A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmid and Construct Cloning
2.2. Cell Culture and Transfection
2.3. Fluorescence Polarization Microscopy
2.4. Heterotransfer FRET Microscopy
2.5. Image Analysis
3. Results
3.1. Development and Validation of Single-Color RhoKAR FRET Biosensor
3.2. RhoKAR Provides a Readout of ROCK Stimulation and Inhibition
3.3. RhoKAR Gives a Readout Specific to ROCK Activity
3.4. RhoKAR Visualizes Subcellularly Compartmentalized Activation of ROCK
3.5. Calcium Activates RhoA and ROCK in Fibroblasts
3.6. Calcium Activation of ROCK in Fibroblasts Requires Calmodulin/CaMKII
4. Discussion
4.1. The RhoKAR Sensor Enables Sensitive Quantification of ROCK Activity in Live Cells
4.2. RhoKAR Reveals Compartmentalized Activation of ROCK During Cellular Protrusion and Retraction
4.3. Calcium Activates RhoA and ROCK in Fibroblasts via Calmodulin/CaMKII Signaling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kataoka, K.; Ogawa, S. Variegated RhoA Mutations in Human Cancers. Exp. Hematol. 2016, 44, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Tseliou, M.; Al-Qahtani, A.; Alarifi, S.; Alkahtani, S.H.; Stournaras, C.; Sourvinos, G. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV) Infected Glioblastoma Cells. Cell Physiol. Biochem. 2016, 38, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Bishop, A.L.; Hall, A. Rho GTPases and Their Effector Proteins. Biochem. J. 2000, 348, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Gaston, C.; De Beco, S.; Doss, B.; Pan, M.; Gauquelin, E.; D’alessandro, J.; Lim, C.T.; Ladoux, B.; Delacour, D. EpCAM Promotes Endosomal Modulation of the Cortical RhoA Zone for Epithelial Organization. Nat. Commun. 2021, 12, 2226. [Google Scholar] [CrossRef] [PubMed]
- Madaule, P.; Axel, R. A Novel Ras-Related Gene Family. Cell 1985, 41, 31–40. [Google Scholar] [CrossRef]
- Buchsbaum, R.J. Rho Activation at a Glance. J. Cell Sci. 2007, 120, 1149–1152. [Google Scholar] [CrossRef]
- Fauré, J.; Vignais, P.V.; Dagher, M.C. Phosphoinositide-Dependent Activation of Rho A Involves Partial Opening of the RhoA/Rho-GDI Complex. Eur. J. Biochem. 1999, 262, 879–889. [Google Scholar] [CrossRef]
- Ridley, A.J.; Schwartz, M.A.; Burridge, K.; Firtel, R.A.; Ginsberg, M.H.; Borisy, G.; Parsons, J.T.; Horwitz, A.R. Cell Migration: Integrating Signals from Front to Back. Science 2003, 302, 1704–1709. [Google Scholar] [CrossRef]
- Hodge, R.G.; Ridley, A.J. Regulating Rho GTPases and Their Regulators. Nat. Rev. Mol. Cell Biol. 2016, 17, 496–510. [Google Scholar] [CrossRef]
- Saci, A.; Carpenter, C.L. RhoA GTPase Regulates B Cell Receptor Signaling. Mol. Cell 2005, 17, 205–214. [Google Scholar] [CrossRef]
- Rossman, K.L.; Der, C.J.; Sondek, J. GEF Means Go: Turning on RHO GTPases with Guanine Nucleotide-Exchange Factors. Nat. Rev. Mol. Cell Biol. 2005, 6, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, S.M.; Awadia, S.; Garcia-Mata, R. I’m Coming to GEF You: Regulation of RhoGEFs during Cell Migration. Cell Adhes. Migr. 2014, 8, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Tcherkezian, J.; Lamarche-Vane, N. Current Knowledge of the Large RhoGAP Family of Proteins. Biol. Cell 2007, 99, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.; Reinhard, N.R.; Hordijk, P.L. Toward Understanding RhoGTPase Specificity: Structure, Function and Local Activation. Small GTPases 2014, 5, 6. [Google Scholar] [CrossRef]
- Bement, W.M.; Miller, A.L.; Von Dassow, G. Rho GTPase Activity Zones and Transient Contractile Arrays. Bioessays 2006, 28, 983–993. [Google Scholar] [CrossRef]
- Carpenter, C.L. Intracellular Signals and the Cytoskeleton: The Interactions of Phosphoinositide Kinases and Small G Proteins in Adherence, Ruffling and Motility. Semin. Cell Dev. Biol. 1996, 7, 691–697. [Google Scholar] [CrossRef]
- Garrett, M.D.; Self, A.J.; Van Oers, C.; Hall, A. Identification of Distinct Cytoplasmic Targets for Ras/R-Ras and Rho Regulatory Proteins. J. Biol. Chem. 1989, 264, 10–13. [Google Scholar] [CrossRef]
- Fauré, J.; Dagher, M.-C. Interactions between Rho GTPases and Rho GDP Dissociation Inhibitor (Rho-GDI). Biochemie 2001, 83, 409–414. [Google Scholar] [CrossRef]
- Dovas, A.; Couchman, J.R. RhoGDI: Multiple Functions in the Regulation of Rho Family GTPase Activities. Biochem. J. 2005, 390, 1–9. [Google Scholar] [CrossRef]
- Garcia-Mata, R.; Boulter, E.; Burridge, K. The “Invisible Hand”: Regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 2011, 12, 493–504. [Google Scholar] [CrossRef]
- Boulter, E.; Garcia-Mata, R. RhoGDI: A Rheostat for the Rho Switch. Small GTPases 2010, 1, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Line Dermardirossian, C.; Bokoch, G.M. GDIs: Central Regulatory Molecules in Rho GTPase Activation. Trends Cell Biol. 2005, 15, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Nunes, K.P.; Rigsby, C.S.; Webb, R.C. RhoA/Rho-Kinase and Vascular Diseases: What Is the Link? Cell Mol. Life Sci. 2010, 67, 3823–3836. [Google Scholar] [CrossRef]
- Bhadriraju, K.; Yang, M.; Alom Ruiz, S.; Pirone, D.; Tan, J.; Chen, C.S. Activation of ROCK by RhoA Is Regulated by Cell Adhesion, Shape, and Cytoskeletal Tension. Exp. Cell Res. 2007, 313, 3616–3623. [Google Scholar] [CrossRef] [PubMed]
- Riento, K.; Ridley, A.J. Rocks: Multifunctional Kinases in Cell Behaviour. Nat. Rev. Mol. Cell Biol. 2003, 4, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; LoGrasso, P.V.; Defert, O.; Li, R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J. Med. Chem. 2015, 59, 2269–2300. [Google Scholar] [CrossRef]
