A Review of Thermal Detectors of THz Radiation Operated at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terahertz Detector Classification
2.2. Figures of Merit
- Noise-equivalent power (NEP) is the incident power on the detector that produces at its output a signal-to-noise ratio of unity. The NEP is also determined for a defined reference bandwidth which is usually assumed to be 1 Hz. The lower the NEP value is, the better the sensing limit of the detector;
- Responsivity is defined as the ratio of the root mean square (RMS) value of the detector’s electrical output signal to the incident radiation power. At the visible and near-infrared range, most thermal detectors have spectrally flat responsivity, whereas above >300 µm the responsivity is low. The higher the responsivity of the detector, the lower changes in the THz radiation can be detected;
- Detectivity (D) is the reciprocal of NEP, but a more useful parameter is the normalized detectivity D*, which was introduced by R.C. Jones as a function of the signal bandwidth and detector active area. For thermal detectors, D* varies from 107 to 1010 cm√Hz W−1. In practice, the detectivity must be as large as possible;
- The time constant (τ) of the detector is determined by the heat capacity (Cth) and the thermal conductance (Gth). It expresses the speed at which a device responds to a change in incident power. To obtain a fast detection system, these thermal parameters should be as small as possible. The time constant ranges from a few milliseconds to seconds.
3. Results
3.1. Comparison of Uncooled Thermal Detectors
3.2. Application’s Study of THz Thermal Detectors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogalski, A.; Sizov, F. Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 2011, 19, 346–404. [Google Scholar] [CrossRef]
- Li, J.; Li, J. Terahertz (THz) Generator and Detection. Electr. Sci. Eng. 2020, 2, 11–25. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Assefzadeh, M.M.; Jamali, B.; Gluszek, A.K.; Hudzikowski, A.J.; Wojtas, J.; Tittel, F.K.; Babakhani, A. Terahertz trace gas spectroscopy based on a fully-electronic frequency-comb radiating array in silicon. In Proceedings of the CLEO 2016, San Jose, CA, USA, 5–10 June 2016. [Google Scholar] [CrossRef]
- Aji, A.P.; Apriono, C.; Rahardjo, E.T. Input Power and Effective Area in Terahertz Detector Measurement: A Review. IEEE Access 2023, 11, 29323–29343. [Google Scholar] [CrossRef]
- Rieke, G.H. Detection of Light: From Ultraviolet to the Submillimeter; Cambridge University Press: Cambridge, UK, 2003; ISBN 9780511606496. [Google Scholar] [CrossRef]
- Rogalski, A.; Bielecki, Z. Detection of Optical Signals; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2022. [Google Scholar]
- Sizov, F.; Rogalski, A. THz detectors. Prog. Quantum Electron. 2010, 34, 278–347. [Google Scholar] [CrossRef]
- Sizov, F. Terahertz radiation detectors: The state-of-the-art. Semicond. Sci. Technol. 2018, 33, 123001. [Google Scholar] [CrossRef]
- Rogalski, A. Infrared and Terahertz Detectors; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2019. [Google Scholar]
- Niu, Y.; Wang, Y.; Wu, W.; Wen, J.; Cheng, Y.; Chen, M.; Jiang, S.; Wu, D.; Zhao, Z. Efficient room-temperature terahertz detection via bolometric and photothermoelectric effects in EuBiTe3 crystal. Opt. Mater. Express 2020, 10, 952–961. [Google Scholar] [CrossRef]
