Video Game-Based Trunk Exercises for Rehabilitation in Chronic Stroke Survivors: A Mixed-Methods Feasibility Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Setting and Procedure
- Participants achieving a high balance score (BBS > 45) during the mid-treatment reassessment (ninth session);
- Participants achieving a full score in three games (one targeting the static sitting balance subscale, one targeting the dynamic sitting balance subscale, and one targeting the coordination subscale), even before the mid-treatment period.
2.3. Outcome Measures
2.4. Data Analysis
3. Results
3.1. Participants Characteristics
3.2. Quantitative Results
Psychological Impact
Recruitment and Retention
Adherence
Safety
3.3. Qualitative Results
Acceptability of Trunk Exercises Using the Valedo Video Game System
- 1.
- Perceived impact
- 2.
- Motivation to Exercise with Video Games
- 3.
- Burden of Participation
Implementation of Trunk Exercise Using Valedo Video Game System
- 1.
- Recommendations for Professionals
- 2.
- Safety
4. Discussion
4.1. Acceptability of the Valedo System
4.2. Implementation of the Valedo Video Games in Rehabilitation
5. Limitations of the Study
6. Conclusions and Clinical Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franchignoni, F.P.; Tesio, L.; Ricupero, C.; Martino, M.T. Trunk Control Test as an Early Predictor of Stroke Rehabilitation Outcome. Stroke 1997, 28, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-L.; Sheu, C.-F.; Hsueh, I.-P.; Wang, C.-H. Trunk Control as an Early Predictor of Comprehensive Activities of Daily Living Function in Stroke Patients. Stroke 2002, 33, 2626–2630. [Google Scholar] [CrossRef]
- Verheyden, G.; Nieuwboer, A.; De Wit, L.; Feys, H.; Schuback, B.; Baert, I.; Jenni, W.; Schupp, W.; Thijs, V.; De Weerdt, W. Trunk Performance after Stroke: An Eye Catching Predictor of Functional Outcome. J. Neurol. Neurosurg. Psychiatry 2007, 78, 694–698. [Google Scholar] [CrossRef]
- Verheyden, G.A.; Nieuwboer, A.; Van de Winckel, A.; De Weerdt, W. Clinical Tools to Measure Trunk Performance after Stroke: A Systematic Review of the Literature. Clin. Rehabil. 2007, 21, 387–394. [Google Scholar] [CrossRef]
- Karthikbabu, S.M.; Chakrapani, S.; Ganeshan, K.C.; Rakshith, S.; Nafeez, S.; Prem, V. A Review on Assessment and Treatment of the Trunk in Stroke: A Need or Luxury. Neural Regen. Res. 2012, 7, 1974–1977. [Google Scholar] [PubMed]
- Verheyden, G.; Nieuwboer, A.; Mertin, J.; Preger, R.; Kiekens, C.; De Weerdt, W. The Trunk Impairment Scale: A New Tool to Measure Motor Impairment of the Trunk after Stroke. Clin. Rehabil. 2004, 18, 326–334. [Google Scholar] [CrossRef]
- Van Peppen, R.P.; Kwakkel, G.; Wood-Dauphinee, S.; Hendriks, H.J.; Van der Wees, P.J.; Dekker, J. The Impact of Physical Therapy on Functional Outcomes after Stroke: What’s the Evidence? Clin. Rehabil. 2004, 18, 833–862. [Google Scholar] [CrossRef] [PubMed]
- Alhwoaimel, N.; Turk, R.; Warner, M.; Verheyden, G.; Thijs, L.; Wee, S.K.; Hughes, A.M. Do Trunk Exercises Improve Trunk and Upper Extremity Performance, Post Stroke? A Systematic Review and Meta-Analysis. NeuroRehabilitation 2018, 43, 395–412. [Google Scholar] [CrossRef]
- Bank, J.; Charles, K.; Morgan, P. What Is the Effect of Additional Physiotherapy on Sitting Balance Following Stroke Compared to Standard Physiotherapy Treatment: A Systematic Review. Top. Stroke Rehabilitation 2016, 23, 15–25. [Google Scholar] [CrossRef]