- Kale, V.P.; Hengst, J.A.; Desai, D.H.; Dick, T.E.; Choe, K.N.; Colledge, A.L.; Takahashi, Y.; Sung, S.-S.; Amin, S.G.; Yun, J.K. A Novel Selective Multikinase Inhibitor of ROCK and MRCK Effectively Blocks Cancer Cell Migration and Invasion. Cancer Lett. 2014, 354, 299–310. [Google Scholar] [CrossRef]
- Chang, Y.-W.E.; Bean, R.R.; Jakobi, R. Targeting RhoA/Rho Kinase and P21-Activated Kinase Signaling to Prevent Cancer Development and Progression. Recent Pat. Anti-Cancer Drug Discov. 2009, 4, 110–124. [Google Scholar] [CrossRef]
- Tanaka, R.; Yamada, K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int. J. Mol. Sci. 2023, 24, 15623. [Google Scholar] [CrossRef]
- Liao, J.; Dong, G.; Zhu, W.; Wulaer, B.; Mizoguchi, H.; Sawahata, M.; Liu, Y.; Kaibuchi, K.; Ozaki, N.; Nabeshima, T.; et al. Rho Kinase Inhibitors Ameliorate Cognitive Impairment in a Male Mouse Model of Methamphetamine-Induced Schizophrenia. Pharmacol. Res. 2023, 194, 106838. [Google Scholar] [CrossRef]
- Raman-Nair, J.; Cron, G.; MacLeod, K.; Lacoste, B. Sex Specific Acute Cerebrovascular Responses to Photothrombotic Stroke in Mice. eNeuro 2024, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Luo, X.; Han, H.; Qiu, J.; Ye, Q.; Zhang, L.; Wang, Y. ROCK2 Increases Drug Resistance in Acute Myeloid Leukemia via Metabolic Reprogramming and MAPK/PI3K/AKT Signaling. Int. Immunopharmacol. 2024, 140, 112897. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Guo, Y. Chemerin Enhances Migration and Invasion of OC Cells via CMKLR1/RhoA/ROCK-Mediated EMT. Int. J. Endocrinol. 2024, 2024, 7957018. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; He, Y.; Zhang, Y.; Li, S.; Li, T.; You, F.; Liu, Y. Myosin Regulates Intracellular Force and Guides Collective Cancer Cell Migration via the FAK-Rho/ROCK Feedback Loop. Genes. Dis. 2023, 10, 2199–2201. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Barua, S.; Tripathi, B.N.; Kumar, N. Role of ROCK Signaling in Virus Replication. Virus Res. 2023, 329, 199105. [Google Scholar] [CrossRef]
- Zhao, G.; Ren, Y.; Yan, J.; Zhang, T.; Lu, P.; Lei, J.; Rao, H.; Kang, X.; Cao, Z.; Peng, F.; et al. Neoprzewaquinone A Inhibits Breast Cancer Cell Migration and Promotes Smooth Muscle Relaxation by Targeting PIM1 to Block ROCK2/STAT3 Pathway. Int. J. Mol. Sci. 2023, 24, 5464. [Google Scholar] [CrossRef]
- Tanna, A.P.; Johnson, M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Opthalmology 2018, 125, 1741–1756. [Google Scholar] [CrossRef]
- Moshirfar, M.; Parker, L.; Birdsong, O.C.; Ronquillo, Y.C.; Hofstedt, D.; Shah, T.J.; Gomez, A.T.; Hoopes, P.C.; Moran, J.A. Use of Rho Kinase Inhibitors in Ophthalmology: A Review of the Literature. Med. Hypothesis Discov. Innov. Opthalmol. J. 2018, 7, 101–111. [Google Scholar]
- Arita, R.; Nakao, S.; Kita, T.; Kawahara, S.; Asato, R.; Yoshida, S.; Enaida, H.; Hafezi-Moghadam, A.; Ishibashi, T. A Key Role for ROCK in TNF-α–Mediated Diabetic Microvascular Damage. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2373–2383. [Google Scholar] [CrossRef]
- Nourinia, R.; Nakao, S.; Zandi, S.; Safi, S.; Hafezi-Moghadam, A.; Ahmadieh, H. ROCK Inhibitors for the Treatment of Ocular Diseases. Br. J. Ophthalmol. 2018, 102, 1–5. [Google Scholar] [CrossRef]
- Rothschild, P.R.; Salah, S.; Berdugo, M.; Gélizé, E.; Delaunay, K.; Naud, M.C.; Klein, C.; Moulin, A.; Savoldelli, M.; Bergin, C.; et al. ROCK-1 Mediates Diabetes-Induced Retinal Pigment Epithelial and Endothelial Cell Blebbing: Contribution to Diabetic Retinopathy. Sci. Rep. 2017, 7, 8834. [Google Scholar] [CrossRef] [PubMed]
- Arita, R.; Nakao, S.; Yamaguchi, M.; Isobe, T.; Kaneko, Y.; Ishibashi, T. Therapeutic Potential of Topical ROCK Inhibitor K-115 in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1261. [Google Scholar]
- Lu, Q.Y.; Chen, W.; Lu, L.; Zheng, Z.; Xu, X. Involvement of RhoA/ROCK1 Signaling Pathway in Hyperglycemia-Induced Microvascular Endothelial Dysfunction in Diabetic Retinopathy. Int. J. Clin. Exp. Pathol. 2014, 7, 7268. [Google Scholar] [PubMed]
- Mateos-Olivares, M.; García-Onrubia, L.; Valentín-Bravo, F.J.; González-Sarmiento, R.; Lopez-Galvez, M.; Pastor, J.C.; Usategui-Martín, R.; Pastor-Idoate, S. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021, 10, 1683. [Google Scholar] [CrossRef] [PubMed]
- Hollanders, K.; Van Hove, I.; Sergeys, J.; Van Bergen, T.; Lefevere, E.; Kindt, N.; Castermans, K.; Vandewalle, E.; van Pelt, J.; Moons, L.; et al. AMA0428, A Potent Rock Inhibitor, Attenuates Early and Late Experimental Diabetic Retinopathy. Curr. Eye Res. 2017, 42, 260–272. [Google Scholar] [CrossRef]
- Hsu, C.R.; Chen, Y.H.; Liu, C.P.; Chen, C.H.; Huang, K.K.; Huang, J.W.; Lin, M.N.; Lin, C.L.; Chen, W.R.; Hsu, Y.L.; et al. A Highly Selective Rho-Kinase Inhibitor (ITRI-E-212) Potentially Treats Glaucoma Upon Topical Administration with Low Incidence of Ocular Hyperemia. Investig. Ophthalmol. Vis. Sci. 2019, 60, 624–633. [Google Scholar] [CrossRef]
- Wang, S.K.; Chang, R.T. An Emerging Treatment Option for Glaucoma: Rho Kinase Inhibitors. Clin. Ophthalmol. 2014, 8, 883–890. [Google Scholar] [CrossRef]
- Kaneko, Y.; Ohta, M.; Inoue, T.; Mizuno, K.; Isobe, T.; Tanabe, S.; Tanihara, H. Effects of K-115 (Ripasudil), a Novel ROCK Inhibitor, on Trabecular Meshwork and Schlemm’s Canal Endothelial Cells. Sci. Rep. 2016, 6, 19640. [Google Scholar] [CrossRef]
- Germano, R.A.S.; Finzi, S.; Challa, P.; Susanna Junior, R. Rho Kinase Inhibitors for Glaucoma Treatment-Review. Arq. Bras. Oftalmol. 2015, 78, 388–391. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Dang, Y. Rho-Kinase Inhibitors as Emerging Targets for Glaucoma Therapy. Ophthalmol. Ther. 2023, 12, 2943. [Google Scholar] [CrossRef]