- Müller, R.; Bohmeyer, W.; Kehrt, M.; Lange, K.; Monte, C.; Steiger, A. Novel detectors for traceable THz power measurements. J. Infrared Millim. Terahertz Waves 2014, 35, 659–670. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Y.; Qiu, Y.; Feng, Q.; Li, X.; Li, J.; Qiu, G.; Li, J. A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. Photonics 2022, 9, 335. [Google Scholar] [CrossRef]
- Huang, L.; Chen, H.T. A Brief review on terahertz metamaterial perfect absorbers. Terahertz Sci. Technol. 2013, 6, 26–39. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Zeranska-Chudek, K.; Zdrojek, M.; Hourlier, D. Carbon-based terahertz absorbers: Materials, applications, and perspectives. Nano Sel. 2020, 1, 471–490. [Google Scholar] [CrossRef]
- Rogalski, A.; Bielecki, Z.; Mikolajczyk, J. Detection of optical radiation. In Handbook of Optoelectronics; Dakin, J.P., Brown, R.G.W., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2018. [Google Scholar]
- Grzyb, J.; Pfeiffer, U. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies. J. Infrared Millim. Terahertz Waves 2015, 36, 998–1032. [Google Scholar] [CrossRef]
- Hillger, P.; Grzyb, J.; Jain, R.; Pfeiffer, U.R. Terahertz Imaging and Sensing Applications with Silicon-Based Technologies. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Klocke, D.; Schmitz, A.; Soltner, H.; Bousack, H.; Schmitz, H. Infrared receptors in pyrophilous (“fire loving”) insects as a model for new un-cooled infrared sensors. Beilstein J. Nanotechnol. 2011, 2, 186–197. [Google Scholar] [CrossRef]
- Measuring THz Radiation: Choose a Pyroelectric Detector or Golay Cell? Available online: https://www.photonicsonline.com/doc/measuring-thz-radiation-choose-a-pyroelectric-detector-or-golay-cell-0001 (accessed on 29 July 2024).
- Application Note Gentec-eo, 201924_2014_V1.0. Available online: www.gentec-eo.com/Content/downloads/application-note/AN_201924_THz_R1.pdf (accessed on 29 July 2024).
- Desmarisa, V.; Rashida, H.; Pavolotskya, A.; Belitsky, V. Design, simulations and optimization of micromachined Golay-cell based THz sensors operating at room temperature. Procedia Chem. 2009, 1, 1175–1178. [Google Scholar] [CrossRef]
- Thermal Detectors. Hamamatsu Catalogue. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/thermopile_kird9005e.pdf (accessed on 11 September 2024).
- Huhn, A.K.; Spickermann, G.; Ihring, A.; Schinkel, U.; Meyer, H.G.; Bolívar, P.H. Uncooled antenna-coupled terahertz detectors with 22 µs response time based on BiSb/Sb thermocouples. Appl. Phys. Lett. 2013, 102, 121102. [Google Scholar] [CrossRef]
- Mbarek, S.B.; Euphrasiea, S.; Barona, T.; Thierya, L.; Vairac, P.; Cretina, B.; Guillet, J.-P.; Chusseau, L. Room temperature thermopile THz sensor. Sens. Actuators A Phys. 2013, 193, 155–160. [Google Scholar] [CrossRef]
- Kašalynas, I.; Adam, A.J.L.; Klaassena, T.O.; Hoveniera, N.J.; Pandraudc, G.; Iordanov, V.P.; Sarro, P.M. Some properties of a room temperature THz detection array. In Advanced Optical Materials, Technologies, and Devices; SPIE: Bellingham, WA, USA, 2007; Volume 6596. [Google Scholar] [CrossRef]
- Chen, S.-J.; Chen, B. Research on a CMOS-MEMS Infrared Sensor with Reduced Graphene Oxide. Sensors 2020, 20, 4007. [Google Scholar] [CrossRef]
