A Review of Visual Estimation Research on Live Pig Weight
Abstract
:1. Introduction
2. Estimating Pig Weight Using Computer Vision
3. Live Pig Weight Estimation Based on Image
3.1. Image-Based Body Dimension Measurement
3.2. Weight Estimating Based on Image Body Dimension Parameters
3.3. Estimating Body Dimensions and Weight Using Binocular Stereoscopic Vision
4. Estimating Live Pig Weight Based on Point Cloud Data
4.1. Measuring Live Pig Dimensions Using Point Clouds
4.2. Estimating Live Pig Weight Based on Point Clouds
5. Methods of Estimating Live Pig Weight
5.1. Estimating Live Pig Weight Using Traditional Methods
5.2. Deep Learning-Based Weight Estimation
6. Discussion
6.1. Current Main Challenges
6.2. Future Development Trends
6.3. Feasibility Analysis of Single-Image 3D Reconstruction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghotbaldini, H.; Mohammadabadi, M.; Nezamabadi-pour, H.; Babenko, O.I.; Bushtruk, M.V.; Tkachenko, S.V. Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. Acta Scientiarum. Anim. Sci. 2019, 41, e45282. [Google Scholar]
- Hong, J.-K.; Kim, K.-H.; Hwang, H.-S.; Lee, J.-K.; Eom, T.-K.; Rhim, S.-J. Behaviors and body weight of suckling piglets in different social environments. Asian-Australas. J. Anim. Sci. 2017, 30, 902. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; König, S. Genetic parameters for body weight from birth to calving and associations between weights with test-day, health, and female fertility traits. J. Dairy Sci. 2018, 101, 2158–2170. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M.; Yik, S. Precision livestock farming in swine welfare: A review for swine practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Stygar, A.H.; Kristensen, A.R. Monitoring growth in finishers by weighing selected groups of pigs–a dynamic approach. J. Anim. Sci. 2016, 94, 1255–1266. [Google Scholar] [CrossRef]
- Dohmen, R.; Catal, C.; Liu, Q. Computer vision-based weight estimation of livestock: A systematic literature review. N. Z. J. Agric. Res. 2022, 65, 227–247. [Google Scholar] [CrossRef]
- Lee, J.; Jin, L.; Park, D.; Chung, Y. Automatic recognition of aggressive behavior in pigs using a kinect depth sensor. Sensors 2016, 16, 631. [Google Scholar] [CrossRef]
- Franchi, G.A.; Bus, J.D.; Boumans, I.J.; Bokkers, E.A.; Jensen, M.B.; Pedersen, L.J. Estimating body weight in conventional growing pigs using a depth camera. Smart Agric. Technol. 2023, 3, 100117. [Google Scholar] [CrossRef]
- Kwon, K.; Mun, D. Iterative offset-based method for reconstructing a mesh model from the point cloud of a pig. Comput. Electron. Agric. 2022, 198, 106996. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, H.; Lou, T. Dual attention-guided feature pyramid network for instance segmentation of group pigs. Comput. Electron. Agric. 2021, 186, 106140. [Google Scholar] [CrossRef]
- Ochoa Zaragoza, L.E. Evaluation of the Accuracy of Simple Body Measurements for Live Weight Prediction in Growing-Finishing Pigs. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2010. [Google Scholar]
- Wang, Y.; Yang, W.; Winter, P.; Walker, L. Walk-through weighing of pigs using machine vision and an artificial neural network. Biosyst. Eng. 2008, 100, 117–125. [Google Scholar] [CrossRef]
- Yin, M.; Ma, R.; Luo, H.; Li, J.; Zhao, Q.; Zhang, M. Non-contact sensing technology enables precision livestock farming in smart farms. Comput. Electron. Agric. 2023, 212, 108171. [Google Scholar] [CrossRef]
- Rohan, A.; Rafaq, M.S.; Hasan, M.J.; Asghar, F.; Bashir, A.K.; Dottorini, T. Application of deep learning for livestock behaviour recognition: A systematic literature review. Comput. Electron. Agric. 2024, 224, 109115. [Google Scholar] [CrossRef]
- Li, J.; Green-Miller, A.R.; Hu, X.; Lucic, A.; Mohan, M.M.; Dilger, R.N.; Condotta, I.C.; Aldridge, B.; Hart, J.M.; Ahuja, N. Barriers to computer vision applications in pig production facilities. Comput. Electron. Agric. 2022, 200, 107227. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, Y.; Orsini, C.; Bolhuis, J.E.; de Vlieg, J.; Bijma, P.; de With, P.H. Enhanced camera-based individual pig detection and tracking for smart pig farms. Comput. Electron. Agric. 2023, 211, 108009. [Google Scholar] [CrossRef]
