas-Boas, J.P.; Fernandes, R.J. Influence of prior exercise on VO2 kinetics subsequent exhaustive rowing performance. PLoS ONE 2014, 9, e84208. [Google Scholar] [CrossRef] [PubMed]
- Mäestu, J.; Jürimäe, J.; Jürimäe, T. Monitoring of performance and training in rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med. Sci. Sports Exerc. 1995, 27, 863–867. [Google Scholar] [CrossRef]
- Sousa, A.N.A.; Figueiredo, P.; Zamparo, P.; Pyne, D.B.; Vilas-Boas, J.P.; Fernandes, R.J. Exercise Modality Effect on Bioenergetical Performance at VO2max Intensity. Med. Sci. Sports Exerc. 2015, 47, 1705–1713. [Google Scholar] [CrossRef]
- Mello, F.D.; Bertuzzi, R.C.D.; Grangeiro, P.M.; Franchini, E. Energy systems contributions in 2,000 m race simulation: A comparison among rowing ergometers and water. Eur. J. Appl. Physiol. 2009, 107, 615–619. [Google Scholar] [CrossRef]
- Fohanno, V.; Nordez, A.; Smith, R.; Colloud, F. Asymmetry in elite rowers: Effect of ergometer design and stroke rate. Sports Biomech. 2015, 14, 310–322. [Google Scholar] [CrossRef]
- Greene, A.; Sinclair, P.; Dickson, M.; Colloud, F.; Smith, R. The effect of ergometer design on rowing stroke mechanics. Scand. J. Med. Sci. Sports 2011, 23, 468–477. [Google Scholar] [CrossRef]
- Fleming, N.; Donne, B.; Mahony, N. A comparison of electromyography and stroke kinematics during ergometer and on-water rowing. J. Sports Sci. 2014, 32, 1127–1138. [Google Scholar] [CrossRef]
- Lu, T.; Jones, M.; Yom, J.; Ishida, A.; White, J. Physiological and biomechanical responses to exercise on two different types of rowing ergometers in NCAA Division I oarswomen. Eur. J. Appl. Physiol. 2023, 123, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.; Piponnier, E.; Vincent, L.; Samozino, P.; Messonnier, L. Influence of Ergometer Design on Physiological Responses during Rowing. Int. J. Sports Med. 2015, 36, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Ingham, S.A.; Whyte, G.P.; Jones, K.; Nevill, A.M. Determinants of 2,000 m rowing ergometer performance in elite rowers. Eur. J. Appl. Physiol. 2002, 88, 243–246. [Google Scholar] [CrossRef]
- Benson, A.; Abendroth, J.; King, D.; Swensen, T. Comparison of rowing on a concept 2 stationary and dynamic ergometer. J. Sports Sci. Med. 2011, 10, 267–273. [Google Scholar] [PubMed]
- Boland, M.; Crotty, N.M.; Mahony, N.; Donne, B.; Fleming, N. A Comparison of Physiological Response to Incremental Testing on Stationary and Dynamic Rowing Ergometers. Int. J. Sports Physiol. Perform. 2022, 17, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, S.; Ayyadurai, P.; Perumal, S.; Janani, G.; Dhillon, S.; Thiagarajan, K.A. Rowing Injuries in Elite Athletes: A Review of Incidence with Risk Factors and the Role of Biomechanics in Its Management. Indian J. Orthop. 2020, 54, 246–255. [Google Scholar] [CrossRef]
- Wilson, F.; Gissane, C.; Gormley, J.; Simms, C. Sagittal plane motion of the lumbar spine during ergometer and single scull rowing. Sports Biomech. 2013, 12, 132–142. [Google Scholar] [CrossRef]
