Measurement Properties of Wearable Kinematic-Based Data Collection Systems to Evaluate Ball Kicking in Soccer: A Systematic Review with Evidence Gap Map †
Abstract
:1. Introduction
2. Methods
2.1. Database Searches
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Data Extraction
2.4. Methodological Quality and Risk of Bias Assessments
2.5. Evidence Synthesis
3. Results
3.1. Characteristics of the Included Studies
3.2. Measurement Properties
3.3. Methodological Quality and Risk of Bias in the Included Studies
3.4. Summary of Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palucci Vieira, L.H.; Santiago, P.R.P.; Pinto, A.; Aquino, R.; Torres, R.d.S.; Barbieri, F.A. Automatic Markerless Motion Detector Method against Traditional Digitisation for 3-Dimensional Movement Kinematic Analysis of Ball Kicking in Soccer Field Context. Int. J. Environ. Res. Public Health 2022, 19, 1179. [Google Scholar] [CrossRef] [PubMed]
- Wixted, A.J.; Billing, D.; James, D.A. Validation of Trunk Mounted Inertial Sensors for Analysing Running Biomechanics under Field Conditions, Using Synchronously Collected Foot Contact Data. Sports Eng. 2010, 12, 207–212. [Google Scholar] [CrossRef]
- Palucci Vieira, L.H.; Santinelli, F.B.; Carling, C.; Kellis, E.; Santiago, P.R.P.; Barbieri, F.A. Acute Effects of Warm-Up, Exercise and Recovery-Related Strategies on Assessments of Soccer Kicking Performance: A Critical and Systematic Review. Sports Med. 2021, 51, 661–705. [Google Scholar] [CrossRef] [PubMed]
- Ré, A.H.N.; Cattuzzo, T.M.; Santos, F.M.C.; Monteiro, C.B.M. Anthropometric Characteristics, Field Test Scores and Match-Related Technical Performance in Youth Indoor Soccer Players with Different Playing Status. Int. J. Perform. Anal. Sport 2014, 14, 482–492. [Google Scholar] [CrossRef]
- Serpiello, F.R.; Cox, A.; Oppici, L.; Hopkins, W.G.; Varley, M.C. The Loughborough Soccer Passing Test Has Impractical Criterion Validity in Elite Youth Football. Sci. Med. Footb. 2017, 1, 60–64. [Google Scholar] [CrossRef]
- Wen, D.; Robertson, S.; Hu, G.; Song, B.; Chen, H. Measurement Properties and Feasibility of the Loughborough Soccer Passing Test: A Systematic Review. J. Sports Sci. 2018, 36, 1682–1694. [Google Scholar] [CrossRef]
- Fullenkamp, A.M.; Campbell, B.M.; Laurent, C.M.; Lane, A.P. The Contribution of Trunk Axial Kinematics to Poststrike Ball Velocity During Maximal Instep Soccer Kicking. J. Appl. Biomech. 2015, 31, 370–376. [Google Scholar] [CrossRef]
- Hunter, A.H.; Angilletta, M.J.; Wilson, R.S. Behaviors of Shooter and Goalkeeper Interact to Determine the Outcome of Soccer Penalties. Scand. J. Med. Sci. Sports 2018, 28, 2751–2759. [Google Scholar] [CrossRef]
- Palucci Vieira, L.H.; Barbieri, F.A.; Kellis, E.; Oliveira, L.; Aquino, R.; Cunha, S.; Bedo, B.; Manechini, J.; Santiago, P. Organisation of Instep Kicking in Young U11 to U20 Soccer Players. Sci. Med. Footb. 2021, 5, 111–120. [Google Scholar] [CrossRef]
- Secco Faquin, B.; Teixeira, L.A.; Coelho Candido, C.R.; Boari Coelho, D.; Bayeux Dascal, J.; Alves Okazaki, V.H. Prediction of Ball Direction in Soccer Penalty through Kinematic Analysis of the Kicker. J. Sports Sci. 2023, 41, 668–676. [Google Scholar] [CrossRef]
- Drummond, F.A.; Soares, D.d.S.; Silva, H.G.R.d.; Entrudo, D.; Younes, S.D.; Neves, V.N.d.S.; Medeiros, J.M.d.A.; Roza, P.R.d.S.; Pacheco, I. Incidence of Injuries in Soccer Players—Mappingfoot: A Prospective Cohort Study. Rev. Bras. Med. Esporte 2021, 27, 189–194. [Google Scholar] [CrossRef]