- Pagano, L.; Lee, J.W.; Posarelli, M.; Giannaccare, G.; Kaye, S.; Borgia, A. ROCK Inhibitors in Corneal Diseases and Glaucoma—A Comprehensive Review of These Emerging Drugs. J. Clin. Med. 2023, 12, 6736. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.C.; Chen, Y.H.; Lu, D.W. The Application of Rho Kinase Inhibitors in the Management of Glaucoma. Int. J. Mol. Sci. 2024, 25, 5576. [Google Scholar] [CrossRef] [PubMed]
- Cutler, C.; Lee, S.J.; Arai, S.; Rotta, M.; Zoghi, B.; Lazaryan, A.; Ramakrishnan, A.; DeFilipp, Z.; Salhotra, A.; Chai-Ho, W.; et al. Belumosudil for Chronic Graft-versus-Host Disease after 2 or More Prior Lines of Therapy: The ROCKstar Study. Blood 2021, 138, 2278–2289. [Google Scholar] [CrossRef] [PubMed]
- Dahal, B.K.; Kosanovic, D.; Pamarthi, P.K.; Sydykov, A.; Lai, Y.J.; Kast, R.; Schirok, H.; Stasch, J.P.; Ghofrani, H.A.; Weissmann, N.; et al. Therapeutic Efficacy of Azaindole-1 in Experimental Pulmonary Hypertension. Eur. Respir. J. 2010, 36, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Kadowitz, P.J.; PankeyRyuk, E.A.; Byun, R.J.; Smith, W.B.; Bhartiya, M.; Bueno, F.R.; Badejo, A.M.; Stasch, J.P.; Murthy, S.N.; Nossaman, B.D. The Rho Kinase Inhibitor Azaindole-1 Has Long-Acting Vasodilator Activity in the Pulmonary Vascular Bed of the Intact Chest Rat. Can. J. Physiol. Pharmacol. 2012, 90, 825–835. [Google Scholar] [CrossRef]
- Kast, R.; Schirok, H.; Figueroa-Pérez, S.; Mittendorf, J.; Gnoth, M.J.; Apeler, H.; Lenz, J.; Franz, J.K.; Knorr, A.; Hütter, J.; et al. Cardiovascular Effects of a Novel Potent and Highly Selective Azaindole-Based Inhibitor of Rho-Kinase. Br. J. Pharmacol. 2007, 152, 1070–1080. [Google Scholar] [CrossRef]
- Lasker, G.F.; Pankey, E.A.; Allain, A.V.; Murthy, S.N.; Stasch, J.-P.; Kadowitz, P.J.; Kadowitz, P.J. The Selective Rho-Kinase Inhibitor Azaindole-1 Has Long Lasting Erectile Activity in the Rat. Urology 2013, 81, 465–472. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Tawara, S.; Shimokawa, H. Recent Progress in the Treatment of Pulmonary Arterial Hypertension: Expectation for Rho-Kinase Inhibitors. Tohoku J. Exp. Med. 2007, 211, 309–320. [Google Scholar] [CrossRef]
- Wong, M.J.; Kantores, C.; Ivanovska, J.; Jain, A.; Jankov, R.P. Simvastatin Prevents and Reverses Chronic Pulmonary Hypertension in Newborn Rats via Pleiotropic Inhibition of RhoA Signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, 985–999. [Google Scholar] [CrossRef]
- Förster, T. Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys. 1948, 437, 55–75. [Google Scholar] [CrossRef]
- Piston, D.W.; Kremers, G.-J. Fluorescent Protein FRET: The Good, the Bad and the Ugly. Trends Biochem. Sci. 2007, 32, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Li, S.Y.; Ni, S.; Liu, G. Advances in FRET-Based Biosensors from Donor-Acceptor Design to Applications. Aggregate 2024, 5, e460. [Google Scholar] [CrossRef]
- Fang, C.; Huang, Y.; Zhao, Y. Review of FRET Biosensing and Its Application in Biomolecular Detection. Am. J. Transl. Res. 2023, 15, 694. [Google Scholar] [PubMed]
- Verma, A.K.; Noumani, A.; Yadav, A.K.; Solanki, P.R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics 2023, 13, 1375. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, F.; Yu, Y.; Wang, Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front. Bioeng. Biotechnol. 2020, 8, 595497. [Google Scholar] [CrossRef]
- Imani, M.; Mohajeri, N.; Rastegar, M.; Zarghami, N. Recent Advances in FRET-Based Biosensors for Biomedical Applications. Anal. Biochem. 2021, 630, 114323. [Google Scholar] [CrossRef]
- Rizzo, M.A.; Springer, G.; Segawa, K.; Zipfel, W.R.; Piston, D.W. Optimization of Pairings and Detection Conditions for Measurement of FRET between Cyan and Yellow Fluorescent Proteins. Microsc. Microanal. 2006, 12, 238–254. [Google Scholar] [CrossRef]
- Wouters, F.S.; Bastiaens, P.I.H. Fluorescence Lifetime Imaging of Receptor Tyrosine Kinase Activity in Cells. Curr. Biol. 1999, 9, 1127–1130. [Google Scholar] [CrossRef]
- Markwardt, M.L.; Seckinger, K.M.; Rizzo, M.A. Regulation of Glucokinase by Intracellular Calcium Levels in Pancreatic Beta Cells. J. Biol. Chem. 2016, 291, 3000–3009. [Google Scholar] [CrossRef]
- Mauban, J.R.H.; Fairfax, S.T.; Rizzo, M.A.; Zhang, J.; Wier, W.G. A Method for Noninvasive Longitudinal Measurements of [Ca2+] in Arterioles of Hypertensive Optical Biosensor Mice. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H173–H181. [Google Scholar] [CrossRef]
- Rizzo, M.A.; Piston, D.W. High-Contrast Imaging of Fluorescent Protein FRET by Fluorescence Polarization Microscopy. Biophys. J. 2004, 88, L14–L16. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.L.; Tenner, B.; Markwardt, M.L.; Zviman, A.; Shi, G.; Kerr, J.P.; Snell, N.E.; McFarland, J.J.; Mauban, J.R.; Ward, C.W.; et al. Single-Color, Ratiometric Biosensors for Detecting Signaling Activities in Live Cells. Elife 2018, 7, e35458. [Google Scholar] [CrossRef] [PubMed]
- Snell, N.; Rao, V.; Seckinger, K.; Liang, J.; Leser, J.; Mancini, A.E.; Rizzo, M. Homotransfer FRET Reporters for Live Cell Imaging. Biosensors 2018, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.; Wong, S.; Snell, N.; Zhang, J.; Rizzo, M. Triple Fluorescence Anisotropy Reporter Imaging in Living Cells. Bio Protoc. 2019, 9, ew3226. [Google Scholar] [CrossRef] [PubMed]
- Markwardt, M.L.; Snell, N.E.; Guo, M.; Liu, H.; Shroff, H.; Rizzo, M.A. A Genetically Encoded Biosensor Strategy for Quantifying Non-Muscle Myosin II Phosphorylation Dynamics in Living Cells and Organisms. Cell Rep. 2018, 24, 1060–1070. [Google Scholar] [CrossRef]