- Cardoso, R.; Rios, M.; Carvalho, D.; Monteiro, A.S.; Soares, S.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Mechanics and Energetic Analysis of Rowing with Big Blades with Randall Foils. Int. J. Sports Med. 2023, 44, 1043–1048. [Google Scholar] [CrossRef]
- Sousa, A.; Rodríguez, F.; Machado, L.; Vilas-Boas, J.P.; Fernandes, R. Exercise modality effect on VO2 off-transient kinetics at VO2max intensity. Exp. Physiol. 2015, 100. [Google Scholar] [CrossRef]
- Monteiro, A.S.; Carvalho, D.D.; Elói, A.; Silva, F.; Vilas-Boas, J.P.; Buzzachera, C.F.; Fernandes, R.J. Repeatability of ventilatory, metabolic and biomechanical responses to an intermittent incremental swimming protocol. Physiol. Meas. 2022, 43, 075009. [Google Scholar] [CrossRef]
- Cardoso, R.; Rios, M.; Cardoso, F.; Fonseca, P.; Ferreira, F.A.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study. Appl. Sci. 2024, 14, 4273. [Google Scholar] [CrossRef]
- Gomes, B.B.; Mourão, L.; Massart, A.; Figueiredo, P.; Vilas-Boas, J.P.; Santos, A.M.; Fernandes, R.J. Gross efficiency and energy expenditure in kayak ergometer exercise. Int. J. Sports Med. 2012, 33, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.S.; Magalhães, J.; Knechtle, B.; Buzzachera, C.; Vilas-Boas, J.P.; Fernandes, R. Acute ventilatory responses to swimming at increasing intensities. PeerJ 2023, 11, e15042. [Google Scholar] [CrossRef]
- Rios, M.; Becker, K.M.; Monteiro, A.S.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Effect of the Fran CrossFit Workout on Oxygen Uptake Kinetics, Energetics, and Postexercise Muscle Function in Trained CrossFitters. Int. J. Sports Physiol. Perform. 2024, 19, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Timón, R.; Olcina, G.; Camacho-Cardeñosa, M.; Camacho-Cardenosa, A.; Martinez-Guardado, I.; Marcos-Serrano, M. 48-hour recovery of biochemical parameters and physical performance after two modalities of CrossFit workouts. Biol. Sport 2019, 36, 283–289. [Google Scholar] [CrossRef]
- Keller, V.T.; Outerleys, J.B.; Kanko, R.M.; Laende, E.K.; Deluzio, K.J. Clothing condition does not affect meaningful clinical interpretation in markerless motion capture. J. Biomech. 2022, 141, 111182. [Google Scholar] [CrossRef]
- Andrade, D.; Fonseca, P.; Sousa, F.; Gutierres, M. Does Anterior Cruciate Ligament Reconstruction with a Hamstring Tendon Autograft Predispose to a Knee Valgus Alignment on Initial Contact during Landing? A Drop Vertical Jump Movement Analysis. Appl. Sci. 2023, 13, 7363. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Vinther, A.; Alkjaer, T.; Kanstrup, I.L.; Zerahn, B.; Ekdahl, C.; Jensen, K.; Holsgaard-Larsen, A.; Aagaard, P. Slide-based ergometer rowing: Effects on force production and neuromuscular activity. Scand. J. Med. Sci. Sports 2013, 23, 635–644. [Google Scholar] [CrossRef]
- Mahony, N.; Donne, B.; O’Brien, M. A comparison of physiological responses to rowing on friction-loaded and air-braked ergometers. J. Sports Sci. 1999, 17, 143–149. [Google Scholar] [CrossRef]