- Varpula, A.; Timofeev, A.V.; Shchepetov, A.; Grigoras, K.; Hassel, J.; Ahopelto, J.; Ylilammi, M.; Prunnila, M. Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes. Appl. Phys. Lett. 2017, 110, 262101. [Google Scholar] [CrossRef]
- Araki, T.; Li, K.; Suzuki, D.; Abe, T.; Kawabata, R.; Uemura, T.; Izumi, S.; Tsuruta, S.; Terasaki, N.; Kawano, Y.; et al. Broadband Photodetectors and Imagers in Stretchable Electronics Packaging. Adv. Mater. 2023, 36, 2304048. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279–308. [Google Scholar] [CrossRef]
- Otsuji, T. Trends in the Research of Modern Terahertz Detectors: Plasmon Detectors. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1110–1120. [Google Scholar]
- Khanna, V.K. Bolometers, Golay cells and pyroelectric detectors. In Practical Terahertz Electronics: Devices and Applications; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Dem’yanenko, M.A.; Marchishin, I.V.; Startsev, V.V. Absorption of terahertz radiation by a thin metal absorber in conventional and inverted bolometers. OSA Contin. 2019, 2, 2085–2097. [Google Scholar] [CrossRef]
- Dem’yanenko, M.A. Efficient broadband terahertz radiation detectors based on bolometers with a thin metal absorber. Tech. Phys. 2018, 63, 120–125. [Google Scholar] [CrossRef]
- Gou, J.; Wang, J.; Zheng, X.; Gu, D.; Yu, H.; Jiang, Y. Detection of terahertz radiation from 2.52 THz CO2 laser using a 320 × 240 vanadium oxide microbolometer focal plane array. RSC Adv. 2015, 5, 84252–84256. [Google Scholar] [CrossRef]
- Gou, J.; Niu, Q.; Liang, K.; Wang, J.; Jiang, Y. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas. Nanoscale Res. Lett. 2017, 13, 74. [Google Scholar] [CrossRef] [PubMed]
- Esfandiyari, M.; Lalbakhsh, A.; Jarchi, S.; Ghaffari-Miab, M.; Mahtaj, H.N.R.; Simorangkir, B.V.B. Tunable terahertz filter/antenna-sensor using graphene-based metamaterials. Mater. Des. 2022, 220, 110855. [Google Scholar] [CrossRef]
- Kašalynas, I.; Venckevicius, R.; Minkevicius, L.; Sešek, A.; Wahaia, F.; Tamošiunas, V.; Voisiat, B.; Seliuta, D.; Valušis, G.; Švigelj, A.; et al. Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues. Sensors 2016, 16, 432. [Google Scholar] [CrossRef]
- Zhang, Y.; Hosono, S.; Nagai, N.; Song, S.H.; Hirakawa, K. Fast and sensitive bolometric terahertz detection at room temperature through thermomechanical transduction. J. Appl. Phys. 2019, 125, 151602. [Google Scholar] [CrossRef]
- Li, C.; Zang, Y.; Hirakawa, K. Terahertz Detectors Using Microelectromechanical System Resonators. Sensors 2023, 23, 5938. [Google Scholar] [CrossRef] [PubMed]
- Vicarelli, L.; Tredicucci, A.; Pitanti, A. Micromechanical Bolometers for Subterahertz Detection at Room Temperature. ACS Photonics 2022, 9, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Taimre, T.; Nikolic, M.; Bertling, K.; Lim, Y.L.; Bosch, T.; Rakic, A.D. Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing. Adv. Opt. Photonics 2015, 7, 570–631. [Google Scholar] [CrossRef]
- Seliuta, D.; Kasalynas, I.; Tamosiunas, V.; Balakauskas, S.; Martunas, Z.; Asmontas, G.; Valusis, S.; Lisauskas, A.; Roskos, H.G.; Kohler, K. Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature. Electron. Lett. 2006, 42, 825–826. [Google Scholar] [CrossRef]
- Terahertz Pyroelectric Detectors. Available online: https://www.terahertz.co.uk/qmci/thz-detector-systems/pyroelectric-detectors (accessed on 29 July 2024).