- Cabanas-Valdes, R.; Cuchi, G.U.; Bagur-Calafat, C. Trunk Training Exercises Approaches for Improving Trunk Performance and Functional Sitting Balance in Patients with Stroke: A Systematic Review. Neurorehabilitation 2013, 33, 575–592. [Google Scholar] [CrossRef]
- Cabrera-Martos, I.; Ortiz-Rubio, A.; Torres-Sánchez, I.; López-López, L.; Jarrar, M.; Valenza, M.C. The Effectiveness of Core Exercising for Postural Control in Patients with Stroke: A Systematic Review and Meta-Analysis. PM&R 2020, 12, 1157–1168. [Google Scholar]
- Van Criekinge, T.; Truijen, S.; Verbruggen, C.; Van de Venis, L.; Saeys, W. The Effect of Trunk Training on Muscle Thickness and Muscle Activity: A Systematic Review. Disabil. Rehabil. 2019, 41, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Sorinola, I.; Powis, I.; White, C. Does Additional Exercise Improve Trunk Function Recovery in Stroke Patients? A Meta-Analysis. Neurorehabilitation 2014, 35, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.C.B.; Santos, M.d.S.; Ribeiro, N.M.d.S.; Maldonado, I.L. Inpatient Trunk Exercises after Recent Stroke: An Update Meta-Analysis of Randomized Controlled Trials. NeuroRehabilitation 2019, 44, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Burdea, G.C. Virtual Rehabilitation--Benefits and Challenges. Methods Inf. Med. 2003, 42, 519–523. [Google Scholar]
- Luker, J.; Lynch, E.; Bernhardsson, S.; Bennett, L.; Bernhardt, J. Stroke Survivors’ Experiences of Physical Rehabilitation: A Systematic Review of Qualitative Studies. Arch. Phys. Med. Rehabil. 2015, 96, 1698–1708.e10. [Google Scholar] [CrossRef] [PubMed]
- Lohse, K.R.; Hilderman, C.G.E.; Cheung, K.L.; Tatla, S.; Van der Loos, H.F.M. Virtual Reality Therapy for Adults Post-Stroke: A Systematic Review and Meta-Analysis Exploring Virtual Environments and Commercial Games in Therapy. PLoS ONE 2014, 9, e93318. [Google Scholar] [CrossRef]
- Weiss, P.L.; Keshner, E.A.; Levin, M.F. (Eds.) Virtual Reality for Physical and Motor Rehabilitation, Virtual Reality Technologies for Health and Clinical Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Cho, K.H.; Lee, K.J.; Song, C.H. Virtual-Reality Balance Training with a Video-Game System Improves Dynamic Balance in Chronic Stroke Patients. Tohoku J. Exp. Med. 2012, 228, 69–74. [Google Scholar] [CrossRef]
- Rizzo, A.; Kim, G.J. A Swot Analysis of the Field of Virtual Reality Rehabilitation and Therapy. Presence 2005, 14, 119–146. [Google Scholar] [CrossRef]
- Alankus, G.; Proffitt, R.; Kelleher, C.; Engsberg, J. Stroke Therapy through Motion-Based Games: A Case Study. ACM Trans. Access. Comput. 2011, 4, 3. [Google Scholar] [CrossRef]
- Burke, J.W.; McNeill, M.D.J.; Charles, D.K.; Morrow, P.J.; Crosbie, J.H.; McDonough, S.M. Optimising Engagement for Stroke Rehabilitation Using Serious Games. Vis. Comput. 2009, 25, 1085–1099. [Google Scholar] [CrossRef]
- Kim, H.Y.; Moon, H.I.; Chae, Y.H.; Yi, T.I. Investigating the Dose-Related Effects of Video Game Trunk Control Training in Chronic Stroke Patients with Poor Sitting Balance. Ann. Rehabil. Med. 2018, 42, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Bae, Y. The Effectiveness of Driving Game on Trunk Control and Gait Ability in Stroke. J. Mot. Behav. 2020, 52, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.M.; Joo, M.C.; Jung, Y.J.; Jang, W.N. The Effects of the Three-Dimensional Active Trunk Training Exercise on Trunk Control Ability, Trunk Muscle Strength, and Balance Ability in Sub-Acute Stroke Patients: A Randomized Controlled Pilot Study. Technol. Health Care 2020, 29, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Alex, M.; Chen, C.Y.; Wünsche, B.C. A Review of Sensor Devices in Stroke Rehabilitation. In Proceedings of the 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ), Christchurch, New Zealand, 4–6 December 2017. [Google Scholar]