- Taylor, C.; Guy, J.; Bacardit, J. Prediction of growth in grower-finisher pigs using recurrent neural networks. Biosyst. Eng. 2022, 220, 114–134. [Google Scholar] [CrossRef]
- Ma, W.; Qi, X.; Sun, Y.; Gao, R.; Ding, L.; Wang, R.; Peng, C.; Zhang, J.; Wu, J.; Xu, Z. Computer Vision-Based Measurement Techniques for Livestock Body Dimension and Weight: A Review. Agriculture 2024, 14, 306. [Google Scholar] [CrossRef]
- Ma, W.; Sun, Y.; Qi, X.; Xue, X.; Chang, K.; Xu, Z.; Li, M.; Wang, R.; Meng, R.; Li, Q. Computer-Vision-Based Sensing Technologies for Livestock Body Dimension Measurement: A Survey. Sensors 2024, 24, 1504. [Google Scholar] [CrossRef]
- Panda, S.; Gaur, G.K.; Chauhan, A.; Kar, J.; Mehrotra, A. Accurate assessment of body weights using morphometric measurements in Landlly pigs. Trop. Anim. Health Prod. 2021, 53, 362. [Google Scholar] [CrossRef]
- Machebe, N.; Ezekwe, A. Predicting body weight of growing-finishing gilts raised in the tropics using linear body measurements. Asian J. Exp. Biol. Sci. 2010, 1, 162–165. [Google Scholar]
- Banik, S.; Naskar, S.; Pankaj, P.; Sahoo, N.; Tamuli, M.; Das, A. Effect of different body measurements on body weight in Ghungroo pigs. Indian J. Anim. Sci. 2012, 82, 1094. [Google Scholar] [CrossRef]
- Oluwole, O.; Tiamiyu, A.; Olorungbounmi, T.; Oladele-Bukola, M.; Akintoye, N. Pre-weaning growth traits in Nigerian indigenous pig crossbreds. Agric. Sci. 2014, 5, 49301. [Google Scholar] [CrossRef]
- Al Ard Khanji, M.S.; Llorente, C.; Falceto, M.V.; Bonastre, C.; Mitjana, O.; Tejedor, M.T. Using body measurements to estimate body weight in gilts. Can. J. Anim. Sci. 2018, 98, 362–367. [Google Scholar] [CrossRef]
- Bhoj, S.; Tarafdar, A.; Chauhan, A.; Singh, M.; Gaur, G.K. Image processing strategies for pig liveweight measurement: Updates and challenges. Comput. Electron. Agric. 2022, 193, 106693. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, Q.; Li, J.; Tian, K.; Yang, L.; Shan, P.; Lv, X.; Li, L.; Zhan, Z. Review on image-based animals weight weighing. Comput. Electron. Agric. 2023, 215, 108456. [Google Scholar] [CrossRef]
- Schofield, C. Evaluation of image analysis as a means of estimating the weight of pigs. J. Agric. Eng. Res. 1990, 47, 287–296. [Google Scholar] [CrossRef]
- Du, X.; Li, X.; Fan, S. A review of the methods of pig body size measurement and body weight estimation. Chin. J. Anim. Sci. 2023, 59, 41–46. [Google Scholar]
- Whittemore, C.; Schofield, C. A case for size and shape scaling for understanding nutrient use in breeding sows and growing pigs. Livest. Prod. Sci. 2000, 65, 203–208. [Google Scholar] [CrossRef]
- White, R.; Schofield, C.; Green, D.; Parsons, D.; Whittemore, C. The effectiveness of a visual image analysis (VIA) system for monitoring the performance of growing/finishing pigs. Anim. Sci. 2004, 78, 409–418. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, W.; Huo, G. An image fusion algorithm of infrared thermal and optical images for pig contour. Trans. Chin. Soc. Agric. Eng. 2013, 29, 113–120. [Google Scholar]
- Banhazi, T.; Tscharke, M.; Ferdous, W.; Saunders, C.; Lee, S. Using image analysis and statistical modelling to achieve improved pig weight predictions. In Society for Engineering in Agriculture (Australia); Engineers Australia Brisbane: Brisbane City, QLD, Australia, 2009; pp. 69–79. [Google Scholar]
- Zhang, A.L.N.; Wu, B.P.; Jiang, C.X.H.; Xuan, D.C.Z.; Ma, E.Y.H.; Zhang, F.Y.A. Development and validation of a visual image analysis for monitoring the body size of sheep. J. Appl. Anim. Res. 2018, 46, 1004–1015. [Google Scholar] [CrossRef]
- Li, Z.; Mao, T.; Liu, T.; Teng, G. Comparison and optimization of pig mass estimation models based on machine vision. Trans. Chin. Soc. Agric. Eng. 2015, 31, 155–161. [Google Scholar]
- Liu, T. Study of Pig’s Body Size Parameter Extraction Algorithm Optimization and Three-Dimensional Reconstruction Based-on Binocular Stereo Vision. Master’s Thesis, China Agricultural University, Beijing, China, 2014. [Google Scholar]
- Schofield, C.; Marchant, J.; White, R.; Brandl, N.; Wilson, M. Monitoring pig growth using a prototype imaging system. J. Agric. Eng. Res. 1999, 72, 205–210. [Google Scholar] [CrossRef]
- Minagawa, H.; Murakami, T. A hands-off method to estimate pig weight by light projection and image analysis. In The Livestock Environment VI, Proceedings of the 6th International Symposium, Louisville, KY, USA 21–23 May 2001; American Society of Agricultural Engineers: Louisville, KY, USA, 2001. [Google Scholar]