- Melnikov, A.R.; Kalneus, E.V.; Getmanov, Y.V.; Shevchenko, D.A.; Gerasimov, V.V.; Anisimov, O.A.; Fedin, M.V.; Veber, S.L. Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9–2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL. Polymers 2023, 15, 4124. [Google Scholar] [CrossRef]
- Ohtake, H.; Suzuki, Y.; Kozeki, T.; Sarukura, N.; Ono, S.; Tsukamoto, T.; Nakanishi, A.; Nishizawa, S.; Stock, M.; Yoshida, M.; et al. THz-radiation emitter and receiver system based on a 2-T permanent magnet, a 1.04-µm compact fiber laser, and a pyroelectric thermal receiver. In Ultrafast Electronics and Optoelectronics; Sawchuk, A., Ed.; Volume 49 of OSA Trends in Optics and Photonics; Optica Publishing Group: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Gou, J.; Huang, Z.; Jiang, Y. Fabrication and Characterization of Linear Terahertz Detector Arrays Based on Lithium Tantalate Crystal. J. Infrared Millim. Terahertz Waves 2015, 36, 42–48. [Google Scholar] [CrossRef]
- Dooley, D. Sensitivity of broadband pyroelectric terahertz detectors continues to improve. Laser Focus Word 2010, 46, 49. [Google Scholar]
- Das, D.; Bhattacharyya, K.; Baruah, S. A review of Terahertz technology and Metamaterial based electromagnetic absorber at Terahertz band. ADBU-J. Eng. Technol. 2020, 9, 009020638. [Google Scholar]
- Kuznetsov, S.A.; Paulish, A.G.; Navarro-Cía, M.; Arzhannikov, A.V. Selective pyroelectric detection of millimeter waves using ultra-thin metasurface absorbers. Sci. Rep. 2016, 6, 21079. [Google Scholar] [CrossRef]
- User Manual THZ-D Series. Gentec-EO Inc. Available online: https://downloads.gentec-eo.com/prod/d2ba7bc4/103809-Manual-THZ-Series-Rev-1.7.pdf (accessed on 9 September 2024).
- Rogalski, A. Progress in performance development of room temperature direct terahertz detectors. J. Infrared Millim. Terahertz Waves 2022, 43, 709–727. [Google Scholar] [CrossRef]
- Golay Cell Manual. SN: 160735. Microtech Instruments Inc. Available online: https://www.bnl.gov/atf/docs/goleycell_manual.pdf (accessed on 8 September 2024).
- Golay Detectors. TYDEX. Available online: https://www.tydexoptics.com/products/thz_devices/golay_cell (accessed on 9 September 2024).
- SLT Sensor– und Lasertechnik GmbH. Available online: https://www.pyrosensor.de/slt_katalog-gesamt-pdf-920267.pdf (accessed on 29 July 2024).
- Wu, Q.Q.; Zhao, Y.; Li, X.C. Pyroelectric infrared device with multilayer compensation structure. Sens. Actuators A Phys. 2024, 367, 115050. [Google Scholar] [CrossRef]
- Mbarek, S.B.; Alcheikh, N.; Younis, M.I. Recent advances on MEMS based Infrared Thermopile detectors. Microsyst. Technol. 2022, 28, 1751–1764. [Google Scholar] [CrossRef]
- Rieh, J.S. Introduction to Terahertz Electronics; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Sebastián, E.; Armiens, C.; Gómez-Elvira, J. Infrared temperature measurement uncertainty for unchopped thermopile in presence of case thermal gradients. Infrared Phys. Technol. 2011, 54, 75–83. [Google Scholar] [CrossRef]
- Vybornov, P. Prospects of uncooled metal bolometers. IEEE Photonics Technol. Lett. 2019, 31, 257–260. [Google Scholar] [CrossRef]