- Kerin, F.; Farrell, G.; Tierney, P.; Persson, U.M.; Vito, G.D.; Delahunt, E. Its Not All about Sprinting: Mechanisms of Acute Hamstring Strain Injuries in Professional Male Rugby Union—A Systematic Visual Video Analysis. Br. J. Sports Med. 2022, 56, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Waldén, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three Distinct Mechanisms Predominate in Non-Contact Anterior Cruciate Ligament Injuries in Male Professional Football Players: A Systematic Video Analysis of 39 Cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, S.; Hernandez, H.; Hicks, J.; Lowell, R.; Bentahaikt, H.; Burch, R.; Ball, J.; Chander, H.; Freeman, C.; Taylor, C.; et al. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering 2022, 9, 33. [Google Scholar] [CrossRef]
- Herold, M.; Kempe, M.; Bauer, P.; Meyer, T. Attacking Key Performance Indicators in Soccer: Current Practice and Perceptions from the Elite to Youth Academy Level. J. Sports Sci. Med. 2021, 20, 158. [Google Scholar] [CrossRef]
- Davidson, T.-K.; Barrett, S.; Toner, J.; Towlson, C. Professional Soccer Practitioners’ Perceptions of Using Performance Analysis Technology to Monitor Technical and Tactical Player Characteristics within an Academy Environment: A Category 1 Club Case Study. PLoS ONE 2024, 19, e0298346. [Google Scholar] [CrossRef]
- Aughey, R.J.; Ball, K.; Robertson, S.J.; Duthie, G.M.; Serpiello, F.R.; Evans, N.; Spencer, B.; Ellens, S.; Cust, E.; Haycraft, J.; et al. Comparison of a Computer Vision System against Three-Dimensional Motion Capture for Tracking Football Movements in a Stadium Environment. Sports Eng. 2022, 25, 2. [Google Scholar] [CrossRef]
- Crang, Z.L.; Duthie, G.; Cole, M.H.; Weakley, J.; Hewitt, A.; Johnston, R.D. The Validity and Reliability of Wearable Microtechnology for Intermittent Team Sports: A Systematic Review. Sports Med. 2021, 51, 549–565. [Google Scholar] [CrossRef]
- Schmid, M.; Lames, M. Correction of Systematic Errors in Electronic Performance and Tracking Systems. Sports Eng. 2023, 26, 30. [Google Scholar] [CrossRef]
- Linke, D.; Link, D.; Lames, M. Validation of Electronic Performance and Tracking Systems EPTS under Field Conditions. PLoS ONE 2018, 13, e0199519. [Google Scholar] [CrossRef]
- Pinheiro, G.d.S.; Jin, X.; Costa, V.T.D.; Lames, M. Body Pose Estimation Integrated with Notational Analysis: A New Approach to Analyze Penalty Kicks Strategy in Elite Football. Front. Sports Act. Living 2022, 4, 818556. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.; Hart, J.; James, D. Wearing Electronic Performance and Tracking System Devices in Association Football: Potential Injury Scenarios and Associated Impact Energies. Proceedings 2018, 2, 232. [Google Scholar] [CrossRef]
- Shan, G.; Zhang, X. From 2D Leg Kinematics to 3D Full-Body Biomechanics-the Past, Present and Future of Scientific Analysis of Maximal Instep Kick in Soccer. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2011, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.; Robertson, S.; Duthie, G.; Ball, K. Biomechanics of Accurate and Inaccurate Goal-Kicking in Australian Football: Group-Based Analysis. PLoS ONE 2020, 15, e0241969. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The Use of Wearable Microsensors to Quantify Sport-Specific Movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef]
- FIFA, (Fédération Internationale de Football Association). PLAYERMAKER. Available online: https://www.fifa.com/origin1904-p.cxm.fifa.com/technical/football-technology/resource-hub (accessed on 31 October 2023).
- FIFA, (Fédération Internationale de Football Association). FIFA Innovation Programme Project Summary. FIFA Innovation Challenge: Innovative EPTS. Project Title: Lower-Limb Foot-Mounted IMU in Football. Company/Product: PlayerMaker. Available online: https://digitalhub.fifa.com/m/7d4998e61ed66f63/original/executive-summary-for-website-template-12-pm.pdf (accessed on 9 July 2024).