- Doeschl-Wilson, A.; Whittemore, C.; Knap, P.; Schofield, C. Using visual image analysis to describe pig growth in terms of size and shape. Anim. Sci. 2004, 79, 415–427. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Winter, P.; Walker, L. Non-contact sensing of hog weights by machine vision. Appl. Eng. Agric. 2006, 22, 577–582. [Google Scholar] [CrossRef]
- Yang Yan, Y.Y.; Teng GuangHui, T.G.; Li BaoMing, L.B.; Shi ZhengXiang, S.Z. Measurement of pig weight based on computer vision. Trans. Chin. Soc. Agric. Eng. 2006, 22, 127–131. [Google Scholar]
- Wang, Y.; Yang, W.; Walker, L.T.; Rababah, T.M. Enhancing the accuracy of area extraction in machine vision-based pig weighing through edge detection. Int. J. Agric. Biol. Eng. 2008, 1, 37–42. [Google Scholar]
- Kaewtapee, C.; Rakangtong, C.; Bunchasak, C. Pig weight estimation using image processing and artificial neural networks. J. Adv. Agric. Technol. 2019, 6, 253–256. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Z.; Gu, Y. Weight Estimation of Sows Based on Machine Vision. Electron. Technol. Softw. Eng. 2020, 10, 100–101. [Google Scholar]
- Banhazi, T.; Tscharke, M.; Ferdous, W.; Saunders, C.; Lee, S. Improved image analysis based system to reliably predict the live weight of pigs on farm: Preliminary results. Aust. J. Multi-Discip. Eng. 2011, 8, 107–119. [Google Scholar] [CrossRef]
- Thapar, G.; Biswas, T.K.; Bhushan, B.; Naskar, S.; Kumar, A.; Dandapat, P.; Rokhade, J. Accurate estimation of body weight of pigs through smartphone image measurement app. Smart Agric. Technol. 2023, 4, 100194. [Google Scholar] [CrossRef]
- Cunha, A.C.R.; Antunes, R.C.; da Costa, W.G.; Rebouças, G.F.; Leite, C.D.S.; do Carmo, A.S. Body weight prediction in crossbred pigs from digital images using computer vision. Livest. Sci. 2024, 282, 105433. [Google Scholar] [CrossRef]
- Wan, S.; Fang, H.; Wang, X. Monocular Visual Pig Weight Estimation Method Based on the EfficientVit-C Model. Agriculture 2024, 14, 1571. [Google Scholar] [CrossRef]
- Yin, L.; Zhu, J.; Liu, C.; Tian, X.; Zhang, S. Point cloud-based pig body size measurement featured by standard and non-standard postures. Comput. Electron. Agric. 2022, 199, 107135. [Google Scholar] [CrossRef]
- Teng, G.; Shen, Z.; Zhang, J.; Shi, C.; Yu, J. Non-contact sow body condition scoring method based on Kinect sensor. Trans. Chin. Soc. Agric. Mach. 2018, 34, 211–217. [Google Scholar]
- Si, Y.; Lulu, A.; Gang, L.; Baocheng, L. Ideal Posture Detection and Body Size Measurement of Pig Based on Kinect. Trans. Chin. Soc. Agric. Mach. 2019, 50, 58–65. [Google Scholar]
- Shi, C.; Zhang, J.; Teng, G. Mobile measuring system based on LabVIEW for pig body components estimation in a large-scale farm. Comput. Electron. Agric. 2019, 156, 399–405. [Google Scholar] [CrossRef]
- Guangshun, X.; Zhiyong, L.; Zhiyi, Z. Acquisition of point clouds of cattle in complex situation based on binocular stereo vision. Comput. Eng. Des. 2015, 36, 1390–1395. [Google Scholar]
- Shuai, S.; Ling, Y.; Shihao, L.; Haojie, Z.; Xuhong, T.; Caixing, L.; Aidong, S.; Hanxing, L. Research on 3D surface reconstruction and body size measurement of pigs based on multi-view RGB-D cameras. Comput. Electron. Agric. 2020, 175, 105543. [Google Scholar] [CrossRef]
- Martins, B.; Mendes, A.; Silva, L.; Moreira, T.; Costa, J.; Rotta, P.; Chizzotti, M.; Marcondes, M. Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements. Livest. Sci. 2020, 236, 104054. [Google Scholar] [CrossRef]
- Wang, Y.; Mücher, S.; Wang, W.; Guo, L.; Kooistra, L. A review of three-dimensional computer vision used in precision livestock farming for cattle growth management. Comput. Electron. Agric. 2023, 206, 107687. [Google Scholar] [CrossRef]
- Chang, K.; Ma, W.; Xu, X.; Qi, X.; Xue, X.; Xu, Z.; Li, M.; Guo, Y.; Meng, R.; Li, Q. A Point Cloud Segmentation Method for Pigs from Complex Point Cloud Environments Based on the Improved PointNet++. Agriculture 2024, 14, 720. [Google Scholar] [CrossRef]
- Wang, K.; Guo, H.; Liu, W.; Ma, Q.; Su, W.; Zhu, D. Extraction method of pig body size measurement points based on rotation normalization of point cloud. Trans. Chin. Soc. Agric. Eng. 2017, 33, 253–259. [Google Scholar]