- Liess, M.; Charlebois, A.; Hausner, M.; Ernst, H.; Karagözoglu, H.; Schilz, J. Stabilization of the output signal of thermopile sensors in the thermal environment of automotive applications. In Photonic Applications for Aerospace, Transportation, and Harsh Environments; SPIE: Bellingham, WA, USA, 2006; Volume 6379. [Google Scholar] [CrossRef]
- Duan, P.; Wang, Y.; Xu, D.; Yan, C.; Yang, Z.; Xu, W.; Yao, J. Single-pixel imaging with tunable terahertz parametric oscillator. Appl. Opt. 2016, 55, 3670–3675. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Guo, X.; Chen, T.; Liang, H.; Hao, X.; Yang, Z. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 2019, 9, 965. [Google Scholar] [CrossRef]
- Steiger, A.; Kehrt, M.; Monte, C.; Müller, R. Traceable terahertz power measurement from 1 THz to 5 THz. Opt. Express 2013, 21, 14466–14473. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, M.; Jin, B.; Kang, L.; Xu, W.; Chen, J.; Wu, P. A simple Fourier transform spectrometer for terahertz applications. Chin. Sci. Bull. 2012, 57, 573–578. [Google Scholar] [CrossRef]
- Yang, J.; Gong, X.J.; Zhang, Y.D. Research of an infrared pyroelectric sensor based THz detector and its application in CW THz imaging. In International Symposium on Photoelectronic Detection and Imaging 2009: Terahertz and High Energy Radiation Detection Technologies and Applications; SPIE: Bellingham, WA, USA, 2009; Volume 7385. [Google Scholar] [CrossRef]
- Ling, C.C.; Rebeiz, G.M. A wide-band monolithic quasi-optical power meter for millimeter-and submillimeter-wave applications. IEEE transactions on microwave theory and techniques. IEEE Trans. Microw. Theory Tech. 1991, 39, 1257–1261. [Google Scholar] [CrossRef]
- Perenzoni, M.; Paul, D.J. (Eds.) Physics and Applications of Terahertz Radiation; Springer: New York, NY, USA, 2014; Volume 173, p. 36. [Google Scholar] [CrossRef]
- Morohashi, I.; Zhang, Y.; Qiu, B.; Irimajiri, Y.; Sekine, N.; Hirakawa, K.; Hosako, I. Rapid Scan THz Imaging Using MEMS Bolometers. J. Infrared Millim. Terahertz Waves 2020, 41, 675–684. [Google Scholar] [CrossRef]
- Globisch, B.; Dietz, R.J.; Göbel, T.; Schell, M.; Bohmeyer, W.; Müller, R.; Steiger, A. Absolute terahertz power measurement of a time-domain spectroscopy system. Opt. Lett. 2015, 40, 3544–3547. [Google Scholar] [CrossRef] [PubMed]
- Wubs, J.R.; Macherius, U.; Lü, X.; Schrottke, L.; Budden, M.; Kunsch, J.; Weltmann, K.-D.; van Helden, J.-P.H. Performance of a High-Speed Pyroelectric Receiver as Cryogen-Free Detector for Terahertz Absorption Spectroscopy Measurements. Appl. Sci. 2024, 14, 3967. [Google Scholar] [CrossRef]
- Takan, T.; Özkan, V.A.; İdikut, F.; Yildirim, I.O.; Şahin, A.B.; Altan, H. Compressive sensing imaging through a drywall barrier at sub-THz and THz frequencies in transmission and reflection modes. In Image and Signal Processing for Remote Sensing XX; SPIE: Bellingham, WA, USA, 2014; Volume 9244, pp. 434–442. [Google Scholar] [CrossRef]
- Yue, Z.; Peng, X.; Li, G.; Zhou, Y.; Pu, Y.; Zhang, Y. Single-Shot Direct Transmission Terahertz Imaging Based on Intense Broadband Terahertz Radiation. Sensors 2024, 24, 4160. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.B.; Li, W.; Taylor, Z.D.; Grundfest, W.S.; Brown, E.R. Stratified media model for terahertz reflectometry of the skin. IEEE Sens. J. 2010, 11, 1253–1262. [Google Scholar] [CrossRef]