- Oliva-Lozano, J.M.; Muyor, J.M. Understanding the FIFA Quality Performance Reports for Electronic Performance and Tracking Systems: From Science to Practice. Sci. Med. Footb. 2022, 6, 398–403. [Google Scholar] [CrossRef]
- Moura, F.A. The Video Assistant Referee (VAR) in Soccer: Where Is the Biomechanics? J. Phys. Educ. 2023, 34, e3435. [Google Scholar] [CrossRef]
- Adesida, Y.; Papi, E.; McGregor, A.H. Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review. Sensors 2019, 19, 1597. [Google Scholar] [CrossRef]
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef]
- De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. [Google Scholar] [CrossRef] [PubMed]
- Fong, D.T.-P.; Chan, Y.-Y. The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review. Sensors 2010, 10, 11556–11565. [Google Scholar] [CrossRef] [PubMed]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.-S. Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Mittal, V. Wearable Sensors for Real-Time Kinematics Analysis in Sports: A Review. IEEE Sens. J. 2021, 21, 1187–1207. [Google Scholar] [CrossRef]
- Rum, L.; Sten, O.; Vendrame, E.; Belluscio, V.; Camomilla, V.; Vannozzi, G.; Truppa, L.; Notarantonio, M.; Sciarra, T.; Lazich, A.; et al. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors 2021, 21, 1858. [Google Scholar] [CrossRef]
- Santos-Gago, J.M.; Ramos-Merino, M.; Vallarades-Rodriguez, S.; Álvarez-Sabucedo, L.M.; Fernández-Iglesias, M.J.; García-Soidán, J.L. Innovative Use of Wrist-Worn Wearable Devices in the Sports Domain: A Systematic Review. Electronics 2019, 8, 1257. [Google Scholar] [CrossRef]
- Seckin, A.C.; Ates, B.; Seckin, M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Augustus, S.; Amca, A.M.; Hudson, P.E.; Smith, N. Improved Accuracy of Biomechanical Motion Data Obtained during Impacts Using a Time-Frequency Low-Pass Filter. J. Biomech. 2020, 101, 109639. [Google Scholar] [CrossRef]
- Nunome, H.; Lake, M.; Georgakis, A.; Stergioulas, L.K. Impact Phase Kinematics of Instep Kicking in Soccer. J. Sports Sci. 2006, 24, 11–22. [Google Scholar] [CrossRef]
- Palucci Vieira, L.H.; Carling, C.; da Silva, J.P.; Santinelli, F.B.; Polastri, P.F.; Santiago, P.R.P.; Barbieri, F.A. Modelling the Relationships between EEG Signals, Movement Kinematics and Outcome in Soccer Kicking. Cogn. Neurodyn. 2022, 16, 1303–1321. [Google Scholar] [CrossRef]
- Lees, A.; Rahnama, N. Variability and Typical Error in the Kinematics and Kinetics of the Maximal Instep Kick in Soccer. Sports Biomech. 2013, 12, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.H.P.; Clemente, F.M.; Marquez, F.A.C.; Olivares, W.M.R.; Villafuerte, K.R.V.; Carpes, F.P. Accuracy Standards of Wearable Technologies for Assessment of Soccer Kicking: Protocol for a Systematic Literature Review. JMIR Res. Protoc. 2024, 13, e57433. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A Comparison Study of Specificity and Sensitivity in Three Search Tools for Qualitative Systematic Reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef]
- Vergnes, J.-N.; Marchal-Sixou, C.; Nabet, C.; Maret, D.; Hamel, O. Ethics in Systematic Reviews. J. Med. Ethics 2010, 36, 771–774. [Google Scholar] [CrossRef]
- Winter, E.M.; Maughan, R.J. Requirements for Ethics Approvals. J. Sports Sci. 2009, 27, 985. [Google Scholar] [CrossRef]
- Silva, R.; Rico-González, M.; Lima, R.; Akyildiz, Z.; Pino-Ortega, J.; Clemente, F.M. Validity and Reliability of Mobile Applications for Assessing Strength, Power, Velocity, and Change-of-Direction: A Systematic Review. Sensors 2021, 21, 2623. [Google Scholar] [CrossRef]
- Multhuaptff, W.; Moreno-Villanueva, A.; Soler-López, A.; Fernández-Peña, E.; Rico-González, M.; Clemente, F.M.; Bravo-Cucci, S.; Pino-Ortega, J. Concurrent-Validity and Reliability of Photocells in Sport: A Systematic Review. J. Hum. Kinet. 2024, 92, 53. [Google Scholar] [CrossRef]
- Mokkink, L.B.; Terwee, C.B.; Knol, D.L.; Stratford, P.W.; Alonso, J.; Patrick, D.L.; Bouter, L.M.; de Vet, H.C.W. Protocol of the COSMIN Study: COnsensus-Based Standards for the Selection of Health Measurement INstruments. BMC Med. Res. Methodol. 2006, 6, 2. [Google Scholar] [CrossRef]
