Motion State Estimation with Bandwidth Constraints and Mixed Cyber-Attacks for Unmanned Surface Vehicles: A Resilient Set-Membership Filtering Framework
Abstract
:1. Introduction
2. Problem Formulation
2.1. Modeling of the USV Steering Motion Model
2.2. Binary Coding Scheme
2.3. Design Objective
3. Main Result
3.1. Design of Robust Set-Membership Estimator
3.2. Optimization Problem
Algorithm 1: Set-membership estimation framework for USV steering motion |
|
4. Simulation Experiment
4.1. Numerical Simulation
4.2. The Analysis of Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goulon, C.; Meaux, O.L.; Vincent-Falquet, R.; Guillard, J. Hydroacoustic Autonomous boat for Remote fish detection in LakE (HARLE), an unmanned autonomous surface vehicle to monitor fish populations in lakes. Limnol. Oceanogr.-Methods 2021, 19, 280–292. [Google Scholar] [CrossRef]
- Song, L.; Chen, H.; Xiong, W.; Dong, Z.; Hu, K. Method of Emergency Collision Avoidance for Unmanned Surface Vehicle (USV) based on Motion Ability Database. Pol. Marit. Res. 2019, 26, 55–67. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhu, H.; Pan, L.; Wang, J. Research on Intelligent Trajectory Control Method of Water Quality Testing Unmanned Surface Vessel. J. Mar. Sci. Eng. 2022, 10, 55–67. [Google Scholar] [CrossRef]
- Abrougui, H.; Nejim, S.; Hachicha, S.; Zaoui, C.; Dallagi, H. Modeling, parameter identification, guidance and control of an unmanned surface vehicle with experimental results. Ocean Eng. 2021, 241, 42–53. [Google Scholar] [CrossRef]
- Cai, M.; He, X.; Zhou, D. Performance-improved finite-time fault-tolerant control for linear uncertain systems with intermittent faults: An overshoot suppression strategy. Int. J. Syst. Sci. 2022, 53, 3408–3425. [Google Scholar] [CrossRef]
- Wen, P.; Li, X.; Hou, N.; Mu, S. Distributed recursive fault estimation with binary encoding schemes over sensor networks. Syst. Sci. Control Eng. 2022, 10, 417–427. [Google Scholar] [CrossRef]
- Song, X.; Rong, L.; Li, B.; Wang, Z.; Li, J. Joint state and fault estimation for nonlinear systems with missing measurements and random component faults under Round-Robin Protocol. Int. J. Electr. Power Energy Syst. 2023, 154, 109–437. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Aubry, A.; Carotenuto, V. Rician MIMO Channel- and Jamming-Aware Decision Fusion. IEEE Trans. Signal Process. 2017, 65, 3866–3880. [Google Scholar] [CrossRef]
- Bao, G.; Ma, L.; Yi, X. Recent advances on cooperative control of heterogeneous multi-agent systems subject to constraints: A survey. Syst. Sci. Control Eng. 2022, 10, 539–551. [Google Scholar] [CrossRef]
- Li, W.; Niu, Y.; Cao, Z. Event-triggered sliding mode control for multi-agent systems subject to channel fading. Int. J. Syst. Sci. 2022, 53, 1233–1244. [Google Scholar] [CrossRef]
- Caballero-Aguila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Networked fusion estimation with multiple uncertainties and time-correlated channel noise. Inf. Fusion 2022, 53, 1233–1244. [Google Scholar] [CrossRef]
- Wang, F.; Liang, J.; Lam, J.; Yang, J.; Zhao, C. Robust Filtering for 2-D Systems with Uncertain-Variance Noises and Weighted Try-Once-Discard Protocols. IEEE Trans. Syst. Man Cybern.-Syst. 2023, 53, 2914–2924. [Google Scholar] [CrossRef]
- Li, X.; Feng, S.; Hou, N.; Wang, R.; Li, H.; Gao, M. Surface microseismic data denoising based on sparse autoencoder and Kalman filter. Syst. Sci. Control Eng. 2022, 10, 616–628. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Zhang, J.; Zheng, L. Robust predictive control for anti-rolling path following of underactuated surface vessels using adaptive Kalman filter. Int. J. Adv. Robot. Syst. 2019, 16, 324–328. [Google Scholar] [CrossRef]
- Fei, Z.; Wang, X.; Wang, Z. Event-Based Fault Detection for Unmanned Surface Vehicles Subject to Denial-of-Service Attacks. IEEE Trans. Syst. Man Cybern.-Syst. 2022, 52, 3326–3336. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q. Network-Based Fault Detection Filter and Controller Coordinated Design for Unmanned Surface Vehicles in Network Environments. IEEE Trans. Ind. Inform. 2016, 52, 1753–1765. [Google Scholar] [CrossRef]