- Treff, G.; Mentz, L.; Mayer, B.; Winkert, K.; Engleder, T.; Steinacker, J.M. Initial Evaluation of the Concept-2 Rowing Ergometer’s Accuracy Using a Motorized Test Rig. Front. Sports Act. Living 2021, 3, 801617. [Google Scholar] [CrossRef] [PubMed]
- Vogler, A.J.; Rice, A.J.; Gore, C.J. Physiological responses to ergometer and on-water incremental rowing tests. Int. J. Sports Physiol. Perform. 2010, 5, 342–358. [Google Scholar] [CrossRef]
- Holsgaard-Larsen, A.; Jensen, K. Ergometer rowing with and without slides. Int. J. Sports Med. 2010, 31, 870–874. [Google Scholar] [CrossRef]
- Kleshnev, V. Biomechanics of Rowing, Revised, 2nd ed.; The Crowood Press Ltd.: Wiltshire, UK, 2020. [Google Scholar]
- Bernstein, I.A.; Webber, O.; Woledge, R. An ergonomic comparison of rowing machine designs: Possible implications for safety. Br. J. Sports Med. 2002, 36, 108–112. [Google Scholar] [CrossRef] [PubMed]
- McGregor, A.H.; Patankar, Z.S.; Bull, A.M. Longitudinal changes in the spinal kinematics of oarswomen during step testing. J. Sports Sci. Med. 2007, 6, 29–35. [Google Scholar] [PubMed]
- Thornton, J.S.; Vinther, A.; Wilson, F.; Lebrun, C.M.; Wilkinson, M.; Di Ciacca, S.R.; Orlando, K.; Smoljanovic, T. Rowing Injuries: An Updated Review. Sports Med. 2017, 47, 641–661. [Google Scholar] [CrossRef]
- Smilios, I.; Häkkinen, K.; Tokmakidis, S.P. Power Output and Electromyographic Activity During and After a Moderate Load Muscular Endurance Session. J. Strength Cond. Res. 2010, 24, 2122–2131. [Google Scholar] [CrossRef]
- Rios, M.; Zacca, R.; Azevedo, R.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Bioenergetic Analysis and Fatigue Assessment during the Fran Workout in Experienced Crossfitters. Int. J. Sports Physiol. Perform. 2023, 18, 786–792. [Google Scholar] [CrossRef]
Variables | Low | Moderate | Heavy | Severe | Extreme | |||||
---|---|---|---|---|---|---|---|---|---|---|
Biorower | Concept2 | Biorower | Concept2 | Biorower | Concept2 | Biorower | Concept2 | Biorower | Concept2 | |
Power (W) | 189.13 ± 41.66 | 193.88 ± 40.69 | 229.88 ± 48.66 | 232.81 ± 45.49 | 266.25 ± 53.24 | 268.13 ± 47.16 | 293.00 ± 52.91 | 296.28 ± 47.83 | 386.1 ± 75.19 | 397.6 ± 95.60 |
Oxygen uptake (mL/min/kg) | 43.58 ± 7.03 | 45.65 ± 6.69 | 51.60 ± 7.55 | 50.87 ± 7.26 | 56.56 ± 9.05 | 54.39 ± 6.22 | 60.36 ± 8.40 | 58.14 ± 7.55 | 56.30 ± 9.42 | 53.60 ± 8.38 |
Respiratory frequency (b/min) | 39.89 ± 7.94 | 40.16 ± 7.94 | 47.01 ± 8.41 | 43.28 ± 8.71 | 52.32 ± 10.78 | 50.62 ± 9.90 | 60.11 ± 10.58 | 57.04 ± 11.27 | 64.72 ± 15.53 | 68.02 ± 17.93 |
Ventilation (L/min) | 76.69 ± 18.17 | 80.39 ± 18.23 | 100.04 ± 25.23 | 97.38 ± 21.99 | 124.75 ± 32.57 | 119.56 ± 27.34 | 144.09 ± 32.30 | 136.62 ± 30.69 | 146 ± 36.57 | 147.73 ± 37.22 |
Respiratory quotient | 0.88 ± 0.10 | 0.91 ± 0.13 | 0.94 ± 0.10 | 0.98 ± 0.13 | 1.03 ± 0.08 | 1.06 ± 0.14 | 1.10 ± 0.12 | 1.12 ± 0.12 | 1.02 ± 0.10 | 1.09 ± 0.16 |
Heart rate (bpm) | 151.47 ± 14.08 | 155.83 ± 14.46 | 166.64 ± 14.81 | 168.30 ± 14.56 | 177.42 ± 11.96 | 177.32 ± 15.23 | 183.15 ± 11.83 | 183.21 ± 13.70 | 184.39 ± 13.73 | 183.15 ± 12.98 |