- Pertz, O.; Hodgson, L.; Klemke, R.L.; Hahn, K.M. Spatiotemporal Dynamics of RhoA Activity in Migrating Cells. Nature 2006, 440, 1069–1072. [Google Scholar] [CrossRef]
- Hodgson, L.; Spiering, D.; Sabouri-Ghomi, M.; Dagliyan, O.; DerMardirossian, C.; Danuser, G.; Hahn, K.M. FRET Binding Antenna Reports Spatiotemporal Dynamics of GDI-Cdc42 GTPase Interactions. Nat. Chem. Biol. 2016, 12, 802–809. [Google Scholar] [CrossRef]
- Müller, P.M.; Rademacher, J.; Bagshaw, R.D.; Pawson, T. Systems Analysis of RhoGEF and RhoGAP Regulatory Proteins Reveals Spatially Organized RAC1 Signalling from Integrin Adhesions. Nat. Cell Biol. 2020, 22, 498–511. [Google Scholar] [CrossRef]
- Shao, S.; Liao, X.; Xie, F.; Deng, S.; Liu, X.; Ristaniemi, T.; Liu, B. FRET Biosensor Allows Spatio-Temporal Observation of Shear Stress-Induced Polar RhoGDIα Activation. Commun. Biol. 2018, 1, 224. [Google Scholar] [CrossRef]
- Li, C.; Imanishi, A.; Komatsu, N.; Terai, K.; Amano, M.; Kaibuchi, K.; Matsuda, M. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology. Cell Struct. Funct. 2017, 42, 1–13. [Google Scholar] [CrossRef]
- Seckinger, K.M.; Rao, V.P.; Snell, N.E.; Mancini, A.E.; Markwardt, M.L.; Rizzo, M.A. Nitric Oxide Activates Β-Cell Glucokinase by Promoting Formation of the “Glucose-Activated” State. Biochemistry 2018, 57, 5136–5144. [Google Scholar] [CrossRef] [PubMed]
- Thévenaz, P.; Ruttimann, U.E.; Unser, M. A Pyramid Approach to Subpixel Registration Based on Intensity. IEEE Trans. Image Process. 1998, 7, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Jiang, Y.; Toita, R.; Oishi, J.; Kawamura, K.; Han, A.; Mori, T.; Niidome, T.; Ishida, M.; Tatematsu, K.; et al. Phosphorylation of Rho-Associated Kinase (Rho-Kinase/ROCK/ROK) Substrates by Protein Kinases A and C. Biochimie 2007, 89, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Mei-Yee Kiang, K.; Ka-Kit Leung, G. A Review on Adducin from Functional to Pathological Mechanisms: Future Direction in Cancer. BioMed Res. Int. 2018, 2018, 3465929. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Li, X.; Bennett, V. Adducin: Structure, Function and Regulation. CMLS Cell. Mol. Life Sci. 2000, 57, 884–895. [Google Scholar] [CrossRef]
- Kimura, K.; Fukata, Y.; Matsuoka, Y.; Bennett, V.; Matsuura, Y.; Okawa, K.; Iwamatsu, A.; Kaibuchi, K. Regulation of the Association of Adducin with Actin Filaments by Rho-Associated Kinase (Rho-Kinase) and Myosin Phosphatase. J. Biol. Chem. 1998, 273, 5542–5548. [Google Scholar] [CrossRef]
- Matsumura, F.; Hartshorne, D.J. Myosin Phosphatase Target Subunit: Many Roles in Cell Function. Biochem. Biophys. Res. Commun. 2008, 369, 149–156. [Google Scholar] [CrossRef]
- Khasnis, M.; Nakatomi, A.; Gumpper, K.; Eto, M. Reconstituted Human Myosin Light Chain Phosphatase Reveals Distinct Roles of Two Inhibitory Phosphorylation Sites of the Regulatory Subunit, MYPT1. Biochemistry 2014, 53, 2701–2709. [Google Scholar] [CrossRef]
- Kiss, A.; Erdődi, F.; Lontay, B. Myosin Phosphatase: Unexpected Functions of a Long-Known Enzyme. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2019, 1866, 2–15. [Google Scholar] [CrossRef]
- Sipos, A.; Iván, J.; Bécsi, B.; Darula, Z.; Tamás, I.; Horváth, D.; Medzihradszky, K.F.; Erdodi, F.; Lontay, B. Myosin Phosphatase and RhoA-Activated Kinase Modulate Arginine Methylation by the Regulation of Protein Arginine Methyltransferase 5 in Hepatocellular Carcinoma Cells. Sci. Rep. 2017, 7, 40590. [Google Scholar] [CrossRef]
- Ren, X.D.; Kiosses, W.B.; Schwartz, M.A. Regulation of the Small GTP-Binding Protein Rho by Cell Adhesion and the Cytoskeleton. EMBO J. 1999, 18, 578. [Google Scholar] [CrossRef] [PubMed]
- Ellisdon, A.M.; Halls, M.L. Compartmentalization of GPCR Signalling Controls Unique Cellular Responses. Biochem. Soc. Trans. 2016, 44, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Lupashin, V.; Antonescu, C.N.; Liu, A.P. Editorial: Signaling Control by Compartmentalization Along the Endocytic Route. Front. Cell Dev. Biol. 2019, 7, 237. [Google Scholar] [CrossRef]
- Baillie, G.S. Compartmentalized Signalling: Spatial Regulation of CAMP by the Action of Compartmentalized Phosphodiesterases. FEBS J. 2009, 276, 1790–1799. [Google Scholar] [CrossRef]
- Laude, A.J.; Simpson, A.W.M. Compartmentalized Signalling: Ca2+ Compartments, Microdomains and the Many Facets of Ca2+ Signalling. FEBS J. 2009, 276, 1800–1816. [Google Scholar] [CrossRef]
- Rinaldi, L.; Delle Donne, R.; Borzacchiello, D.; Insabato, L.; Feliciello, A. The Role of Compartmentalized Signaling Pathways in the Control of Mitochondrial Activities in Cancer Cells. Biochim. Biophys. Acta (BBA) Rev. Cancer 2018, 1869, 293–302. [Google Scholar] [CrossRef]
- Arora, K.; Sinha, C.; Zhang, W.; Ren, A.; Moon, C.S.; Yarlagadda, S.; Naren, A.P. Compartmentalization of Cyclic Nucleotide Signaling: A Question of When, Where, and Why? Pflugers Arch. 2013, 465, 1397. [Google Scholar] [CrossRef]
- Zhang, K.; Chowdary, P.D.; Cui, B. Visualizing Directional Rab7 and Trka Cotrafficking in Axons by pTIRF Microscopy. Methods Mol. Biol. 2015, 1298, 319–329. [Google Scholar] [CrossRef]
- Tenner, B.; Zhang, J.Z.; Kwon, Y.; Pessino, V.; Feng, S.; Huang, B.; Mehta, S.; Zhang, J. FluoSTEPs: Fluorescent Biosensors for Monitoring Compartmentalized Signaling within Endogenous Microdomains. Sci. Adv. 2021, 7, 4091–4112. [Google Scholar] [CrossRef]
- Krapf, D. Compartmentalization of the Plasma Membrane. Curr. Opin. Cell Biol. 2018, 53, 15–21. [Google Scholar] [CrossRef]