- Rong, L.; Latychevskaia, T.; Chen, C.; Wang, D.; Yu, Z.; Zhou, X.; Li, Z.; Huang, H.; Wang, Y.; Zhou, Z. Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Sci. Rep. 2015, 5, 58445. [Google Scholar] [CrossRef]
- Mbarek, S.B.; Euphrasie, S.; Baron, T.; Thiery, L.; Vairac, P.; Briand, D.; Guillet, J.P.; Chusseau, L. Room temperature Si–Ti thermopile THz sensor. Microsyst. Technol. 2015, 21, 1627–1631. [Google Scholar] [CrossRef]
- Kasalynas, I.; Adam, A.J.L.; Klaassen, T.O.; Hovenier, J.N.; Pandraud, G.; Iordanov, V.P.; Sarro, P.M. Design and Performance of a Room-Temperature Terahertz Detection Array for Real-Time Imaging. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 363–369. [Google Scholar] [CrossRef]
- Berry, C.W.; Yardimci, N.T.; Jarrahi, M. Responsivity Calibration of Pyroelectric Terahertz Detectors. arXiv 2014. [Google Scholar] [CrossRef]
Materials | Advantages | Drawbacks |
---|---|---|
Metals (Au, Ag, Cr, alloys) | Nanometric coatings Porous metal coatings (suitable for THz but not in IR) | Corrosive, poor wettability |
Semiconductors (Si, Ge, GaAs) | Dopant/defect engineering Good thermal conductivity 2 | Parasitic reflection 1 Difficult to machine in mm scale |
Carbon (graphite, CNTs, graphene) | The variety of allotropic forms Good thermal conductivity 2 | Complex synthesis 2, reproducibility/reliability, fragile |
Dielectric (polymers) | Low cost, easy to shape | Thick (>4 mm at 0.1 THz) 2,3 Molecular vibrational absorption 1 |
Composite (polymer matrix) | Magnetic particles or any other fillers can be incorporated as a second phase | Inhomogeneity, reproducibility, low thermos-oxidative stability 3 |
Polymer-derived materials | Near net-shaped structures, High thermos-oxidative stability | High thermal mass (heat capacity) 2 |
Detector Type | NEP [W/Hz1/2] | Responsivity [V/W] | Response Time [s] | Dynamic Range | Ref. |
---|---|---|---|---|---|
Pyroelectric | 1 × 10−9 | (0.05–3) × 105 | (10–50) × 10−3 | - | [9] |
2 × 10−9 | 0.56 × 105 | 2.3 × 10−3 | - | [50] | |
300 × 10−9 W (1) | 120 | <0.2 | Pmax = 25 µW | [51] | |
Thermopile | 8 × 10−5 | 35 nV/(W/m2) | 200 × 10−3 | - | [25] |
1.3 × 10−11 | 1.93 × 103 | 2.5 × 10−3 | ~40 dB | [28] (6) | |
0.5 × 10−6 (2) | 0.2 | 3 | 3 W (3) | [51] | |
Bolometer | 10−10 | 105–106 | 10−3 | - | [52] |
4.57 × 10−13 | 2.18 × 103 | - | 0.4–3.6 V (4) | [35] | |
1.4 × 10−13 | 300 | 10−6 | 10 µW–0.8 mW (5) | [38] | |
Golay cell | 1 × 10−10 | 1.8 × 103 @3 THz | 25 × 10−3 | (16–600) µW | [53] |
0.8 × 10−10 | 105 | 25 × 10−3 | up to 100 µW | [54] |
Model Company | 11THZ Standa (Lithuania) | RM9-THz Ophir (USA) | THZ 9D Gentec (Canada) | GC-1T Tydex (Russia) | THZ 12D Gentec (Canada) |
---|---|---|---|---|---|
Rise time | 0.2 s | 3.5 s | <0.2 s | 30 ms | 3 s |
Detector | Pyroelectric | Pyroelectric | Pyroelectric | Golay | Thermopile |
Typical sensitivity | 70 kV/W | x | 120 V/W | 1 × 105 V/W | 200 mV/W |
Spectral range [THz] | 0.1–30 | 0.1–30 | 0.1–30 | 0.04–23 | 0.1–30 |
Noise/NEP W/Hz1/2 | 4 × 10−9 | 20 × 10−9 | 300 × 10−9 | 1.4 × 10−10 | 0.5 × 10−6 |