- Ke, W.; Hao, G.; Qin, M. Pig body size measurement method based on mirror reflection of single angle point cloud. Trans. Chin. Soc. Agric. Mach. 2018, 49, 187–195. [Google Scholar]
- Yin, L.; Cai, G.; Tian, X.; Sun, A.; Shi, S.; Zhong, H.; Liang, S. Three dimensional point cloud reconstruction and body size measurement of pigs based on multi-view depth camera. Trans. Chin. Soc. Agric. Eng. 2019, 35, 201–208. [Google Scholar]
- Guo, H.; Ma, Q.; Zhang, S. Prototype System for Animal Body Dimension Acquisition Based on 3D Reconstruction. Trans. Chin. Soc. Agric. Mach. 2014, 45, 227–232. [Google Scholar]
- Qin, H. Research of Three Dimensional Measuring Device Based on Dual Kinect Camera. Master’s Thesis, Changchun University of Technology, Changchun, China, 2020. [Google Scholar]
- Guo, H.; Ma, X.; Ma, Q.; Wang, K.; Su, W.; Zhu, D. LSSA_CAU: An interactive 3d point clouds analysis software for body measurement of livestock with similar forms of cows or pigs. Comput. Electron. Agric. 2017, 138, 60–68. [Google Scholar] [CrossRef]
- Hao, H.; Jincheng, Y.; Ling, Y.; Gengyuan, C.; Sumin, Z.; Huan, Z. An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size. Comput. Electron. Agric. 2023, 205, 107560. [Google Scholar] [CrossRef]
- Wang, K.; Guo, H.; Ma, Q.; Su, W.; Chen, L.; Zhu, D.; Chen, L. A portable and automatic Xtion-based measurement system for pig body size. Comput. Electron. Agric. 2018, 148, 291–298. [Google Scholar] [CrossRef]
- Menesatti, P.; Costa, C.; Antonucci, F.; Steri, R.; Pallottino, F.; Catillo, G. A low-cost stereovision system to estimate size and weight of live sheep. Comput. Electron. Agric. 2014, 103, 33–38. [Google Scholar] [CrossRef]
- Salau, J.; Haas, J.H.; Junge, W.; Bauer, U.; Harms, J.; Bieletzki, S. Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns. SpringerPlus 2014, 3, 225. [Google Scholar] [CrossRef] [PubMed]
- Salau, J.; Haas, J.H.; Junge, W.; Thaller, G. Extrinsic calibration of a multi-Kinect camera scanning passage for measuring functional traits in dairy cows. Biosyst. Eng. 2016, 151, 409–424. [Google Scholar] [CrossRef]
- Du, A.; Guo, H.; Lu, J.; Su, Y.; Ma, Q.; Ruchay, A.; Marinello, F.; Pezzuolo, A. Automatic livestock body measurement based on keypoint detection with multiple depth cameras. Comput. Electron. Agric. 2022, 198, 107059. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; Gao, Z.; Guo, H.; Su, Y. Automated measurement of livestock body based on pose normalisation using statistical shape model. Biosyst. Eng. 2023, 227, 36–51. [Google Scholar] [CrossRef]
- Lei, K.; Tang, X.; Li, X.; Lu, Q.; Long, T.; Zhang, X.; Xiong, B. Research and Preliminary Evaluation of Key Technologies for 3D Reconstruction of Pig Bodies Based on 3D Point Clouds. Agriculture 2024, 14, 793. [Google Scholar] [CrossRef]
- Condotta, I.C.; Brown-Brandl, T.M.; Silva-Miranda, K.O.; Stinn, J.P. Evaluation of a depth sensor for mass estimation of growing and finishing pigs. Biosyst. Eng. 2018, 173, 11–18. [Google Scholar] [CrossRef]
- Cang, Y.; He, H.; Qiao, Y. An intelligent pig weights estimate method based on deep learning in sow stall environments. IEEE Access 2019, 7, 164867–164875. [Google Scholar] [CrossRef]
- He, H.; Qiao, Y.; Li, X.; Chen, C.; Zhang, X. Automatic weight measurement of pigs based on 3D images and regression network. Comput. Electron. Agric. 2021, 187, 106299. [Google Scholar] [CrossRef]
- Fernandes, A.F.A.; Dórea, J.R.; Fitzgerald, R.; Herring, W.; Rosa, G.J. A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision. J. Anim. Sci. 2019, 97, 496. [Google Scholar] [CrossRef]
- Li, G.; Liu, X.; Ma, Y.; Wang, B.; Zheng, L.; Wang, M. Body size measurement and live body weight estimation for pigs based on back surface point clouds. Biosyst. Eng. 2022, 218, 10–22. [Google Scholar] [CrossRef]
- Na, M.H.; Cho, W.H.; Kim, S.K.; Na, I.S. The Development of a Weight Prediction System for Pigs Using Raspberry Pi. Agriculture 2023, 13, 2027. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Holt, J.P.; Knauer, M.T.; Abner, V.A.; Lobaton, E.J.; Young, S.N. Towards rapid weight assessment of finishing pigs using a handheld, mobile RGB-D camera. Biosyst. Eng. 2023, 226, 155–168. [Google Scholar] [CrossRef]