- Bolado-Carrancio, A.; Rukhlenko, O.S.; Nikonova, E.; Tsyganov, M.A.; Wheeler, A.; Garcia-Munoz, A.; Kolch, W.; von Kriegsheim, A.; Kholodenko, B.N. Periodic Propagating Waves Coordinate Rhogtpase Network Dynamics at the Leading and Trailing Edges during Cell Migration. Elife 2020, 9, e58165. [Google Scholar] [CrossRef] [PubMed]
- Basant, A.; Glotzer, M. Spatiotemporal Regulation of RhoA during Cytokinesis. Curr. Biol. 2018, 28, R570–R580. [Google Scholar] [CrossRef] [PubMed]
- Derksen, P.W.B.; Van De Ven, R.A.H. Shared Mechanisms Regulate Spatiotemporal RhoA-Dependent Actomyosin Contractility during Adhesion and Cell Division. Small GTPases 2020, 11, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Ma Van Der Krogt, J.; Je Van Der Meulen, I.; Van Buul, J.D. Spatiotemporal Regulation of Rho GTPase Signaling during Endothelial Barrier Remodeling. Curr. Opin. Physiol. 2023, 34. [Google Scholar] [CrossRef]
- Dedkova, E.N.; Sigova, A.A.; Zinchenko, V.P. Mechanism of Action of Calcium Ionophores on Intact Cells: Ionophore-Resistant Cells. Membr. Cell Biol. 2000, 13, 357–368. [Google Scholar]
- Blaustein, M.P. Intracellular Calcium as a Second Messenger. In Calcium in Biological Systems; Springer: Boston, MA, USA, 1985; pp. 23–33. [Google Scholar]
- Endo, M. Calcium Ion as a Second Messenger with Special Reference to Excitation-Contraction Coupling. J. Pharmacol. Sci. 2006, 100, 519–524. [Google Scholar] [CrossRef]
- Newton, A.C.; Bootman, M.D.; Scott, J.D. Second Messengers. Cold Spring Harb. Perspect. Biol. 2016, 8, a005926. [Google Scholar] [CrossRef]
- Anjum, I. Calcium Sensitization Mechanisms in Detrusor Smooth Muscles. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 227–235. [Google Scholar] [CrossRef]
- Jernigan, N.L.; Resta, T.C. Calcium Homeostasis and Sensitization in Pulmonary Arterial Smooth Muscle. Microcirculation 2014, 21, 259–271. [Google Scholar] [CrossRef]
- Gong, M.C.; Fujihara, H.; Somlyo, A.V.; Somlyo, A.P. Translocation of RhoA Associated with Ca2+ Sensitization of Smooth Muscle. J. Biol. Chem. 1997, 272, 10704–10709. [Google Scholar] [CrossRef]
- Momotani, K.; Artamonov, M.V.; Utepbergenov, D.; Derewenda, U.; Derewenda, Z.S.; Somlyo, A. V P63RhoGEF Couples Gαq/11-Mediated Signaling to Ca2+ Sensitization of Vascular Smooth Muscle Contractility. Circ. Res. 2011, 109, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Uehata, M.; Ishizaki, T.; Satoh, H.; Ono, T.; Kawahara, T.; Morishita, T.; Tamakawa, H.; Yamagami, K.; Inui, J.; Maekawa, M.; et al. Calcium Sensitization of Smooth Muscle Mediated by a Rho-Associated Protein Kinase in Hypertension. Nature 1997, 389, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Kitazawas, T.; Gaylinn, B.D.; Denney, G.H.; Somlyo, A.P. G-Protein-Mediated Ca2+ Sensitization of Smooth Muscle Contraction through Myosin Light Chain Phosphorylation. J. Biol. Chem. 1991, 266, 1708–1715. [Google Scholar] [CrossRef]
- Araki, S.; Ito, M.; Kureishi, Y.; Feng, J.; Machida, H.; Isaka, N.; Amano, M.; Kaibuchi, K.; Hartshorne, D.J.; Nakano, T. Arachidonic Acid-Induced Ca2+ Sensitization of Smooth Muscle Contraction through Activation of Rho-Kinase. Pflugers Arch. 2001, 441, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Behuliak, M.; Bencze, M.; Vaněčková, I.; Kuneš, J.; Zicha, J. Basal and Activated Calcium Sensitization Mediated by Rhoa/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension. BioMed Res. Int. 2017, 2017, 8029728. [Google Scholar] [CrossRef]
- Fujihara, H.; Walker, L.A.; Gong, M.C.; Lemichez, E.; Boquet, P.; Somlyo, A.V.; Somlyo, A.P. Inhibition of RhoA Translocation and Calcium Sensitization by In Vivo ADP-Ribosylation with the Chimeric Toxin DC3B. Mol. Biol. Cell 2017, 8, 2437–2447. [Google Scholar] [CrossRef]
- Zicha, J.; Behuliak, M.; Pintérová, M.; Bencze, M.; Kuneš, J.; Vaněčková, I. The Interaction of Calcium Entry and Calcium Sensitization in the Control of Vascular Tone and Blood Pressure of Normotensive and Hypertensive Rats. Physiol. Res. 2014, 63, 19–27. [Google Scholar] [CrossRef]
- Scherer, E.Q.; Herzog, M.; Wangemann, P. Endothelin-1-Induced Vasospasms of Spiral Modiolar Artery Are Mediated by Rho-Kinase-Induced Ca2+ Sensitization of Contractile Apparatus and Reversed by Calcitonin Gene-Related Peptide. Stroke 2002, 33, 2965–2971. [Google Scholar] [CrossRef]
- Artamonov, M.V.; Momotani, K.; Stevenson, A.; Trentham, D.R.; Derewenda, U.; Derewenda, Z.S.; Read, P.W.; Gutkind, J.S.; Somlyo, A. V Agonist-Induced Ca2+ Sensitization in Smooth Muscle: Redundancy of Rho Guanine Nucleotide Exchange Factors (RhoGEFs) and Response Kinetics, a Caged Compound Study. J. Biol. Chem. 2013, 288, 34030–34040. [Google Scholar] [CrossRef]
- Somlyo, A.P.; Somlyo, A. V Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. Physiol. Rev. 2003, 83, 1325–1358. [Google Scholar] [CrossRef]
- Somlyo, A.P.; Somlyo, A. V Signal Transduction by G-Proteins, Rho-Kinase and Protein Phosphatase to Smooth Muscle and Non-Muscle Myosin II. J. Physiol. 2000, 522, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Giachini, F.R.C.; Tostes, R.C.; Webb, R.C. PYK2/PDZ-RhoGEF Links Ca2+ Signaling to RhoA. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S. Ca2+/Calmodulin/MLCK Pathway Initiates, and RhoA/ROCK Maintains, the Internal Anal Sphincter Smooth Muscle Tone. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G63–G66. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zuo, J.; Pertens, E.; Helli, P.B.; Janssen, L.J. Regulation of Rho/ROCK Signaling in Airway Smooth Muscle by Membrane Potential and [Ca2+]i. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 289, L574–L582. [Google Scholar] [CrossRef] [PubMed]