- Anderson, K.R.; Woodbury, M.L.; Phillips, K.; Gauthier, L.V. Virtual Reality Video Games to Promote Movement Recovery in Stroke Rehabilitation: A Guide for Clinicians. Arch. Phys. Med. Rehabil. 2015, 96, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.; Flynn, S.; Proffitt, R.; Chang, C.-Y.; Rizzo, A. Development of an Interactive Game-Based Rehabilitation Tool for Dynamic Balance Training. Top. Stroke Rehabil. 2010, 17, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.Y.; Scherer, Y.K.; Montgomery, C.A. Effects of Using Nintendo Wii Exergames in Older Adults: A Review of the Literature. J. Aging Health 2015, 27, 379–402. [Google Scholar] [CrossRef]
- Bauer, C.M.; Rast, F.M.; Ernst, M.J.; Kool, J.; Oetiker, S.; Rissanen, S.M.; Suni, J.H.; Kankaanpää, M. Concurrent Validity and Reliability of a Novel Wireless Inertial Measurement System to Assess Trunk Movement. J. Electromyogr. Kinesiol. 2015, 25, 782–790. [Google Scholar] [CrossRef]
- Hügli, A.S.; Ernst, M.J.; Kool, J.; Rast, F.M.; Rausch-Osthoff, A.K.; Mannig, A.; Oetiker, S.; Bauer, C.M. Adherence to Home Exercises in Non-Specific Low Back Pain. A Randomised Controlled Pilot Trial. J. Bodyw. Mov. Ther. 2015, 19, 177–185. [Google Scholar] [CrossRef]
- Barnsley, L.; Barnsley, L.; Page, R. Are Hip Precautions Necessary Post Total Hip Arthroplasty? A Systematic Review. Geriatr. Orthop. Surg. Rehabil. 2015, 6, 230–235. [Google Scholar] [CrossRef]
- Alhwoaimel, N.; Turk, R.; Hughes, A.M.; Ferrari, F.; Burridge, J.; Wee, S.K.; Verheyden, G.; Warner, M. Instrumented Trunk Impairment Scale (Itis): A Reliable Measure of Trunk Impairment in the Stroke Population. Top. Stroke Rehabil. 2021, 28, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Alhwoaimel, N.; Warner, M.B.; Hughes, A.-M.; Busselli, G.; Turk, R. Validity and Reliability of Sensor System to Measure Trunk Range of Motion During Streamlined Wolf Motor Function Test in Chronic Stroke and Aged-Matched Healthy Participants. Top. Stroke Rehabil. 2023, 30, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Wood-Dauphinee, S.; Williams, J. The Balance Scale: Reliability Assessment with Elderly Residents and Patients with an Acute Stroke. J. Rehabil. Med. 1995, 27, 27–36. [Google Scholar] [CrossRef]
- Bowen, D.J.; Kreuter, M.; Spring, B.; Cofta-Woerpel, L.; Linnan, L.; Weiner, D.; Bakken, S.; Kaplan, C.P.; Squiers, L.; Fabrizio, C.; et al. How We Design Feasibility Studies. Am. J. Prev. Med. 2009, 36, 452–457. [Google Scholar] [CrossRef]
- Sekhon, M.; Cartwright, M.; Francis, J.J. Acceptability of Healthcare Interventions: An Overview of Reviews and Development of a Theoretical Framework. BMC Health Serv. Res. 2017, 17, 88. [Google Scholar] [CrossRef]
- Day, H.; Jutai, J.; Campbell, K.A. Development of a Scale to Measure the Psychosocial Impact of Assistive Devices: Lessons Learned and the Road Ahead. Disabil. Rehabil. 2002, 24, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Jutai, J.; Day, H. Psychosocial Impact of Assistive Devices Scale (Piads). Technol. Disabil. 2002, 14, 107–111. [Google Scholar] [CrossRef]