- Kwon, K.; Park, A.; Lee, H.; Mun, D. Deep learning-based weight estimation using a fast-reconstructed mesh model from the point cloud of a pig. Comput. Electron. Agric. 2023, 210, 107903. [Google Scholar] [CrossRef]
- Selle, M.; Kircher, M.; Dorsch, U.; Berres, M.; Schwennen, C.; Hölscher, R.; Visscher, C.; Jung, K. An accessible and intuitive approach to 3D data modeling for morphometric surface evaluation in pig farming. Comput. Electron. Agric. 2024, 225, 109327. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic weight estimation of individual pigs using image analysis. Comput. Electron. Agric. 2014, 107, 38–44. [Google Scholar] [CrossRef]
- Shi, C.; Teng, G.; Li, Z. An approach of pig weight estimation using binocular stereo system based on LabVIEW. Comput. Electron. Agric. 2016, 129, 37–43. [Google Scholar] [CrossRef]
- Sungirai, M.; Masaka, L.; Benhura, T.M. Validity of weight estimation models in pigs reared under different management conditions. Vet. Med. Int. 2014, 2014, 530469. [Google Scholar] [CrossRef]
- Alenyorege, B.; Addy, F.; Abgolosu, A. Linear body measurements as predictors of live weight of the large white pig in Northern Ghana. Ghanian J. Anim. Sci. 2013, 7, 99–105. [Google Scholar]
- Szyndler-Nędza, M.; Eckert, R.; Blicharski, T.; Tyra, M.; Prokowski, A. Prediction of carcass meat percentage in young pigs using linear regression models and artificial neural networks. Ann. Anim. Sci. 2016, 16, 275–286. [Google Scholar] [CrossRef]
- Wongsriworaphon, A.; Arnonkijpanich, B.; Pathumnakul, S. An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Comput. Electron. Agric. 2015, 115, 26–33. [Google Scholar] [CrossRef]
- Jun, K.; Kim, S.J.; Ji, H.W. Estimating pig weights from images without constraint on posture and illumination. Comput. Electron. Agric. 2018, 153, 169–176. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; González, L.A.; Marinello, F. On-barn Pig Weight Estimation Based on Body Measurements by a Kinect v1 Depth Camera. Comput. Electron. Agric. 2018, 148, 29–36. [Google Scholar] [CrossRef]
- Ruchay, A.; Gritsenko, S.; Ermolova, E.; Bochkarev, A.; Ermolov, S.; Guo, H.; Pezzuolo, A. A Comparative Study of Machine Learning Methods for Predicting Live Weight of Duroc, Landrace, and Yorkshire Pigs. Animals 2022, 12, 1152. [Google Scholar] [CrossRef] [PubMed]
- Preethi, A.L.; Tarafdar, A.; Ahmad, S.F.; Panda, S.; Tamilarasan, K.; Ruchay, A.; Gaur, G.K. Weight Prediction of Landlly Pigs from Morphometric Traits in Different Age Classes Using ANN and Non-Linear Regression Models. Agriculture 2023, 13, 362. [Google Scholar] [CrossRef]
- Tu, G.J.; Jørgensen, E. Vision analysis and prediction for estimation of pig weight in slaughter pens. Expert Syst. Appl. 2023, 220, 119684. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, G.; Shen, Z.; Zhong, P.; Tan, J.; Liu, J. Pig Weight Estimation Method Based on a Framework Combining Mask R-CNN and Ensemble Regression Model. Animals 2024, 14, 2122. [Google Scholar] [CrossRef]
- Lin, J.; Chen, H.; Wu, R.; Wang, X.; Liu, X.; Wang, H.; Wu, Z.; Cai, G.; Yin, L.; Lin, R.; et al. Calculating Volume of Pig Point Cloud Based on Improved Poisson Reconstruction. Animals 2024, 14, 1210. [Google Scholar] [CrossRef]
- Meckbach, C.; Tiesmeyer, V.; Traulsen, I. A Promising Approach towards Precise Animal Weight Monitoring Using Convolutional Neural Networks. Comput. Electron. Agric. 2021, 183, 106056. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, Y.; Ji, H.; Teng, G. Pig Weight and Body Size Estimation Using a Multiple Output Regression Convolutional Neural Network: A Fast and Fully Automatic Method. Sensors 2021, 21, 3218. [Google Scholar] [CrossRef]
- He, W.; Mi, Y.; Ding, X.; Liu, G.; Li, T. Two-stream cross-attention vision Transformer based on RGB-D images for pig weight estimation. Comput. Electron. Agric. 2023, 212, 107986. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Y.; Huang, H.; Huang, Q.; Gu, W.; Liang, H. Live pig-weight learning and prediction method based on a multilayer RBF network. Agriculture 2023, 13, 253. [Google Scholar] [CrossRef]