- Sharma, S.; Sutton, R. A genetic algorithm based nonlinear guidance and control system for an uninhabited surface vehicle. J. Mar. Eng. Technol. 2013, 12, 29–40. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q. Network-Based Heading Control and Rudder Oscillation Reduction for Unmanned Surface Vehicles. IEEE Trans. Control Syst. Technol. 2017, 25, 1609–1620. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Chen, J.; Zheng, X. A quantized set-membership estimation-based heading control method of unmanned surface vessels under unknown-but-bounded wave-induced disturbances. Asian J. Control 2023, 25, 3105–3118. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Liu, C.; Xiao, Z.; Rao, H. Set-Membership State Estimation for Unmanned Surface Vehicle Steering Motion with Try-Once-Discard Protocol. IEEE Sens. J. 2023, 23, 14592–14600. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Liu, H.; Chen, D.; Du, J. Non-fragile set-membership estimation for sensor-saturated memristive neural networks via weighted try-once-discard protocol. IET Control Theory Appl. 2020, 14, 1671–1680. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, J.; Chen, D.; Wei, Y.; Du, J. Non-fragile Suboptimal Set-membership Estimation for Delayed Memristive Neural Networks with Quantization via Maximum-error-first Protocol. Int. J. Control Autom. Syst. 2020, 18, 1904–1914. [Google Scholar] [CrossRef]
- Wu, W.; Peng, Z.; Wang, D.; Liu, L.; Han, Q. Network-Based Line-of-Sight Path Tracking of Underactuated Unmanned Surface Vehicles with Experiment Results. IEEE Trans. Cybern. 2022, 52, 10937–10947. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Guo, T.; Wang, H.; Chi, Z.; Wu, Z.; Yuan, R. Obstacle Detection of Unmanned Surface Vehicle Based on Lidar Point Cloud Data. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA , 17–20 October 2022; Volume 23, pp. 1–8. [Google Scholar] [CrossRef]
- Gao, S.; Peng, Z.; Liu, L.; Wang, D.; Han, Q. Fixed-Time Resilient Edge-Triggered Estimation and Control of Surface Vehicles for Cooperative Target Tracking Under Attacks. IEEE Trans. Intell. Veh. 2023, 8, 14592–14600. [Google Scholar] [CrossRef]
- Liu, L.; Ma, L.; Zhang, F.; Bo, Y. Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks. Int. J. Syst. Sci. 2021, 52, 1192–1205. [Google Scholar] [CrossRef]
- Liu, L.; Ma, L.; Wang, Y.; Zhang, J.; Bo, Y. Distributed set-membership filtering for time-varying systems under constrained measurements and replay attacks. J. Frankl. Inst.-Eng. Appl. Math. 2023, 357, 4983–5003. [Google Scholar] [CrossRef]
- Li, X.; Wei, G.; Wang, L. Distributed set-membership filtering for discrete-time systems subject to denial-of-service attacks and fading measurements: A zonotopic approach. Inf. Sci. 2021, 547, 49–67. [Google Scholar] [CrossRef]
- Yi, X.; Yu, H.; Wang, P.; Liu, S.; Ma, L. Encoding–decoding-based secure filtering for neural networks under mixed attacks. Neurocomputing 2022, 508, 71–78. [Google Scholar] [CrossRef]
- Qu, Y.; Pang, K. State estimation for a class of artificial neural networks subject to mixed attacks: A set-membership method. Neurocomputing 2020, 411, 239–246. [Google Scholar] [CrossRef]
- Ding, D.; Wang, Z.; Han, Q.; Wei, G. Security Control for Discrete-Time Stochastic Nonlinear Systems Subject to Deception Attacks. IEEE Trans. Syst. Man Cybern.-Syst. 2018, 48, 779–789. [Google Scholar] [CrossRef]
- Ding, D.; Han, Q.; Xiang, Y.; Ge, H.; Zhang, X. A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 2018, 275, 1674–1683. [Google Scholar] [CrossRef]
- Qian, W.; Wang, L.; Chen, Z. Local Consensus of Nonlinear Multiagent Systems with Varying Delay Coupling. IEEE Trans. Syst. Man Cybern.-Syst. 2018, 48, 2462–2469. [Google Scholar] [CrossRef]
- Qian, W.; Gao, Y.; Yang, Y. Global Consensus of Multiagent Systems with Internal Delays and Communication Delays. IEEE Trans. Syst. Man Cybern.-Syst. 2019, 49, 1961–1970. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Wang, D.; Luo, J.; Pu, H.; Peng, Y. Finite-horizon filtering for a class of nonlinear time-delayed systems with an energy harvesting sensor. Automatica 2019, 100, 144–152. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Tan, H. Guaranteed cost control for uncertain nonlinear systems with mixed time-delays: The discrete-time case. Eur. J. Control 2018, 40, 62–67. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.; Gao, H. Robust H∞ Filtering for a Class of Nonlinear Networked Systems with Multiple Stochastic Communication Delays and Packet Dropouts. IEEE Trans. Signal Process. 2010, 58, 1957–1966. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Liu, S.; Gao, H. A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica 2016, 64, 155–162. [Google Scholar] [CrossRef]