- Mokkink, L.B.; Terwee, C.B.; Knol, D.L.; Stratford, P.W.; Alonso, J.; Patrick, D.L.; Bouter, L.M.; de Vet, H.C. The COSMIN Checklist for Evaluating the Methodological Quality of Studies on Measurement Properties: A Clarification of Its Content. BMC Med. Res. Methodol. 2010, 10, 22. [Google Scholar] [CrossRef]
- Terwee, C.B.; Mokkink, L.B.; Knol, D.L.; Ostelo, R.W.J.G.; Bouter, L.M.; de Vet, H.C.W. Rating the Methodological Quality in Systematic Reviews of Studies on Measurement Properties: A Scoring System for the COSMIN Checklist. Qual. Life Res. 2012, 21, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.-J.; Sheen, S.-S.; Hahn, S.; Jang, B.-H.; Son, H.-J. Testing a Tool for Assessing the Risk of Bias for Nonrandomized Studies Showed Moderate Reliability and Promising Validity. J. Clin. Epidemiol. 2013, 66, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Bastiaansen Bram, J.C.; Vegter Riemer, J.K.; Wilmes, E.; de Ruiter Cornelis, J.; Goedhart, E.A.; Lemmink Koen, A.P.M.; Brink, M.S. Biomechanical Load Quantification of National and Regional Soccer Players with an Inertial Sensor Setup during a Jump, Kick, and Sprint Task: Assessment of Discriminative Validity. Sports Eng. 2024, 27, 17. [Google Scholar] [CrossRef]
- Blair, S.; Duthie, G.; Robertson, S.; Hopkins, W.; Ball, K. Concurrent Validation of an Inertial Measurement System to Quantify Kicking Biomechanics in Four Football Codes. J. Biomech. 2018, 73, 24–32. [Google Scholar] [CrossRef]
- Burland, J.P.; Outerleys, J.B.; Lattermann, C.; Davis, I.S. Reliability of Wearable Sensors to Assess Impact Metrics during Sport-Specific Tasks. J. Sports Sci. 2021, 39, 406–411. [Google Scholar] [CrossRef]
- Cuperman, R.; Jansen, K.M.B.; Ciszewski, M.G. An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on Wearable Acceleration Sensors. Sensors 2022, 22, 1347. [Google Scholar] [CrossRef]
- de Vries, S.I.; Engels, M.; Garre, F.G. Identification of Children’s Activity Type with Accelerometer-Based Neural Networks. Med. Sci. Sports Exerc. 2011, 43, 1994–1999. [Google Scholar] [CrossRef]
- Duncan, M.J.; Dobell, A.; Noon, M.; Clark, C.C.T.; Roscoe, C.M.P.; Faghy, M.A.; Stodden, D.; Sacko, R.; Eyre, E.L.J. Calibration and Cross-Validation of Accelerometery for Estimating Movement Skills in Children Aged 8–12 Years. Sensors 2020, 20, 2776. [Google Scholar] [CrossRef]
- Lewis, G.; Towlson, C.; Roversi, P.; Domogalla, C.; Herrington, L.; Barrett, S. Quantifying Volume and High-Speed Technical Actions of Professional Soccer Players Using Foot-Mounted Inertial Measurement Units. PLoS ONE 2022, 17, e0263518. [Google Scholar] [CrossRef]
- Marris, J.; Barrett, S.; Abt, G.; Towlson, C. Quantifying Technical Actions in Professional Soccer Using Foot-Mounted Inertial Measurement Units. Sci. Med. Footb. 2022, 6, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Steijlen, A.; Burgers, B.; Wilmes, E.; Bastemeijer, J.; Bastiaansen, B.; French, P.; Bossche, A.; Jansen, K. Smart Sensor Tights: Movement Tracking of the Lower Limbs in Football. Wear. Technol. 2021, 2, e17. [Google Scholar] [CrossRef] [PubMed]
- Stoeve, M.; Schuldhaus, D.; Gamp, A.; Zwick, C.; Eskofier, B.M. From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning. Sensors 2021, 21, 3071. [Google Scholar] [CrossRef]
- Wilmes, E.; de Ruiter, C.J.; Bastiaansen, B.J.C.; van Zon, J.F.J.A.; Vegter, R.J.K.; Brink, M.S.; Goedhart, E.A.; Lemmink, K.A.P.M.; Savelsbergh, G.J.P. Inertial Sensor-Based Motion Tracking in Football with Movement Intensity Quantification. Sensors 2020, 20, 2527. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Huang, T.-Y.; Ma, H.-P. Motion Analysis of Football Kick Based on an IMU Sensor. Sensors 2022, 22, 6244. [Google Scholar] [CrossRef]
- Palucci Vieira, L.H.; Vargas-Villafuerte, K.R.; Clemente, F.M.; Marquez, F.A.; Rea Olivares, W.M.; Carpes, F.P. Work in Progress: Reviewing Measurement Properties of Wearables in Computing Ball Kicking Features. In Proceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2024), San Jose, Costa Rica, 17–19 July 2024; Larrondo Petrie, M.M., Texier, J., Eds.; Fundacion LACCEI: Bogota, Colombia, 2024; p. 1188. Available online: https://laccei.org/LACCEI2024-CostaRica/index-by-track.html#track20 (accessed on 6 December 2024).