- MacPhee, A.H.; Kirby, R.L.; Coolen, A.L.; Smith, C.; MacLeod, D.A.; Dupuis, D.J. Wheelchair Skills Training Program: A Randomized Clinical Trial of Wheelchair Users Undergoing Initial Rehabilitation. Arch. Phys. Med. Rehabil. 2004, 85, 41–50. [Google Scholar] [CrossRef]
- Devitt, R.; Chau, B.; Jutai, J.W. The Effect of Wheelchair Use on the Quality of Life of Persons with Multiple Sclerosis. Occup. Ther. Health Care 2004, 17, 63–79. [Google Scholar] [CrossRef]
- Yachnin, D.; Gharib, G.; Jutai, J.; Finestone, H. Technology-Assisted Toilets: Improving Independence and Hygiene in Stroke Rehabilitation. J. Rehabil. Assist. Technol. Eng. 2017, 4, 2055668317725686. [Google Scholar] [CrossRef]
- El-Kotob, R.; Giangregorio, L.M. Pilot and Feasibility Studies in Exercise, Physical Activity, or Rehabilitation Research. Pilot. Feasibility Stud. 2018, 4, 137. [Google Scholar] [CrossRef]
- Bower, P.; Brueton, V.; Gamble, C.; Treweek, S.; Smith, C.T.; Young, B.; Williamson, P. Interventions to Improve Recruitment and Retention in Clinical Trials: A Survey and Workshop to Assess Current Practice and Future Priorities. Trials 2014, 15, 399. [Google Scholar] [CrossRef] [PubMed]
- Brewer, B.W.; Van Raalte, J.L.; Petitpas, A.J.; Sklar, J.H.; Pohlman, M.H.; Krushell, R.J.; Ditmar, T.D.; Daly, J.M.; Weinstock, J. Preliminary Psychometric Evaluation of a Measure of Adherence to Clinic-Based Sport Injury Rehabilitation. Phys. Ther. Sport 2000, 1, 68–74. [Google Scholar] [CrossRef]
- Gale, N.K.; Heath, G.; Cameron, E.; Rashid, S.; Redwood, S. Using the Framework Method for the Analysis of Qualitative Data in Multi-Disciplinary Health Research. BMC Med. Res. Methodol. 2013, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Buick, A.R.; Kowalczewski, J.; Carson, R.G.; Prochazka, A. Tele-Supervised Fes-Assisted Exercise for Hemiplegic Upper Limb. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 79–87. [Google Scholar] [CrossRef]
- Swanson, L.R.; Whittinghill, D.M. Intrinsic or Extrinsic? Using Videogames to Motivate Stroke Survivors: A Systematic Review. Games Health J. 2015, 4, 253–258. [Google Scholar] [CrossRef]
- Lloréns, R.; Noé, E.; Colomer, C.; Alcañiz, M. Effectiveness, Usability, and Cost-Benefit of a Virtual Reality–Based Telerehabilitation Program for Balance Recovery after Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2015, 96, 418–425.e2. [Google Scholar] [CrossRef]
- Proffitt, R.; Lange, B. Feasibility of a Customized, in-Home, Game-Based Stroke Exercise Program Using the Microsoft Kinect(R) Sensor. Int. J. Telerehabil. 2015, 7, 23–34. [Google Scholar] [CrossRef]
- Ryan, R.M.; Patrick, H.; Deci, E.L.; Williams, G.C. Facilitating Health Behaviour Change and Its Maintenance: Interventions Based on Self-Determination Theory. Eur. Psychol. 2008, 10, 2. [Google Scholar]
- Fisher, P.; McCarney, R.; Hasford, C.; Vickers, A. Evaluation of Specific and Non-Specific Effects in Homeopathy: Feasibility Study for a Randomised Trial. Homeopathy 2006, 95, 215–222. [Google Scholar] [CrossRef]
- Forkan, R.; Pumper, B.; Smyth, N.; Wirkkala, H.; A Ciol, M.; Shumway-Cook, A. Exercise Adherence Following Physical Therapy Intervention in Older Adults with Impaired Balance. Phys. Ther. 2006, 86, 401–410. [Google Scholar] [CrossRef]