- Liu, Z.; Hua, J.; Xue, H.; Tian, H.; Chen, Y.; Liu, H. Body weight estimation for pigs based on 3d hybrid filter and convolutional neural network. Sensors 2023, 23, 7730. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Liu, J.; Xiao, D.; Liu, Y.; Huang, Y. Dual-stream fusion network with ConvNeXtV2 for pig weight estimation using RGB-D data in aisles. Animals 2023, 13, 3755. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, D.; Liu, Y.; Huang, Y. A pig mass estimation model based on deep learning without constraint. Animals 2023, 13, 1376. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, J.; Bian, Y.; Wang, T.; Xue, H.; Liu, L. Estimation of weight and body measurement model for pigs based on back point cloud data. Animals 2024, 14, 1046. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Cang, Y.; Lou, X.; Xiao, H.; Xu, X.; Li, X.; Zhou, W. A novel approach based on a modified mask R-CNN for the weight prediction of live pigs. Artif. Intell. Agric. 2024, 12, 19–28. [Google Scholar] [CrossRef]
- Paudel, S.; de Sousa, R.V.; Sharma, S.R.; Brown-Brandl, T. Deep learning models to predict finishing pig weight using point clouds. Animals 2024, 14, 31. [Google Scholar] [CrossRef]
- Mengyuan, C.; Gang, L.; Yongsheng, S.; Fan, F. Predicting Method of Dairy Cow Weight Based on Three-dimensional Re-construction. Trans. Chin. Soc. Agric. Mach. 2020, 51, 378–384. [Google Scholar]
- Mengyuan, C.; Yongsheng, S.; Qian, L.; Gang, L. Research advances in the automatic measurement technology for livestock body size. Trans. Chin. Soc. Agric. Mach. 2022, 38, 228–240. [Google Scholar]
- Hong, Y.; Zhang, K.; Gu, J.; Bi, S.; Zhou, Y.; Liu, D.; Liu, F.; Sunkavalli, K.; Bui, T.; Tan, H. Lrm: Large reconstruction model for single image to 3d. arXiv 2023, arXiv:2311.04400. [Google Scholar]
- Wang, Z.; Wang, Y.; Chen, Y.; Xiang, C.; Chen, S.; Yu, D.; Li, C.; Su, H.; Zhu, J. Crm: Single image to 3d textured mesh with convolutional reconstruction model. arXiv 2024, arXiv:2403.05034. [Google Scholar]
- Hu, K.; Ying, W.; Pan, Y.; Kang, H.; Chen, C. High-fidelity 3D reconstruction of plants using Neural Radiance Fields. Comput. Electron. Agric. 2024, 220, 108848. [Google Scholar] [CrossRef]
- Lei, Z.; Wei, J.; Boyan, S.; Mingtang, C.; Saiju, L.; Yimin, D. Three-dimensional Reconstruction and Phenotype Parameters Acquisition of Seeding Vegetables Based on Neural Radiance Fields. Trans. Chin. Soc. Agric. Mach. 2024, 55, 4. [Google Scholar]
Number of Pigs | Days | Weight Estimation Methods | Weight Estimation Parameters | R2 | References | Year |
---|---|---|---|---|---|---|
279 | 42–48 | Multiple linear regression | Body length, chest girth, etc. | 0.93–0.96 | Panda [20] | 2021 |
56 | — | Multiple linear regression | Chest girth, body length, etc. | 0.955 | Machebe and Ezekwe [21] | 2010 |
264 | 15–56 | Path analysis | Front leg height, body length, etc. | 0.7359 | Banik [22] | 2012 |
47 | 1–49 | Multiple linear regression | Body height, heart girth, etc. | 0.86 | Oluwole [23] | 2014 |
193 | 110–230 | Multiple linear regression | Body length, heart girth, etc. | 0.903 | Al Ard Khanji [24] | 2018 |
Research | Progress | Technical Approach | Challenge | References (Year) |
---|---|---|---|---|
Pig welfare in precision animal husbandry | Precision animal husbandry techniques in pig welfare monitoring and enhancement | Machine learning, sensors | Cost of technology, data privacy, accuracy of remote monitoring, etc. | Benjamin [4] (2019) |
Deep learning applications for livestock behavior recognition | Deep learning in recognizing livestock behavior | Deep learning, behavioral recognition | Data imbalance, complex farming environments, etc. | Rohan [14] (2024) |
Precision management of livestock | Techniques for non-contact acquisition of livestock phenotypic data | 3D reconstruction techniques, body size acquisition techniques | Lack of accurate 3D reconstruction models, inefficient point cloud acquisition methods, etc. | Ma [18] (2024) |
Livestock body measurements | Advances in body measurements of domestic animals | Depth cameras, 2D cameras, deep learning | High cost of equipment, large volume of data, etc. | Ma [19] (2024) |
Pig weight measurement | Developments and challenges in non-contact pig weight estimation techniques | Image processing, machine learning | Pig movement, ceiling height, low lighting intensity, etc. | Bhoj [25] (2022) |
Animal weight measurement | Comparing the development of different animal weighing techniques | Traditional image weighing, deep learning weighing, feature parameter extraction methods | Data quality, model generalization capabilities, real-time performance, etc. | Zhao [26] (2023) |