- Currell, K.; Jeukendrup, A.E. Validity, Reliability and Sensitivity of Measures of Sporting Performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef]
- Hunter, A.H.; Angilletta, M.J.; Pavlic, T.; Lichtwark, G.; Wilson, R.S. Modeling the Two-Dimensional Accuracy of Soccer Kicks. J. Biomech. 2018, 72, 159–166. [Google Scholar] [CrossRef]
- Sado, N.; Yazawa, M.; Tominaga, T.; Akutsu, K. Inter-Individual Variability in Elliptical and Diagonal Error Distributions Potentially Relevant to Optimal Motor Planning in Football Instep Kicking. Hum. Mov. Sci. 2024, 97, 103272. [Google Scholar] [CrossRef]
- Andersen, T.B.; Dörge, H.C. The Influence of Speed of Approach and Accuracy Constraint on the Maximal Speed of the Ball in Soccer Kicking. Scand. J. Med. Sci. Sports 2011, 21, 79–84. [Google Scholar] [CrossRef]
- Amiri-Khorasani, M.; Osman, N.A.A.; Yusof, A. Kinematics Analysis: Number of Trials Necessary to Achieve Performance Stability during Soccer Instep Kicking. J. Hum. Kinet. 2010, 23, 15–20. [Google Scholar] [CrossRef]
- Berjan Bacvarevic, B.; Pazin, N.; Bozic, P.R.; Mirkov, D.; Kukolj, M.; Jaric, S. Evaluation of a Composite Test of Kicking Performance. J. Strength Cond. Res. 2012, 26, 1945–1952. [Google Scholar] [CrossRef] [PubMed]
- Buszard, T.; Reid, M.; Krause, L.; Kovalchik, S.; Farrow, D. Quantifying Contextual Interference and Its Effect on Skill Transfer in Skilled Youth Tennis Players. Front. Psychol. 2017, 8, 1931. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Clermont, C.A.; Ferber, R. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: The Effect of Different Running Environments. Front. Bioeng. Biotechnol. 2020, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Villarejo-García, D.H.; Moreno-Villanueva, A.; Soler-López, A.; Reche-Soto, P.; Pino-Ortega, J. Use, Validity and Reliability of Inertial Movement Units in Volleyball: Systematic Review of the Scientific Literature. Sensors 2023, 23, 3960. [Google Scholar] [CrossRef] [PubMed]
- Borg, D.N.; Barnett, A.G.; Caldwell, A.R.; White, N.M.; Stewart, I.B. The Bias for Statistical Significance in Sport and Exercise Medicine. J. Sci. Med. Sport 2023, 26, 164–168. [Google Scholar] [CrossRef]
- Knudson, D. Confidence Crisis of Results in Biomechanics Research. Sports Biomech. 2017, 16, 425–433. [Google Scholar] [CrossRef]
- Küderle, A.; Roth, N.; Zlatanovic, J.; Zrenner, M.; Eskofier, B.; Kluge, F. The Placement of Foot-Mounted IMU Sensors Does Affect the Accuracy of Spatial Parameters during Regular Walking. PLoS ONE 2022, 17, e0269567. [Google Scholar] [CrossRef]
- Palucci Vieira, L.H.; Santiago, P.R.P.; Aquino, R. Footwear Technology, Running Outputs, and Technical Performance in Soccer Match-Play. J. Appl. Physiol. 2024, 137, 831–832. [Google Scholar] [CrossRef]
- Palucci Vieira, L.H.; Carling, C.; Kalva-Filho, C.A.; Santinelli, F.B.; Velluto, L.A.G.; da Silva, J.P.; Clemente, F.M.; Kellis, E.; Barbieri, F.A. Recovery of Kicking Kinematics and Performance Following Repeated High-Intensity Running Bouts in the Heat: Can a Rapid Local Cooling Intervention Help Young Soccer Players? J. Sports Sci. 2023, 41, 430–440. [Google Scholar] [CrossRef]
- Maly, T.; Sugimoto, D.; Izovska, J.; Zahalka, F.; Mala, L. Effect of Muscular Strength, Asymmetries and Fatigue on Kicking Performance in Soccer Players. Int. J. Sports Med. 2018, 39, 297–303. [Google Scholar] [CrossRef]
- Truppa, L.; Guaitolini, M.; Garofalo, P.; Castagna, C.; Mannini, A. Assessment of Biomechanical Response to Fatigue through Wearable Sensors in Semi-Professional Football Referees. Sensors 2020, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Rađa, A.; Erceg, M.; Grgantov, Z. Inter and Intra Positional Differences in Ball Kicking Between U-16 Croatian Soccer Players. Montenegrin J. Sports Sci. Med. 2016, 5, 11–15. [Google Scholar]
- Hernandez-Martinez, J.; Perez-Carcamo, J.; Canales-Canales, S.; Coñapi-Union, B.; Cid-Calfucura, I.; Herrera-Valenzuela, T.; Branco, B.H.M.; Valdés-Badilla, P. Body Composition and Physical Performance by Playing Position in Amateur Female Soccer Players. Appl. Sci. 2024, 14, 5665. [Google Scholar] [CrossRef]