- Tiedemann, A.; Sherrington, C.; Dean, C.M.; Rissel, C.; Lord, S.R.; Kirkham, C.; O’Rourke, S.D. Predictors of Adherence to a Structured Exercise Program and Physical Activity Participation in Community Dwellers after Stroke. Stroke Res. Treat. 2012, 2012, 136525. [Google Scholar] [CrossRef] [PubMed]
- Bower, K.J.; Louie, J.; Landesrocha, Y.; Seedy, P.; Gorelik, A.; Bernhardt, J. Clinical Feasibility of Interactive Motion-Controlled Games for Stroke Rehabilitation. Rehabilitation 2015, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.V.; Nichols-Larsen, D.S.; Uswatte, G.; Strahl, N.; Simeo, M.; Proffitt, R.; Kelly, K.; Crawfis, R.; Taub, E.; Morris, D.; et al. Video Game Rehabilitation for Outpatient Stroke (Vigorous): A Multi-Site Randomized Controlled Trial of in-Home, Self-Managed, Upper-Extremity Therapy. EClinicalMedicine 2022, 43, 101239. [Google Scholar] [CrossRef]
- Celinder, D.; Peoples, H. Stroke Patients’ Experiences with Wii Sports® During Inpatient Rehabilitation. Scand. J. Occup. Ther. 2012, 19, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Finley, M.; Combs, S. User Perceptions of Gaming Interventions for Improving Upper Extremity Motor Function in Persons with Chronic Stroke. Physiother. Theory Pract. 2013, 29, 195–201. [Google Scholar] [CrossRef]
- Simpson, L.A.; Eng, J.J.; Tawashy, A.E. Exercise Perceptions among People with Stroke: Barriers and Facilitators to Participation. Int. J. Ther. Rehabil. 2011, 18, 520–530. [Google Scholar] [CrossRef]
- Deutsch, J.E.; Brettler, A.; Smith, C.; Welsh, J.; John, R.; Guarrera-Bowlby, P.; Kafri, M. Nintendo Wii Sports and Wii Fit Game Analysis, Validation, and Application to Stroke Rehabilitation. Top. Stroke Rehabil. 2011, 18, 701–719. [Google Scholar] [CrossRef]
- Parker, J.; Mawson, S.; Mountain, G.; Nasr, N.; Zheng, H. Stroke Patients’ Utilisation of Extrinsic Feedback from Computer-Based Technology in the Home: A Multiple Case Study Realistic Evaluation. BMC Med. Inform. Decis. Mak. 2014, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Stockley, R.C.; O’connor, D.A.; Smith, P.; Moss, S.; Allsop, L.; Edge, W. A Mixed Methods Small Pilot Study to Describe the Effects of Upper Limb Training Using a Virtual Reality Gaming System in People with Chronic Stroke. Rehabil. Res. Pratc. 2017, 2017, 9569178. [Google Scholar] [CrossRef]
- Törnbom, K.; Danielsson, A. Experiences of Treadmill Walking with Non-Immersive Virtual Reality after Stroke or Acquired Brain Injury—A Qualitative Study. PLoS ONE 2018, 13, e0209214. [Google Scholar] [CrossRef] [PubMed]
Site | ID | Age (Year) | Sex | Stroke Onset (Months) | Hemiplegic Side | TIS | BBS | AD |
---|---|---|---|---|---|---|---|---|
UK | P1 | 49 | M | 155 | Left | 14 | 52 | None |
P2 | 54 | F | 75 | Right | 11 | 44 | None | |
P3 | 62 | M | 40 | Left | 12 | 24 | W/C | |
P4 | 69 | M | 169 | Left | 9 | 27 | Cane | |
P5 | 59 | M | 104 | Left | 16 | 46 | None | |
KSA | P6 | 92 | M | 20 | Right | 11 | 25 | Cane |
P7 | 75 | M | 21 | Left | 13 | 40 | Cane | |
P8 | 40 | M | 127 | Left | 11 | 45 | None | |
P9 | 75 | M | 53 | Right | 15 | 26 | Cane | |
P10 | 54 | F | 44 | Right | 12 | 11 | W/C |
ID | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
Item | Score | Score | Score | Score | Score | Score | Score | Score | Score | Score |
Competence | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 |
Happiness | 3 | 3 | 0 | 3 | 2 | 3 | 3 | 3 | 2 | 3 |
Independence | 2 | 3 | 0 | 3 | 2 | 1 | 1 | 2 | 0 | 3 |
Adequacy | 1 | 3 | 0 | 2 | 2 | 1 | 3 | 0 | 2 | 3 |