- Murakoshi, H.; Wang, H.; Yasuda, R. Local, Persistent Activation of Rho GTPases during Plasticity of Single Dendritic Spines. Nature 2011, 472, 100–104. [Google Scholar] [CrossRef]
- Jin, M.; Guan, C.-B.; Jiang, Y.-A.; Chen, G.; Zhao, C.-T.; Cui, K.; Song, Y.-Q.; Wu, C.-P.; Poo, M.-M.; Yuan, X.-B. Ca2+ -Dependent Regulation of Rho GTPases Triggers Turning of Nerve Growth Cones. J. Neurosci. 2005, 25, 2338–2347. [Google Scholar] [CrossRef]
- Masiero, L.; Lapidos, K.A.; Ambudkar, I.; Kohn, E.C. Regulation of the RhoA Pathway in Human Endothelial Cell Spreading on Type IV Collagen: Role of Calcium Influx. J. Cell Sci. 1999, 112, 3205–3213. [Google Scholar] [CrossRef]
- Pardo-Pastor, C.; Rubio-Moscardo, F.; Vogel-González, M.; Serra, S.A.; Afthinos, A.; Mrkonjic, S.; Destaing, O.; Abenza, J.F.; Fernández-Fernández, J.M.; Trepat, X.; et al. Piezo2 Channel Regulates RhoA and Actin Cytoskeleton to Promote Cell Mechanobiological Responses. Proc. Natl. Acad. Sci. USA 2018, 115, 1925–1930. [Google Scholar] [CrossRef]
- Stadler, S.; Nguyen, C.H.; Schachner, H.; Milovanovic, D.; Holzner, S.; Brenner, S.; Eichsteininger, J.; Stadler, M.; Senfter, D.; Krenn, L.; et al. Colon Cancer Cell-Derived 12(S)-HETE Induces the Retraction of Cancer-Associated Fibroblast via MLC2, RHO/ROCK and Ca2+ Signalling. Cell. Mol. Life Sci. 2017, 74, 1907–1921. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Y.; Wang, Z.; Zhou, J.; Jia, Y.; He, X.; Zhao, L.; Dong, Y.; Fan, Y.; Yang, X.; et al. Calcium and TRPV4 Promote Metastasis by Regulating Cytoskeleton through the RhoA/ROCK1 Pathway in Endometrial Cancer. Cell Death Dis. 2020, 11, 1009. [Google Scholar] [CrossRef]
- Byron, K.L.; Babnigg, G.; VillerealS, M.L. Bradykinin-induced Ca2+ entry, release, and refilling of intracellular Ca2+ stores. Relationships revealed by image analysis of individual human fibroblasts. J. Biol. Chem. 1992, 267, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.J.; Jacob, R. Ionomycin Enhances Ca2+ Influx by Stimulating Store-Regulated Cation Entry and Not by a Direct Action at the Plasma Membrane. Biochem. J. 1994, 300, 665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z.; Nguyen, A.H.; Miyamoto, S.; Brown, J.H.; McCulloch, A.D.; Zhang, J. Histamine-Induced Biphasic Activation of RhoA Allows for Persistent RhoA Signaling. PLoS Biol. 2020, 18, e3000866. [Google Scholar] [CrossRef] [PubMed]
- Miroshnikova, Y.A.; Manet, S.; Li, X.; Wickström, S.A.; Faurobert, E.; Albigès-Rizo, C. Calcium Signaling Mediates a Biphasic Mechanoadaptive Response of Endothelial Cells to Cyclic Mechanical Stretch. Mol. Biol. Cell 2021, 32, 1724–1736. [Google Scholar] [CrossRef] [PubMed]
- Prakriya, M.; Lewis, R.S. Store-Operated Calcium Channels. Physiol. Rev. 2015, 95, 1383–1436. [Google Scholar] [CrossRef] [PubMed]
- Positive and Negative Regulation of Depletion-Activated Calcium Channels by Calcium. PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/8809948/ (accessed on 9 May 2024).
- Doubell, A.F.; Thibault, G. Calcium Is Involved in Both Positive and Negative Modulation of the Secretory System for ANP. Am. J. Physiol. Heart Circ. Physiol. 1994, 266, 1854–1863. [Google Scholar] [CrossRef]
- Means, A.R.; Dedman, J.R. Calmodulin—An Intracellular Calcium Receptor. Nature 1980, 285, 73–77. [Google Scholar] [CrossRef]
- Berchtold, M.W.; Villalobo, A. The Many Faces of Calmodulin in Cell Proliferation, Programmed Cell Death, Autophagy, and Cancer. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2014, 1843, 398–435. [Google Scholar] [CrossRef]
- Hoeflich, K.P.; Ikura, M. Calmodulin in Action: Diversity in Target Recognition and Activation Mechanisms. Cell 2002, 108, 739–742. [Google Scholar] [CrossRef]
- Rostas, J.A.P.; Skelding, K.A. Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells 2023, 12, 401. [Google Scholar] [CrossRef]
- Junho, C.V.C.; Caio-Silva, W.; Trentin-Sonoda, M.; Carneiro-Ramos, M.S. An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Front. Physiol. 2020, 11, 543341. [Google Scholar] [CrossRef] [PubMed]
- Ulrich Bayer, K.; Schulman, H. Review CaM Kinase: Still Inspiring at 40. Neuron 2019, 103, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, S.; Takuwa, N.; Sugimoto, N.; Wang, Y.; Seto, M.; Sasaki, Y.; Takuwa, Y. Ca2+-Dependent Activation of Rho and Rho Kinase in Membrane Depolarization-Induced and Receptor Stimulation-Induced Vascular Smooth Muscle Contraction. Circ. Res. 2003, 93, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Yamamoto, T.S.; Ueno, N. Intracellular Calcium Signal at the Leading Edge Regulates Mesodermal Sheet Migration during Xenopus Gastrulation. Sci. Rep. 2018, 8, 2433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Liu, B.; Hong, I.; Mo, A.; Roth, R.H.; Tenner, B.; Lin, W.; Zhang, J.Z.; Molina, R.S.; Drobizhev, M.; et al. An Ultrasensitive Biosensor for High-Resolution Kinase Activity Imaging in Awake Mice. Nat. Chem. Biol. 2020, 17, 39–46. [Google Scholar] [CrossRef]
- Benink, H.A.; Bement, W.M. Concentric Zones of Active RhoA and Cdc42 around Single Cell Wounds. J. Cell Biol. 2005, 168, 429–439. [Google Scholar] [CrossRef]
- Owen, D.M.; Sauer, M.; Gaus, K. Fluorescence Localization Microscopy: The Transition from Concept to Biological Research Tool. Commun. Integr. Biol. 2012, 5, 345. [Google Scholar] [CrossRef]
- Dai, F.; Xie, M.; Wang, Y.; Zhang, L.; Zhang, Z.; Lu, X. Synergistic Effect Improves the Response of Active Sites to Target Variations for Picomolar Detection of Silver Ions. Anal. Chem. 2022, 94, 10462–10469. [Google Scholar] [CrossRef]