- Khorasani, M.A.; Osman, N.A.A.; Yusof, A. Biomechanical Responds of Instep Kick between Different Positions in Professional Soccer Players. J. Hum. Kinet. 2009, 22, 21–27. [Google Scholar] [CrossRef]
- Ermidis, G.; Randers, M.B.; Krustrup, P.; Mohr, M. Technical Demands across Playing Positions of the Asian Cup in Male Football. Int. J. Perform. Anal. Sport 2019, 19, 530–542. [Google Scholar] [CrossRef]
- Dellal, A.; Chamari, K.; Wong, D.P.; Ahmaidi, S.; Keller, D.; Barros, R.; Bisciotti, G.N.; Carling, C. Comparison of Physical and Technical Performance in European Soccer Match-Play: FA Premier League and La Liga. Eur. J. Sport Sci. 2011, 11, 51–59. [Google Scholar] [CrossRef]
- Kovář, M.; Cuberek, R. Use of Inertial Measurement Units in Handball: A Review. Stud. Sport. 2024, 18, 83–100. [Google Scholar] [CrossRef]
- Chakma, A.; Md Faridee, A.Z.; Roy, N.; Sajjad Hossain, H.M. Shoot like Ronaldo: Predict Soccer Penalty Outcome with Wearables. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops, Austin, TX, USA, 23–27 March 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Dorschky, E.; Schuldhaus, D.; Koerger, H.; Eskofier, B.M. A Framework for Early Event Detection for Wearable Systems. In Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, Japan, 7–11 September 2015; Association for Computing Machinery, Inc.: New York, NY, USA, 2015; pp. 109–112. [Google Scholar]
- Emam, A.M.; Ali, O.T.; Atia, A. Football Activities Classification. In Proceedings of the 2023 Intelligent Methods, Systems, and Applications (IMSA), Giza, Egypt, 15–16 July 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023; pp. 520–525. [Google Scholar]
- Kim, W.; Kim, M. Soccer Kick Detection Using a Wearable Sensor. In Proceedings of the 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 1207–1209. [Google Scholar]
- Kondo, Y.; Ishii, S.; Aoyagi, H.; Hossain, T.; Yokokubo, A.; Lopez, G. FootbSense: Soccer Moves Identification Using a Single IMU. In Sensor- and Video-Based Activity and Behavior Computing, Proceedings of the 3rd International Conference on Activity and Behavior Computing (ABC 2021), Bangkok, Thailand, 22–23 October 2021; Ahad, M.A., Inoue, S., Roggen, D., Fujinami, K., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2022; Volume 291, pp. 115–131. [Google Scholar]
- Mascher, K.; Laller, S.; Wieser, M. Development of Smart Shin Guards for Soccer Performance Analysis Based on Mems Accelerometers, Machine Learning, and GNSS. In Proceedings of the ICL-GNSS 2021 WiP Proceedings: Proceedings of the International Conference on Localization and GNSS (ICL-GNSS 2021), Tampere, Finland, 1–3 June 2021; Ometov, A., Nurmi, J., Lohan, E.-S., Torres-Sospedra, J., Kuusniemi, H., Eds.; CEUR Workshop Proceedings (CEUR-WS.org). Volume 2880. [Google Scholar]
- Zhou, B.; Wirth, M.; Martindale, C.; Koerger, H.; Zwick, C.; Cruz, H.; Eskofier, B.; Lukowicz, P. Smart Soccer Shoe: Monitoring Foot-Ball Interaction with Shoe Integrated Textile Pressure Sensor Matrix. In Proceedings of the 2016 ACM International Symposium on Wearable Computers, Heidelberg, Germany, 12–16 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 64–71. [Google Scholar]
- Zhou, P.; Yu, A.; Wu, M. Motion Control of Mobile Robot for Moving Object Capture and Shooting. In Proceedings of the 2006 4th IEEE International Conference on Industrial Informatics, Singapore, 16–18 August 2006; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2007; pp. 1369–1374. [Google Scholar]
- Vieira, L.H.P.; Cunha, S.A.; Moraes, R.; Barbieri, F.A.; Aquino, R.; Oliveira, L.d.P.; Navarro, M.; Bedo, B.L.S.; Santiago, P.R.P. Kicking Performance in Young U9 to U20 Soccer Players: Assessment of Velocity and Accuracy Simultaneously. Res. Q. Exerc. Sport 2018, 89, 210–220. [Google Scholar] [CrossRef]