Confusion | 0 | 3 | 0 | 1 | 0 | 1 | 1 | 3 | 3 | 3 |
Efficiency | 1 | 3 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | 3 |
Self-esteem | 2 | 3 | 0 | 1 | 2 | 3 | 3 | 3 | 0 | 3 |
Productivity | 3 | 3 | 0 | 3 | 2 | 2 | 2 | 2 | 0 | 3 |
Security | 2 | 3 | 0 | 3 | 0 | 2 | 2 | 2 | 2 | 3 |
Frustration | 1 | −3 | 0 | 2 | 0 | 0 | −2 | 2 | −2 | 0 |
Usefulness | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 0 | 0 |
Self-confidence | 3 | 2 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | 3 |
Expertise | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 0 | 0 | 0 |
Skilfulness | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 3 | 3 | 1 |
Well-being | 3 | 3 | 0 | 2 | 2 | 3 | 3 | 3 | 0 | 3 |
Capability | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 3 | 0 | 0 |
Quality of life | 2 | 3 | 0 | 2 | 1 | 2 | 1 | 0 | 0 | 2 |
Performance | 3 | 2 | 0 | 3 | 1 | 2 | 2 | 2 | 2 | 2 |
Sense of power | 3 | 3 | 0 | 3 | 2 | 2 | 2 | 3 | 1 | 3 |
Sense of control | 3 | 3 | 0 | 3 | 1 | 0 | 2 | 0 | 2 | 3 |
Embarrassment | 1 | 3 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 0 |
Willingness to take chances | 1 | 3 | 0 | 1 | 2 | 2 | 2 | 3 | 2 | 3 |
Ability to participate | 2 | 3 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 3 |
Eagerness to try new things | 3 | 3 | 1 | 3 | 1 | 1 | 0 | 0 | 2 | 3 |
Ability to adapt to the activities of daily living | 3 | 3 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 2 |
Ability to take advantage of opportunities | 3 | 3 | 0 | 3 | 1 | 2 | 2 | 3 | 2 | 2 |
Total | 51 | 54 | 7 | 52 | 37 | 28 | 39 | 39 | 17 | 50 |
Site | ID | Planned Sessions | Attended Sessions | Completion Time | Percentage % |
---|---|---|---|---|---|
UK | P1 | 18 | 18 | 6 weeks | 100 |
P2 | 18 | 18 | 6 weeks | 100 | |
P3 | 18 | 17 | 8 weeks | 94.44 | |
P4 | 18 | 18 | 6 weeks | 100 | |
P5 | 18 | 18 | 6 weeks | 100 | |
KSA | P6 | 18 | 18 | 6 weeks | 100 |
P7 | 18 | 18 | 8 weeks | 100 | |
P8 | 18 | 18 | 8 weeks | 100 | |
P9 | 18 | 12 | 8 weeks | 66.67 | |
P10 | 18 | 18 | 6 weeks | 100 | |
Mean | 6.8 weeks | 96.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhwoaimel, N.A.; Hughes, A.-M.; Warner, M.; Alenazi, A.M.; Alshehri, M.M.; Alqahtani, B.A.; Alhowimel, A.S.; Wagland, R.; Brown, S.; Turk, R. Video Game-Based Trunk Exercises for Rehabilitation in Chronic Stroke Survivors: A Mixed-Methods Feasibility Study. Sensors 2024, 24, 6830. https://doi.org/10.3390/s24216830
Alhwoaimel NA, Hughes A-M, Warner M, Alenazi AM, Alshehri MM, Alqahtani BA, Alhowimel AS, Wagland R, Brown S, Turk R. Video Game-Based Trunk Exercises for Rehabilitation in Chronic Stroke Survivors: A Mixed-Methods Feasibility Study. Sensors. 2024; 24(21):6830. https://doi.org/10.3390/s24216830
Chicago/Turabian StyleAlhwoaimel, Norah A., Ann-Marie Hughes, Martin Warner, Aqeel M. Alenazi, Mohammed M. Alshehri, Bader A. Alqahtani, Ahmed S. Alhowimel, Richard Wagland, Simon Brown, and Ruth Turk. 2024. "Video Game-Based Trunk Exercises for Rehabilitation in Chronic Stroke Survivors: A Mixed-Methods Feasibility Study" Sensors 24, no. 21: 6830. https://doi.org/10.3390/s24216830
APA StyleAlhwoaimel, N. A., Hughes, A.-M., Warner, M., Alenazi, A. M., Alshehri, M. M., Alqahtani, B. A., Alhowimel, A. S., Wagland, R., Brown, S., & Turk, R. (2024). Video Game-Based Trunk Exercises for Rehabilitation in Chronic Stroke Survivors: A Mixed-Methods Feasibility Study. Sensors, 24(21), 6830. https://doi.org/10.3390/s24216830