- Lian, M.; Shi, F.; Cao, Q.; Wang, C.; Li, N.; Li, X.; Zhang, X.; Chen, D. Paper-Based Colorimetric Sensor Using Bimetallic Nickel-Cobalt Selenides Nanozyme with Artificial Neural Network-Assisted for Detection of H2O2 on Smartphone. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 311, 124038. [Google Scholar] [CrossRef]
- Hellweg, L.; Edenhofer, A.; Barck, L.; Huppertz, M.-C.; Frei, M.S.; Tarnawski, M.; Bergner, A.; Koch, B.; Johnsson, K.; Hiblot, J. A General Method for the Development of Multicolor Biosensors with Large Dynamic Ranges. Nat. Chem. Biol. 2023, 19, 1147–1157. [Google Scholar] [CrossRef]
- Miyawaki, A.; Llopis, J.; Heim, R.; Mccaffery, J.M.; Adams, J.A.; Ikurak, M.; Tsien, R.Y. Fluorescent Indicators for Ca2+ Based on Green Fluorescent Proteins and Calmodulin. Nature 1997, 388, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.D.; Ehrhardt, A.G.; Cellurale, C.; Zhong, H.; Yasuda, R.; Davis, R.J.; Svoboda, K.; Designed, K.S.; Performed, C.C. A Genetically Encoded Fluorescent Sensor of ERK Activity. Proc. Natl. Acad. Sci. USA 2008, 105, 19264–19269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, Y.; Taylor, S.S.; Tsien, R.Y. Genetically Encoded Reporters of Protein Kinase a Activity Reveal Impact of Substrate Tethering. Proc. Natl. Acad. Sci. USA 2001, 98, 14997–15002. [Google Scholar] [CrossRef] [PubMed]
- Violin, J.D.; Zhang, J.; Tsien, R.Y.; Newton, A.C. A Genetically Encoded Fluorescent Reporter Reveals Oscillatory Phosphorylation by Protein Kinase C. J. Cell Biol. 2003, 161, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Takahashi, Y.; Schroeder, J.I. Protein Kinase Sensors: An Overview of New Designs for Visualizing Kinase Dynamics in Single Plant Cells. Plant Physiol. 2021, 187, 527. [Google Scholar] [CrossRef]
- Lin, W.; Mehta, S.; Zhang, J. Genetically Encoded Fluorescent Biosensors Illuminate Kinase Signaling in Cancer. J. Biol. Chem. 2019, 294, 14814. [Google Scholar] [CrossRef]
- Fathi, N.; Saadati, A.; Alimohammadi, M.; Abolhassani, H.; Sharifi, S.; Rezaei, N.; Hasanzadeh, M. Biosensors for the Detection of Protein Kinases: Recent Progress and Challenges. Microchem. J. 2022, 182, 107961. [Google Scholar] [CrossRef]
- Frei, M.S.; Zhang, J. Chemigenetic Kinase Biosensors for Multiplexed Activity Sensing and Super-Resolution Imaging. Biophys. J. 2023, 122, 156a. [Google Scholar] [CrossRef]
- Morris, M.C. Shining Light on Protein Kinase Biomarkers with Fluorescent Peptide Biosensors. Life 2022, 12, 516. [Google Scholar] [CrossRef]
- Hastie, J.; Mclauchlan, H.J.; Cohen, P. Assay of Protein Kinases Using Radiolabeled ATP: A Protocol. Nat. Protoc. 2006, 1, 968–971. [Google Scholar] [CrossRef]
- Jia, Y.; Quinn, C.M.; Kwak, S.; Talanian, R.V. Current In Vitro Kinase Assay Technologies: The Quest for a Universal Format. Curr. Drug Discov. Technol. 2008, 5, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.I.; Bechtel, T.J.; Reddy, D.R.; Hankore, E.D.; Beck, J.R.; Stains, C.I. A Real-Time, Fluorescence-Based Assay for Rho-Associated Protein Kinase Activity. Anal. Chim. Acta 2015, 891, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.Y.; Liao, J.K. A Method for Measuring Rho Kinase Activity in Tissues and Cells. Methods Enzymol. 2008, 439, 181. [Google Scholar] [CrossRef] [PubMed]
- Pietraszewska-Bogiel, A.; Gadella, T.W.J. FRET Microscopy: From Principle to Routine Technology in Cell Biology. J. Microsc. 2011, 241, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Zhang, J. Reporting from the Field: Genetically Encoded Fluorescent Reporters Uncover Signaling Dynamics in Living Biological Systems. Annu. Rev. Biochem. 2011, 80, 375–401. [Google Scholar] [CrossRef]
- Parnell, E.; Koschinski, A.; Zaccolo, M.; Cameron, R.T.; Baillie, G.S.; Baillie, G.L.; Porter, A.; McElroy, S.P.; Yarwood, S.J. Phosphorylation of Ezrin on Thr567 Is Required for the Synergistic Activation of Cell Spreading by EPAC1 and Protein Kinase A in HEK293T Cells. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2015, 1853, 1749–1758. [Google Scholar] [CrossRef]
- Tabrizi, M.E.A.; Gupta, J.K.; Gross, S.R. Ezrin and Its Phosphorylated Thr567 Form Are Key Regulators of Human Extravillous Trophoblast Motility and Invasion. Cells 2023, 12, 711. [Google Scholar] [CrossRef]
- Amano, M.; Nakayama, M.; Kaibuchi, K. Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity. Cytoskeleton 2010, 67, 545–554. [Google Scholar] [CrossRef]
- Mehta, S.; Zhang, J. Biochemical Activity Architectures Visualized-Using Genetically Encoded Fluorescent Biosensors to Map the Spatial Boundaries of Signaling Compartments. Acc. Chem. Res. 2021, 54, 2409–2420. [Google Scholar] [CrossRef]
- Mo, G.C.H.; Ross, B.; Hertel, F.; Manna, P.; Yang, X.; Greenwald, E.; Booth, C.; Plummer, A.M.; Tenner, B.; Chen, Z.; et al. Genetically Encoded Biosensors for Visualizing Live-Cell Biochemical Activity at Super-Resolution. Nat. Methods 2017, 14, 427–434. [Google Scholar] [CrossRef]
- DiPilato, L.M.; Zhang, J. Fluorescent Protein-Based Biosensors: Resolving Spatiotemporal Dynamics of Signaling. Curr. Opin. Chem. Biol. 2010, 14, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Luo, Z.; Xu, X.; Yang, S.; Qing, Z.; Liu, J.; Yang, R. Photoactivatable Fluorescent Probes for Spatiotemporal-Controlled Biosensing and Imaging. TrAC Trends Anal. Chem. 2020, 125, 115811. [Google Scholar] [CrossRef]
- Greenwald, E.C.; Mehta, S.; Zhang, J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118, 11707–11794. [Google Scholar] [CrossRef] [PubMed]