- Hunter, A.H.; Smith, N.M.A.; Camata, T.V.; Crowther, M.S.; Mather, A.; Souza, N.M.; Ramos-Silva, L.F.; Pazetto, N.F.; Moura, F.A.; Wilson, R.S. Age- and Size-Corrected Kicking Speed and Accuracy in Elite Junior Soccer Players. Sci. Med. Footb. 2022, 6, 29–39. [Google Scholar] [CrossRef]
- Holfelder, B.; Schott, N. Object Control Skill Performance Across the Lifespan: A Cross Sectional Study. Res. Q. Exerc. Sport 2022, 93, 825–834. [Google Scholar] [CrossRef]
- Luhtanen, P. Kinematics and Kinetics of Maximal Instep Kicking in Junior Soccer Players. In Proceedings of the first World Congress of Science and Football, Liverpool, UK, 13–17 April 1987; Reilly, T., Lees, A., Davids, K., Murphy, W.J., Eds.; Science and Football (Routledge Revivals). Routledge: London, UK, 2013; pp. 441–448, ISBN 978-0-203-72003-5. [Google Scholar]
- Ali, A.; Williams, C.; Hulse, M.; Strudwick, A.; Reddin, J.; Howarth, L.; Eldred, J.; Hirst, M.; McGregor, S. Reliability and Validity of Two Tests of Soccer Skill. J. Sports Sci. 2007, 25, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lorenzo, L.; Fernandez-del-Olmo, M.; Martín-Acero, R. A Critical Review of the Technique Parameters and Sample Features of Maximal Kicking Velocity in Soccer. Strength Cond. J. 2015, 37, 26. [Google Scholar] [CrossRef]
- Rađa, A.; Kuvačić, G.; Giorgio, A.D.; Sellami, M.; Ardigò, L.P.; Bragazzi, N.L.; Padulo, J. The Ball Kicking Speed: A New, Efficient Performance Indicator in Youth Soccer. PLoS ONE 2019, 14, e0217101. [Google Scholar] [CrossRef] [PubMed]
- Cereatti, A.; Gurchiek, R.; Mündermann, A.; Fantozzi, S.; Horak, F.; Delp, S.; Aminian, K. ISB Recommendations on the Definition, Estimation, and Reporting of Joint Kinematics in Human Motion Analysis Applications Using Wearable Inertial Measurement Technology. J. Biomech. 2024, 173, 112225. [Google Scholar] [CrossRef]
Population | Intervention | Comparison | Outcome |
---|---|---|---|
soccer | wearable * | validity | kick * |
football * | inertial measurement unit | reliability | shoot * |
association football | IMU | measurement error | pass * |
11-a-side | acceleromet * | accuracy | skill |
microtechnology | precision | technical | |
micro-electrical mechanical system | |||
MEMS | |||
global positioning system | |||
global navigation satellite system | |||
local positioning system | |||
GPS | |||
GNSS | |||
LPS |
Reference | Metrics Collected | Sex | Age | Level | N | Positional Roles | Tested | Wearable Device/System | Frequency | Experimental Protocol | Form of Data Analysis | Validity Results | Reliability Results | Accuracy Results | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Validity | Reliability | Accuracy | ||||||||||||||
Bastiaansen et al. [56] | Hip load; knee load (derived from joint angular accelerations); and knee extension velocity | Men | Adult | Elite; sub-elite | 28 | All (pooled) | ✓ | IMUs (MPU-9150, InvenSense, San Jose, CA, USA) | 500 Hz | Five 5 m maximal instep kicks aiming at a full-sized goal without accuracy demands | Data compared across playing levels | MANOVA | -- | -- | ||
Blair et al. [57] | Foot speed; pelvis velocity; shank, thigh, and knee (angular velocity); shank and pelvis (sagittal angle) at impact; and max support-knee extension, min kick-leg knee angle, and max hip extension | Men | Adult | Sub-elite | 10 | -- | ✓ | IMUs (MVN Link, Xsens Technologies B.V., Enschede, The Netherlands) | 240 Hz | Five 12 m instep kicks, five 12 m inside kicks, five 20 m instep kicks, and five maximal instep kicks | Data compared against a 12-camera motion analysis system (T-40 series, Vicon Nexus v2, Oxford, UK) | GLMM; variances; error; Studentized residual vs. predicted plots | -- | -- | ||
Burland et al. [58] | Tibial acceleration value; cumulative impact load; total steps; and cumulative bone stimulus (number of steps multiplied by the tibial acceleration) | Men; women | Adult | Sub-elite | 10 | -- | ✓ | VICON IMeasureU Blue Trident dual-g sensors (IMeasureU, Auckland, New Zealand) | 1600 Hz | Three trials passing the ball forward at a self-selected pace | Data analyzed across three test sessions at least 7–10 days apart | -- | ICC | -- | ||