Weight | Body Length | Body Width | Body Height | Chest Girth | Chest Depth | Abdominal Length | |
---|---|---|---|---|---|---|---|
Weight | 1 | 0.750 | 0.683 | 0.788 | 0.926 | 0.728 | 0.328 |
Body length | — | 1 | 0.398 | 0.632 | 0.715 | 0.653 | 0.442 |
Body width | — | — | 1 | 0.486 | 0.683 | 0.423 | 0.131 |
Body height | — | — | — | 1 | 0.773 | 0.733 | 0.176 |
Chest girth | — | — | — | — | 1 | 0.699 | 0.225 |
Chest depth | — | — | — | — | — | 1 | 0.222 |
Abdominal length | — | — | — | — | — | — | 1 |
Number of Pigs | Number of Cameras | Camera Angle | Effect of Light | Weight Estimation Parameters | Weight Estimation Methods | Error | References (Year) |
---|---|---|---|---|---|---|---|
15 | 1 | Aerial view | Manual screening | Projection area | Linear regression | 5% | Schofield (1999) [36] |
12 | 1 | Aerial view | Adding an external light source | Projection area, height | Multiple linear regression | 0.8% | Minagawa (2001) [37] |
25 | 1 | Aerial view | — | Body length, body width, body area | Multiple linear regression | 1.34 kg | Doeschl (2004) [38] |
24 | 1 | Aerial view | — | Projection area, body length | Multiple linear regression | 4.1% | Wang (2006) [39] |
50 | 2 | Side view and aerial view | Histogram equilibrium | Projection area | Linear regression | 2.8% | Yang (2005) [40] |
24 | 1 | Aerial view | Edge detection | Projection area | Nonlinear regression | 4.1% | Wang (2008) [41] |
88 | 1 | Aerial view | — | Chest girth, body length | ANN | 6.243% | Kaewtapee (2019) [42] |
150 | 2 | Side view and aerial view | — | Body length, height, etc. | Multiple linear regression | 3.4% | Wu (2020) [43] |
35 | 1 | Aerial view | Image enhancement | Body length, body width, etc. | Multiple linear regression | 1.18 kg | Banhazi (2011) [44] |
265 | 3 | Aerial view and side view | — | Body length, projection area, etc. | Nonlinear regression | — | Gaganpreet (2023) [45] |
52 | 1 | Aerial view | — | Body length, chest girth, back area | Multiple linear regression | 2.39 kg | Cunha (2024) [46] |
800 | 1 | Aerial view | — | Back area | Deep learning | 3.11 kg | Wan (2024) [47] |
Number of Pigs | Days | Number of Cameras | Camera Angle | Parameters | Error | References (Year) |
---|---|---|---|---|---|---|
25 | — | 3 | Side view and aerial view | Body length, body width, etc. | <4% | Yin (2022) [48] |
4 | 147–154 | 1 | — | Body length, body width, hip width, etc. | <16 mm | Wang (2017) [57] |
10 | 141–149 | 1 | Askew view | Height, chest girth, abdominal circumference, etc. | <8% | Wang (2018) [58] |
25 | — | 3 | Side view and aerial view | Body length, chest width, etc. | <5% | Yin (2019) [59] |
— | — | 2 | Side view | Body length, shoulder width, hip width, etc. | <4% | Guo (2014) [60] |
— | — | 2 | Side view | Body length, body width, hip height, etc. | <4% | Qin (2020) [61] |
10 | 130–220 | — | — | Body length, chest girth, shoulder height, etc. | <8% | Guo (2017) [62] |
25 | — | 3 | Side view and aerial view | Body length, body width, etc. | <6% | Hu (2023) [63] |
20 | 175–224 | 2 | Adjustable | Body width, hip width height, etc. | <11% | Wang (2018) [64] |
13 | — | 3 | Side view and aerial view | Chest girth, body length, etc. | <21 cm | Du (2022) [68] |
13 | — | 3 | Side view and aerial view | Body length, chest girth, chest depth, etc. | <11 cm | Luo (2023) [69] |
10 | — | 5 | Side view and aerial view | Body length, chest girth, etc. | <5% | Lei (2024) [70] |
Number of Pigs | Number of Cameras | Camera Angle | Weight Estimation Parameters | Weight Estimation Methods | MAE/kg | RMSE/kg | R2 | References (Year) |
---|---|---|---|---|---|---|---|---|
251 | 1 | Aerial view | Body length, rib width, etc. | Nonlinear regression | — | 1.8 | 0.98 | Franchi (2023) [8] |
234 | 1 | Aerial view | Volume projection | Linear regression | — | — | 0.9907 | Condotta (2018) [71] |
20 | 1 | Aerial view | — | Deep learning | 0.644 | — | — | Cang (2019) [72] |
29 | 1 | Aerial view | — | Deep learning | 6.366 | — | — | He (2021) [73] |
655 | 1 | Aerial view | Projection area, volume projection, etc. | Multiple linear regression | — | — | 0.86 | Arthur (2019) [74] |