- Machacek, M.; Hodgson, L.; Welch, C.; Elliott, H.; Pertz, O.; Nalbant, P.; Abell, A.; Johnson, G.L.; Hahn, K.M.; Danuser, G. Coordination of Rho GTPase Activities during Cell Protrusion. Nature 2009, 461, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova, D.M.; Cox Cammer, N.; Huisman, T.M.; Verkhusha, V.V.; Hodgson, L. Direct Multiplex Imaging and Optogenetics of Rho GTPases Enabled by Near-Infrared FRET. Nat. Chem. Biol. 2018, 14, 591–600. [Google Scholar] [CrossRef]
- Cheung, B.C.H.; Hodgson, L.; Segall, J.E.; Wu, M. Spatial and Temporal Dynamics of RhoA Activities of Single Breast Tumor Cells in a 3D Environment Revealed by a Machine Learning-Assisted FRET Technique. Exp. Cell Res. 2022, 410, 112939. [Google Scholar] [CrossRef]
- Paterson, H.E.; Self, A.J.; Garrett, M.D.; Just, I.; Aktories, K.; Hall, A. Microinjection of Recombinant P21rho Induces Rapid Changes in Cell Morphology. J. Cell Biol. 1990, 111, 1001–1007. [Google Scholar] [CrossRef]
- Cavanaugh, K.E.; Staddon, M.F.; Munro, E.; Banerjee, S.; Gardel, M.L. RhoA Mediates Epithelial Cell Shape Changes via Mechanosensitive Endocytosis. Dev. Cell 2020, 52, 152–166. [Google Scholar] [CrossRef]
- McBeath, R.; Pirone, D.M.; Nelson, C.M.; Bhadriraju, K.; Chen, C.S. Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Dev. Cell 2004, 6, 483–495. [Google Scholar] [CrossRef]
- Yoshioka, K.; Sugimoto, N.; Takuwa, N.; Takuwa, Y. Essential Role for Class II Phosphoinositide 3-Kinase α-Isoform in Ca2+ -Induced, Rho-and Rho Kinase-Dependent Regulation of Myosin Phosphatase and Contraction in Isolated Vascular Smooth Muscle Cells. Mol. Pharmacol. 2007, 71, 912–920. [Google Scholar] [CrossRef]
- Fukata, Y.; Kaibuchi, K.; Amano, M. Rho–Rho-Kinase Pathway in Smooth Muscle Contraction and Cytoskeletal Reorganization of Non-Muscle Cells. Trends Pharmacol. Sci. 2001, 22, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Aida, K.; Mita, M.; Ishii-Nozawa, R. Difference in Contractile Mechanisms between the Early and Sustained Components of Ionomycin-Induced Contraction in Rat Caudal Arterial Smooth Muscle. Biol. Pharm. Bull. 2024, 47, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Blanton, R.; Wang, G.-R.; Judson, T.J.; Abe, Y.; Myoishi, M.; Karas, R.H.; Mendelsohn, M.E. Direct Binding and Regulation of RhoA Protein by Cyclic GMP-Dependent Protein Kinase Iα. J. Biol. Chem. 2012, 287, 41342–41351. [Google Scholar] [CrossRef] [PubMed]
- Bootman, M.D.; Bultynck, G. Fundamentals of Cellular Calcium Signaling: A Primer. Cold Spring Harb. Perspect. Biol. 2020, 12, a038802. [Google Scholar] [CrossRef] [PubMed]
- Samtleben, S.; Jaepel, J.; Fecher, C.; Andreska, T.; Rehberg, M.; Blum, R. Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED). J. Vis. Exp. 2013, e50317. [Google Scholar] [CrossRef]
- Ashot Kozak, J.; Putney, J.W. Calcium Entry Channels in Non-Excitable Cells; Ashot Kozak, J., Putney, J.W., Eichberg, J., Zhu, M.X., Eds.; CRC Press: Boco Raton, FL, USA, 2017. [Google Scholar]
- La Rovere, R.M.L.; Roest, G.; Bultynck, G.; Parys, J.B. Intracellular Ca2+ Signaling and Ca2+ Microdomains in the Control of Cell Survival, Apoptosis and Autophagy. Cell Calcium 2016, 60, 74–87. [Google Scholar] [CrossRef]
- Singh, I.; Knezevic, N.; Ahmmed, G.U.; Kini, V.; Malik, A.B.; Mehta, D. Galphaq-TRPC6-Mediated Ca2+ Entry Induces RhoA Activation and Resultant Endothelial Cell Shape Change in Response to Thrombin. J. Biol. Chem. 2007, 282, 7833–7843. [Google Scholar] [CrossRef]
- Wang, Y.; Yoshioka, K.; Azam, M.A.; Takuwa, N.; Sakurada, S.; Kayaba, Y.; Sugimoto, N.; Inoki, I.; Kimura, T.; Kuwaki, T.; et al. Class II Phosphoinositide 3-Kinase α-Isoform Regulates Rho, Myosin Phosphatase and Contraction in Vascular Smooth Muscle. Biochem. J. 2006, 394, 581–592. [Google Scholar] [CrossRef]
- Herring, B.E.; Nicoll, R.A. Kalirin and Trio Proteins Serve Critical Roles in Excitatory Synaptic Transmission and LTP. Proc. Natl. Acad. Sci. USA 2016, 113, 2264–2269. [Google Scholar] [CrossRef]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Pontano Vaites, L.; Harper, J.W.; Gygi, S.P.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; et al. Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome. Cell 2021, 184, 3022–3040. [Google Scholar] [CrossRef]
- Funahashi, Y.; Ahammad, R.U.; Zhang, X.; Hossen, E.; Kawatani, M.; Nakamuta, S.; Yoshimi, A.; Wu, M.; Wang, H.; Wu, M.; et al. Signal Flow in the NMDA Receptor–Dependent Phosphoproteome Regulates Postsynaptic Plasticity for Aversive Learning. Sci. Signal 2024, 17, 9852. [Google Scholar] [CrossRef] [PubMed]
- Okabe, T.; Nakamura, T.; Nishimura, Y.N.; Kohu, K.; Ohwada, S.; Morishita, Y.; Akiyama, T. RICS, a Novel GTPase-Activating Protein for Cdc42 and Rac1, Is Involved in the Beta-Catenin-N-Cadherin and N-Methyl-D-Aspartate Receptor Signaling. J. Biol. Chem. 2003, 278, 9920–9927. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, S.; Chumki, S.A.; Stephenson, R.E.; Misterovich, E.R.; Wu, J.L.; Dudley, C.E.; Erofeev, I.S.; Goryachev, A.B.; Miller, A.L. Mechanosensitive Calcium Flashes Promote Sustained RhoA Activation during Tight Junction Remodeling. J. Cell Biol. 2022, 221, e202105107. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, A.E.; Rizzo, M.A. A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK. Sensors 2024, 24, 6869. https://doi.org/10.3390/s24216869
Mancini AE, Rizzo MA. A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK. Sensors. 2024; 24(21):6869. https://doi.org/10.3390/s24216869
Chicago/Turabian StyleMancini, Allison E., and Megan A. Rizzo. 2024. "A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK" Sensors 24, no. 21: 6869. https://doi.org/10.3390/s24216869
APA StyleMancini, A. E., & Rizzo, M. A. (2024). A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK. Sensors, 24(21), 6869. https://doi.org/10.3390/s24216869