- Hou, N.; Wang, Z.; Shen, Y.; Liu, H.; Dong, H. A non-fragile approach to fault estimation for a class of multi-rate systems under binary encoding schemes. Int. J. Robust Nonlinear Control 2023, 34, 751–772. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, L.; Zhang, M.; Guo, J.; Bo, Y. Distributed Set-Membership Filtering for Nonlinear Time-Varying Systems with Dynamic Coding-Decoding Communication Protocol. IEEE Syst. J. 2022, 16, 2958–2967. [Google Scholar] [CrossRef]
- Qu, B.; Wang, Z.; Shen, B.; Dong, H.; Zhang, X. Secure Particle Filtering with Paillier Encryption–Decryption Scheme: Application to Multi-Machine Power Grids. IEEE Trans. Smart Grid 2024, 15, 863–873. [Google Scholar] [CrossRef]
- Li, X.; Song, J.B.; Hou, N.; Dai, D.; Yang, F. Finite-horizon distributed set-membership filtering with dynamical bias and DoS attacks under binary encoding schemes. Inf. Sci. 2023, 641, 412–421. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z. Moving-Horizon Estimation for Linear Dynamic Networks with Binary Encoding Schemes. IEEE Trans. Autom. Control 2021, 66, 1763–1770. [Google Scholar] [CrossRef]
- Chen, S.; Ma, L.; Ma, Y. Distributed set-membership filtering for nonlinear systems subject to round-robin protocol and stochastic communication protocol over sensor networks. Neurocomputing 2020, 385, 13–21. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Z.; Gao, H. Set-membership filtering for time-varying systems with mixed time-delays under Round-Robin and Weighted Try-Once-Discard protocols. Automatica 2016, 74, 341–348. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Z.; Shen, B.; Dong, H. Moving horizon estimation over relay channels: Dealing with packet losses. Automatica 2023, 155, 123–131. [Google Scholar] [CrossRef]
- Hou, N.; Wang, Z.; Dong, H.; Hu, J.; Liu, X. Sensor Fault Estimation for Nonlinear Complex Networks with Time Delays Under Saturated Innovations: A Binary Encoding Scheme. IEEE Trans. Netw. Sci. Eng. 2022, 9, 4171–4183. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Dong, H.; Jiang, C. Remote Estimation for Energy Harvesting Systems Under Multiplicative Noises: A Binary Encoding Scheme with Probabilistic Bit Flips. IEEE Trans. Autom. Control 2022, 68, 343–354. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Dong, H.; Shen, B.; Chen, Y. Quadratic filtering for discrete time-varying non-Gaussian systems under binary encoding schemes. Automatica 2023, 158, 731–745. [Google Scholar] [CrossRef]
- Yaz, E. Linear Matrix Inequalities In System And Control Theory. Proc. IEEE 1998, 86, 2473–2474. [Google Scholar] [CrossRef]
- Ghaoui, L.; Calafiore, G. Robust filtering for discrete-time systems with bounded noise and parametric uncertainty. IEEE Trans. Autom. Control 2001, 46, 1084–1089. [Google Scholar] [CrossRef]
- Milanese, M.; Vicino, A. Estimation theory for nonlinear models and set membership uncertainty. Automatica 1991, 27, 403–408. [Google Scholar] [CrossRef]
Estimation Approach | Calculated Load (s) | MSE of the Sway Velocity | MSE of the Yaw Velocity | MSE of the Roll Velocity |
---|---|---|---|---|
Traditional approach | 8.950 | 2.0174 | 0.8040 | 58.4744 |
Our approach | 8.574 | 0.1414 | 0.2143 | 3.3266 |
Estimation Approach | Calculated Load (s) | MSE of the Sway Velocity | MSE of the Yaw Velocity | MSE of the Roll Velocity |
---|---|---|---|---|
Traditional approach | 9.352 | 0.2558 | 0.8259 | 1.6437 |
Our approach | 8.906 | 0.1414 | 0.2144 | 0.6446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lou, P.; Wang, Y.; Li, J.; Wang, J. Motion State Estimation with Bandwidth Constraints and Mixed Cyber-Attacks for Unmanned Surface Vehicles: A Resilient Set-Membership Filtering Framework. Sensors 2024, 24, 6834. https://doi.org/10.3390/s24216834
Wang Z, Lou P, Wang Y, Li J, Wang J. Motion State Estimation with Bandwidth Constraints and Mixed Cyber-Attacks for Unmanned Surface Vehicles: A Resilient Set-Membership Filtering Framework. Sensors. 2024; 24(21):6834. https://doi.org/10.3390/s24216834
Chicago/Turabian StyleWang, Ziyang, Peng Lou, Yudong Wang, Juan Li, and Jiasheng Wang. 2024. "Motion State Estimation with Bandwidth Constraints and Mixed Cyber-Attacks for Unmanned Surface Vehicles: A Resilient Set-Membership Filtering Framework" Sensors 24, no. 21: 6834. https://doi.org/10.3390/s24216834
APA StyleWang, Z., Lou, P., Wang, Y., Li, J., & Wang, J. (2024). Motion State Estimation with Bandwidth Constraints and Mixed Cyber-Attacks for Unmanned Surface Vehicles: A Resilient Set-Membership Filtering Framework. Sensors, 24(21), 6834. https://doi.org/10.3390/s24216834