50 | 1 | Aerial view | Body length, height, shoulder width, etc. | Multiple linear regression | 2.9617 | 2.616 | 0.958 | Li (2022) [75] |
15 | 1 | — | Body length, chest girth, HOG feature | Multiple linear regression | — | 10.702 | — | Na (2023) [76] |
733 | 1 | Handhold | Body length, body width, chest girth | Nonlinear regression | 9.25 | 12.3 | — | Nguyen (2023) [77] |
70 | 4 | Side view and aerial view | Body width, height, round, etc. | Deep learning | 4.89 | 8.6899 | 0.9532 | Kwon (2023) [78] |
582 | 1 | Aerial view | Volume projection | Linear regression | 2.84 | — | — | Selle (2024) [79] |
Number of Pigs | Image Acquisition Equipment | Camera Angle | Weight Estimation Parameters | Weight Estimation Methods | R2 | References (Year) |
---|---|---|---|---|---|---|
40 | Visible light camera | Aerial view | Projection area | Linear regression | 0.9663 | Kashiha (2014) [80] |
10 | Binocular camera | Aerial view | Body length, shoulder height, etc. | Linear regression | 0.99 | Shi (2016) [81] |
358 | — | — | Body length, chest girth etc. | Linear regression | 0.89 | Sungirai (2014) [82] |
— | — | — | Body length, chest girth | Linear regression | 0.93 | Alenyoregue (2013) [83] |
183 | — | — | Body length, chest girth, etc. | Linear regression | 0.90 | Al Ard Khanji (2016) [24] |
61 | Visible light camera | Aerial view | Projection area, round, etc. | Linear regression | 0.9925 | Wang (2008) [12] |
73 | Visible light camera | Aerial view | Mean distance between centers of mass, round, etc. | Nonlinear regression | — | Wongsriworaphon (2015) [85] |
513 | Depth camera | Aerial view | Curvature, misalignment, etc. | Nonlinear regression | 0.790 | Jun (2018) [86] |
78 | Depth camera | Side view and aerial view | Body length, chest girth, etc. | Multiple linear regression | 0.9942 | Pezzuolo (2018) [87] |
23 | Depth camera | Side view and aerial view | Body length, body width, etc. | Multiple linear regression | — | Kwon (2022) [9] |
340 | — | — | Body length, chest girth, shoulder height, etc. | Multiple linear regression | — | Ruchay (2022) [88] |
279 | — | — | Body length, chest girth, etc. | Multiple linear regression | 0.9131 | Preethi (2023) [89] |
18 | Visible light camera | Aerial view | Back area | Linear regression | 0.99 | Tu (2023) [90] |
39 | Depth camera | Aerial view | Back area, body length, etc. | Multiple linear regression | 0.995 | Jiang (2024) [91] |
479 | Depth camera | Side view and aerial view | Point cloud volume | Linear regression | 0.921 | Lin (2024) [92] |
Image Acquisition Equipment | Weight Estimation Methods | Number of Pigs | MAE/kg | RMSE/kg | MAPE/% | R2 | References (Year) |
---|---|---|---|---|---|---|---|
Depth camera | Deep learning | 400 | — | 3.8 | 3.9 | 0.397 | Meckbach (2021) [93] |
Depth camera | Deep learning | 239 | 1.16 | 1.53 | 1.99 | 0.9973 | Zhang (2021) [94] |
Depth camera | Deep learning | — | 3.237 | 5.993 | 4.082 | 0.742 | He (2023) [95] |
Depth camera | Deep learning | 4721 | 1.85 | 5.74 | 1.68 | 0.63 | Chen (2023) [96] |
Depth camera | Deep learning | — | 12.45 | 12.91 | 5.36 | — | Liu (2023) [97] |
Depth camera | Deep learning | 198 | 2.856 | 4.082 | 2.383 | 0.901 | Tan (2023) [98] |
Binocular camera | Deep learning | 117 | — | 3.52 | 2.82 | — | Liu (2023) [99] |
Depth camera | Deep learning | 258 | 11.81 | 11.552 | 4.81 | — | Liu (2024) [100] |
Depth camera | Deep learning | 132 | 2.96 | 3.95 | 8.45 | 0.987 | Xie (2024) [101] |
Depth camera | Deep learning | 249 | — | 6.88 | — | 0.94 | Paudel (2024) [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, Q.; Yu, Q.; Qian, W.; Gao, R.; Wang, R.; Wu, T.; Li, X. A Review of Visual Estimation Research on Live Pig Weight. Sensors 2024, 24, 7093. https://doi.org/10.3390/s24217093
Wang Z, Li Q, Yu Q, Qian W, Gao R, Wang R, Wu T, Li X. A Review of Visual Estimation Research on Live Pig Weight. Sensors. 2024; 24(21):7093. https://doi.org/10.3390/s24217093
Chicago/Turabian StyleWang, Zhaoyang, Qifeng Li, Qinyang Yu, Wentai Qian, Ronghua Gao, Rong Wang, Tonghui Wu, and Xuwen Li. 2024. "A Review of Visual Estimation Research on Live Pig Weight" Sensors 24, no. 21: 7093. https://doi.org/10.3390/s24217093
APA StyleWang, Z., Li, Q., Yu, Q., Qian, W., Gao, R., Wang, R., Wu, T., & Li, X. (2024). A Review of Visual Estimation Research on Live Pig Weight. Sensors, 24(21), 7093. https://doi.org/10.3390/s24217093