Aperture | Dia. 5 mm | Dia. 8 mm | Dia. 9 mm | Dia. 8 mm | Dia. 12 mm |
Min. power Max. power | x 140 µW | 100 nW 100 mW | 3 µW 20 mW | x 10 µW | 50 µW 3 W |
Max. power density | 50 mW/cm2 | 5 W/cm2 | 3 W/cm2 | x | 30 W/cm2 |
Weight [kg] | 0.5 | 0.2 | 0.091 | 0.8 | 0.316 |
Camera | i2S Vision CEA-Let | MICROXCAM-384i-THz ino.ca | Rigi Camera Rigi Swiss Terahertz | Pyrocam IV Ophir | Lab Setup [62] |
---|---|---|---|---|---|
View | |||||
Spectral range | 0.4–3 THz | 0.094–4.25 THz | x | x | 1.4–2.0 THz |
Array | 320 × 240 FPA Bolometer | 384 × 288 FPA Bolometer | 920 × 1080 FPA Bolometer | 920 × 1080 FPA Pyroelectric | 1× Golay cell (GC-1P) |
Pixel pitch | 50 µm | 35 µm | from 15 µm | from 15 µm | 1 mm |
NEP | x | ||||
Frame-rate | 25 Hz | 50 Hz | 60 Hz | 60 Hz | 0.125 Hz |
Camera size [cm] | 12.5 × 11.5 × 6.5 | 6.1 × 6.1 × 6.5 | 3 × 3 × 4 | 14.7 × 14.7 × 5.5 | x |
Camera weight [kg] | x | 0.36 | <0.2 | 1.2 | x |
Detector | THz System | Parameter | Ref. |
---|---|---|---|
Thermopile Oriel 3A-P with a calibrated absorber | Radiometer | Δf = (0.1–30) THz Min. power = 15 µW τ = 2.5 s | [64] |
Gollay cell | Fourier transform spectrometer | x | [65] |
Pyroelectric Perkinelmer LHI778 with an optical filter | THz imaging | RV = 1200 V/W f = 1.89 THz | [66] |
Bolometer | Power meter | Δf = (0.1–10) THz NEP = 50 nW/√Hz | [67] |
Golay cell Tydex GC-1P | Power meter Δf = (0.90 − 3.05) THz | Δf = (0.04–20) THz NEP = 1.4 × 10−10 W/√Hz RV = 105 V∕W | [68] |
Pyroelectric Gentec SPH-62 THz | Δf = (0.1–30) THz NEP = 10−9 W/√Hz RV = 7 × 104 V∕W | ||
Bolometer MEMS | THz imaging | Rf = 23 Hz/µW NEP = 7.4 nW/√Hz | [69] |
Pyroelectric | THz-TDS spectrometer | Δf = (0.1–5) THz RV = 160 V∕W Min. power = 1 µW | [70] |
Pyroelectric LiTaO3 | THz absorption spectrometer | f = 4.75 THz RV = 70 kV/W NEP = 25 µW/√Hz | [71] |
Bolometer | R = 42 MΩ NEP = 2.3 × 10−17 W/√Hz | ||
Golay cell Tydex TC-1T | THz imaging | f = 118 GHz | [72] |
microbolometer array THz camera IR/V-T0831C NEC Corporation | Single-shot THz image | Δf = (1–7) THz Format 320 × 240, 235 µm NEP < 100 pW/√Hz Frame rate = 8.5 Hz | [73] |
Golay cell | Reflectometry/spectroscopy | Δf = (0.2–1) THz | [74] |
Pyroelectric array PYROCAM III | Terahertz holography | Δf = (0.1–300) THz Sensitivity 1.5 mW/cm2 Format 160 × 160, 75 µm NEP = 13 nW/√Hz | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecki, Z.; Mikolajczyk, J.; Wojtas, J. A Review of Thermal Detectors of THz Radiation Operated at Room Temperature. Sensors 2024, 24, 6784. https://doi.org/10.3390/s24216784
Bielecki Z, Mikolajczyk J, Wojtas J. A Review of Thermal Detectors of THz Radiation Operated at Room Temperature. Sensors. 2024; 24(21):6784. https://doi.org/10.3390/s24216784
Chicago/Turabian StyleBielecki, Zbigniew, Janusz Mikolajczyk, and Jacek Wojtas. 2024. "A Review of Thermal Detectors of THz Radiation Operated at Room Temperature" Sensors 24, no. 21: 6784. https://doi.org/10.3390/s24216784
APA StyleBielecki, Z., Mikolajczyk, J., & Wojtas, J. (2024). A Review of Thermal Detectors of THz Radiation Operated at Room Temperature. Sensors, 24(21), 6784. https://doi.org/10.3390/s24216784