A Stride Toward Wine Yield Estimation from Images: Metrological Validation of Grape Berry Number, Radius, and Volume Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Used Datasets
2.3. Camera Calibration
2.4. Model Validation
2.4.1. Visible Berry Counting Validation
2.4.2. Berry Radius Estimation Validation
2.4.3. Volume Estimation Validation
- is the radius in metric coordinates of a berry in the bunch that was manually measured using a caliber;
- is the radius in pixels of a berry present in an image that was manually measured from the image;
- represents the volume of the bunch b in , considering only the berries visible in the image. This is approximated as ;
- represents the volume of the bunch b in , considering only the berries visible in the image. This is approximated as , where represents the number of berries in the image;
- defines the volume of the bunch b in . It is approximated as . Here, M represents the total number of berries in the bunch, and is the radius of the mth berry.
2.5. Uncertainty Evaluation for Volume Estimation
3. Results and Discussion
3.1. Model Validation
3.2. Uncertainty Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- Sun, M.; Huang, S.; Lu, Z.; Wang, M.; Zhang, S.; Yang, K.; Tang, B.; Yang, W.; Huang, C. A novel method for intelligent analysis of rice yield traits based on LED transmission imaging and cloud computing. Meas. J. Int. Meas. Confed. 2023, 217, 113017. [Google Scholar] [CrossRef]
- Barriguinha, A.; de Castro Neto, M.; Gil, A. Vineyard Yield Estimation, Prediction, and Forecasting: A Systematic Literature Review. Agronomy 2021, 11, 1789. [Google Scholar] [CrossRef]
- Komm, B.; Moyer, M. Vineyard Yield Estimation; Washington State University Extension: Pullman, WA, USA, 2015. [Google Scholar]
- Nuske, S.; Achar, S.; Bates, T.; Narasimhan, S.; Singh, S. Yield estimation in vineyards by visual grape detection. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2352–2358. [Google Scholar] [CrossRef]
- Lanza, B.; Nuzzi, C.; Botturi, D.; Pasinetti, S. First Step Towards Embedded Vision System for Pruning Wood Estimation. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 757–762. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, CA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 7 October 2024).
- Marani, R.; Milella, A.; Petitti, A.; Reina, G. Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera. Precis. Agric. 2021, 22, 387–413. [Google Scholar] [CrossRef]
- Cecotti, H.; Rivera, A.; Farhadloo, M.; Pedroza, M.A. Grape detection with convolutional neural networks. Expert Syst. Appl. 2020, 159, 113588. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, A.; Liu, J.; Faheem, M. A Comparative Study of Semantic Segmentation Models for Identification of Grape with Different Varieties. Agriculture 2021, 11, 997. [Google Scholar] [CrossRef]
- Luo, L.; Liu, W.; Lu, Q.; Wang, J.; Wen, W.; Yan, D.; Tang, Y. Grape Berry Detection and Size Measurement Based on Edge Image Processing and Geometric Morphology. Machines 2021, 9, 233. [Google Scholar] [CrossRef]
- Zabawa, L.; Kicherer, A.; Klingbeil, L.; Töpfer, R.; Kuhlmann, H.; Roscher, R. Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS J. Photogramm. Remote. Sens. 2020, 164, 73–83. [Google Scholar] [CrossRef]
- Botturi, D.; Gnutti, A.; Nuzzi, C.; Lanza, B.; Pasinetti, S. STEWIE: eSTimating grapE Berries Number and Radius From Images Using a Weakly supervIsed nEural Network. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 277–282. [Google Scholar] [CrossRef]
- Thiago, S.; de Souza, L.; dos Santos, A.; Avila, S. Embrapa Wine Grape Instance Segmentation Dataset—Embrapa WGISD, 2019. Public Dataset on Zenodo. Available online: https://doi.org/10.5281/zenodo.3361736 (accessed on 15 April 2022).
- Deng, G.; Geng, T.; He, C.; Wang, X.; He, B.; Duan, L. TSGYE: Two-Stage Grape Yield Estimation. In Neural Information Processing; Yang, H., Pasupa, K., Leung, A.C.S., Kwok, J.T., Chan, J.H., King, I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 580–588. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Heikkila, J.; Silven, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 1106–1112. [Google Scholar] [CrossRef]
- MATLAB, Version 9.3.0.713579 (R2017b); The Mathworks, Inc.: Natick, MA, USA, 2017.