Blood lactate (mmol/L) | 1.97 ± 0.58 | 1.84 ± 0.58 | 2.83 ± 0.85 | 2.83 ± 0.92 | 4.46 ± 0.95 | 4.97 ± 1.85 | 7.41 ± 1.85 | 7.66 ± 3.02 | 11.49 ± 3.76 | 13.35 ± 3.60 * |
Rowing rate (cycles/min) | 20.63 ± 2.43 | 20.44 ± 1.93 | 24.00 ± 2.53 | 23.06 ± 2.05 | 27.88 ± 3.22 | 25.69 ± 1.99 * | 30.63 ± 3.18 | 28.94 ± 2.29 * | 42.38 ± 4.78 | 41.38 ± 4.99 |
Mean cycle time (s) | 2.88 ± 0.31 | 2.88 ± 0.26 | 2.51 ± 0.29 | 2.60 ± 0.22 | 2.15 ± 0.25 | 2.28 ± 0.17 * | 1.94 ± 0.20 | 2.03 ± 0.15 * | 1.34 ± 0.13 | 1.40 ± 0.13 |
Propulsive phase duration (s) | 1.17 ± 013 | 1.04 ± 0.13 * | 1.10 ± 0.11 | 0.97 ± 0.08 * | 1.02 ± 0.09 | 0.95 ± 0.10 * | 0.97 ± 0.08 | 0.87 ± 0.06 * | 0.76 ± 0.06 | 0.70 ± 0.70 * |
Rowing ratio | 0.70 ± 0.09 | 0.55 ± 0.07 * | 0.80 ± 0.11 | 0.61 ± 0.07 * | 0.94 ± 0.14 | 0.69 ± 0.08 * | 1.05 ± 0.14 | 0.76 ± 0.09 * | 1.31 ± 0.16 | 1.0 ± 0.07 * |
Propulsive phase length (m) | 1.18 ± 0.05 | 1.42 ± 0.07 * | 1.19 ± 0.04 | 1.42 ± 0.07 * | 1.19 ± 0.04 | 1.41 ± 0.06 * | 1.18 ± 0.04 | 1.40 ± 0.06 * | 1.06 ± 0.09 | 1.21 ± 0.06 * |
Maximal handle velocity (m/s) | 1.68 ± 0.15 | 1.81 ± 0.15 * | 1.77 ± 0.14 | 1.90 ± 0.15 * | 1.85 ± 0.15 | 1.98 ± 0.14 * | 1.91 ± 0.18 | 2.04 ± 0.12 * | 1.99 ± 0.15 | 2.16 ± 0.18 * |
Maximal seat velocity (m/s) | 1.00 ± 0.16 | 1.16 ± 0.15 * | 1.10 ± 0.14 | 1.22 ± 0.13 * | 1.19 ± 0.17 | 1.28 ± 0.13 * | 1.26 ± 0.15 | 1.23 ± 0.31 | 1.31 ± 0.12 | 1.25 ± 0.08 * |
Thorax angle at catch (°) | −29.32 ± 4.5 | −25.66 ± 5.18 * | −30.29 ± 3.01 | −26.76 ± 4.57 * | −29.84 ± 4.71 | −27.34 ± 5.61 | −31.52 ± 5.74 | −27.89 ± 5.75 * | −34.94 ± 5.29 | −34.01 ± 5.85 |
Thorax angle at finish (°) | 19.53 ± 3.78 | 27.46 ± 6.87 * | 19.88 ± 4.53 | 27.19 ± 7.18 * | 19.44 ± 4.49 | 27.51 ± 7.59 * | 18.30 ± 5.63 | 26.57 ± 6.86 * | 10.66 ± 5.00 | 15.66 ± 7.09 * |
Knee angle at catch (°) | 132.50 ± 7.14 | 136.51 ± 5.37 * | 132.00 ± 7.46 | 135.20 ± 7.12 | 133.70 ± 7.45 | 136.10 ± 7.45 | 134.10 ± 7.39 | 134.61 ± 6.76 | 118.30 ± 10.28 | 117.70 ± 20.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, R.; Rios, M.; Fonseca, P.; Leão, J.; Cardoso, F.; Abraldes, J.A.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors 2024, 24, 5686. https://doi.org/10.3390/s24175686
Cardoso R, Rios M, Fonseca P, Leão J, Cardoso F, Abraldes JAA, Gomes BB, Vilas-Boas JP, Fernandes RJ. Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors. 2024; 24(17):5686. https://doi.org/10.3390/s24175686
Chicago/Turabian StyleCardoso, Ricardo, Manoel Rios, Pedro Fonseca, Joana Leão, Filipa Cardoso, Jose Arturo Abraldes Abraldes, Beatriz B. Gomes, João Paulo Vilas-Boas, and Ricardo J. Fernandes. 2024. "Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise" Sensors 24, no. 17: 5686. https://doi.org/10.3390/s24175686
APA StyleCardoso, R., Rios, M., Fonseca, P., Leão, J., Cardoso, F., Abraldes, J. A. A., Gomes, B. B., Vilas-Boas, J. P., & Fernandes, R. J. (2024). Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors, 24(17), 5686. https://doi.org/10.3390/s24175686