- Bouguet, J.Y. Camera Calibration Toolbox for Matlab. 2022. Available online: https://data.caltech.edu/records/jx9cx-fdh55 (accessed on 23 October 2022).
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM 100:2008; Joint Committee for Guides in Metrology: Sèvres, France, 2008. [Google Scholar]
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Guide to the Expression of Uncertainty in Measurement—Part 6: Developing and Using Measurement Models; JCGM GUM-6:2020; Joint Committee for Guides in Metrology: Sèvres, France, 2020. [Google Scholar]
Bunch ID | ||||||||
---|---|---|---|---|---|---|---|---|
Bunch_01 | 47 | 30 | 28 | 26 | mm | 25 px | 23 px | 21 px |
Bunch_02 | 52 | 37 | 32 | 41 | mm | 21 px | 21 px | 19 px |
Bunch_03 | 36 | 21 | 25 | 24 | mm | 24 px | 23 px | 19 px |
Bunch_04 | 39 | 23 | 23 | 21 | mm | 25 px | 22 px | 19 px |
Bunch_05 | 55 | 31 | 31 | 27 | mm | 24 px | 23 px | 22 px |
Bunch_06 | 51 | 32 | 35 | 29 | mm | 23 px | 22 px | 25 px |
Bunch_07 | 63 | 33 | 39 | 34 | mm | 22 px | 21 px | 22 px |
Bunch_08 | 52 | 30 | 34 | 29 | mm | 22 px | 21 px | 21 px |
Bunch_09 | 76 | 41 | 43 | 48 | mm | 20 px | 20 px | 19 px |
Bunch_10 | 40 | 29 | 24 | 24 | mm | 22 px | 21 px | 20 px |
Bunch ID | |||
---|---|---|---|
Bunch_01 | |||
Bunch_02 | |||
Bunch_03 | |||
Bunch_04 | |||
Bunch_05 | |||
Bunch_06 | |||
Bunch_07 | |||
Bunch_08 | |||
Bunch_09 | |||
Bunch_10 |
Variety | Dataset Used | |||||
---|---|---|---|---|---|---|
Chardonnay | Validation | 13 | ||||
Cabernet Franc | Validation | 22 | ||||
Cabernet Sauvignon | Validation | 14 | ||||
Sauvignon Blanc | Validation | 15 | ||||
Syrah | Validation | 11 | ||||
Flame | Test | 30 |
Variables | Uncertainty | Definition and Reason of Uncertainty | UPC |
---|---|---|---|
d | 25 mm | Uncertainty set considering the vine thickness and the eventual cluster misplacement that could modify the default value of d. | |
f | 2 px | Uncertainty depends on the quality of the images and of the pattern used for the camera calibration procedure. | |
R | Uncertainty set as the standard deviation of the values that were averaged to compute R (e.g., the ratios between the visible and the total volume of the bunches for each photo). | ||
Uncertainty set as the RMSE between the estimated pixel volumes for each Image I in the test dataset, , and their corresponding reference volume . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, B.; Botturi, D.; Gnutti, A.; Lancini, M.; Nuzzi, C.; Pasinetti, S. A Stride Toward Wine Yield Estimation from Images: Metrological Validation of Grape Berry Number, Radius, and Volume Estimation. Sensors 2024, 24, 7305. https://doi.org/10.3390/s24227305
Lanza B, Botturi D, Gnutti A, Lancini M, Nuzzi C, Pasinetti S. A Stride Toward Wine Yield Estimation from Images: Metrological Validation of Grape Berry Number, Radius, and Volume Estimation. Sensors. 2024; 24(22):7305. https://doi.org/10.3390/s24227305
Chicago/Turabian StyleLanza, Bernardo, Davide Botturi, Alessandro Gnutti, Matteo Lancini, Cristina Nuzzi, and Simone Pasinetti. 2024. "A Stride Toward Wine Yield Estimation from Images: Metrological Validation of Grape Berry Number, Radius, and Volume Estimation" Sensors 24, no. 22: 7305. https://doi.org/10.3390/s24227305
APA StyleLanza, B., Botturi, D., Gnutti, A., Lancini, M., Nuzzi, C., & Pasinetti, S. (2024). A Stride Toward Wine Yield Estimation from Images: Metrological Validation of Grape Berry Number, Radius, and Volume Estimation. Sensors, 24(22), 7305. https://doi.org/10.3390/s24227305