Cuperman et al. [59] | Triaxial accelerations and angular velocities of pelvis, thigh, and shank | Men | Adult | Sub-elite | 11 | -- | ✓ | IMUs (Ivensense MPU-9150) | 500 Hz | Football-related activities, including passes, shots, jumps, and sprints, among others, to simulate an actual football match | Data compared against a manually annotated category (activity) | -- | -- | F1 score Prediction Accuracy | ||
de Vries et al. [60] | Accelerometer data (counts) of the ankle | Men; women | Youth | Sub-elite | 58 | -- | ✓ | ActiGraph accelerometers (GT1M/GT3X; ActiGraph, Pensacola, FL, USA) | -- | Monitored 20 min activities including sitting, standing, walking, running, rope skipping, kicking the ball, and cycling | Data compared against research assistant recordings | -- | -- | %Correctly classified activity Contingency tables | ||
Duncan et al. [61] | Triaxial accelerometry data for the ankle | Men; women | Youth | Sub-elite | 20 | -- | ✓ | GENEActiv accelerometers (Activinsights, Cambridge, UK) | 80 Hz | Monitored 5 min for each activity with 5 min resting: lying supine, standing, running, and instep passing a football (size 3 ball, over a distance of 5 m at a cadence of 10 and 20 passes/min) and dribbling | Data correlated with metabolic equivalents; compared among activity types | rho-Spearman; ROC curve AUC Sensitivity Specificity | -- | -- | ||
Lewis et al. [62] | Velocity of the foot—or ball release velocity | Men | Adult | Elite | 4 | All (pooled) | ✓ | ✓ | IMUs (PlayerMaker™, Tel Aviv, Israel; including two components from MPU-9150, InvenSense, CA, USA) | -- | Twelve kicks in a static ball (six with each foot) at low, moderate, or high subjective intensities with foot region self-selected | Data correlated with joint angular velocity from a high-speed camera system (Quintic Consultancy Ltd., Sutton Coldfield, UK); data analyzed within session for each subjective intensity | r-Pearson | CV | -- | |
Marris et al. [63] | Ball touch and release occurrences derived from accelerometer and gyroscope traces | Men | Adult | Sub-elite | 12 | -- | ✓ | ✓ | IMUs (PlayerMaker™, Tel Aviv, Israel; including two components from MPU-9150, InvenSense, CA, USA) | 1000 Hz | A total of 8640 ball touches and 5760 releases in technical soccer tasks where a given player served the ball to another, considering two pre-determined distances (13.2 and 18.7 m) | Data contrasted with manual coding/video (SportsCode Elite, v. 11.2.23, SportsTec, Warriewood, Australia); data analyzed across three codings made by the performance analyst concerning a same specific subset of tasks | Proportion of agreement | CV | -- | |
Steijlen et al. [64] | Hip and knee joint angles and angular velocities | Men | Adult | -- | 1 | -- | ✓ | IMUs ICM-20649 (InvenSense, San Jose, CA, USA) | 250 Hz | Three trials kicking a ball preceded by a few steps, at three different intensities (50, 80, and 100% of maximum effort) | Data compared against and correlated with eight cameras (Vicon V5 cameras, Vicon Motion Systems Ltd., Oxford, UK) | RMSD CMC | -- | -- | ||
Stoeve et al. [65] | Triple-axis linear acceleration and angular velocity | Men; women | Youth; adult | Sub-elite | 836 | -- | ✓ | IMUs (brand not specified) | 200 Hz | A total of 8424 shots and 24,254 passes taken from 10 sessions in a laboratory (controlled exercises) and 10 during training or games (field sessions not following a fixed protocol) | Data compared against labeling made by trained experts using video camera recordings | -- | -- | F1 score Sensitivity | ||
Wilmes et al. [66] | Three-dimensional acceleration, angular velocity, and magnetic field strength | Men | Adult | Sub-elite | 11 | -- | ✓ | IMUs (MPU 9150, Invensense, San Jose, CA, USA) | 500 Hz | Four short passes (low intensity), four long passes (medium intensity), and four maximum instep kicks (maximal intensity) all interspersed with about 10 s resting | Data compared against and correlated with eight optoelectronic motion cameras (Vicon V5 cameras, Vicon Motion Systems Ltd., Oxford, UK) | ANOVA RMSD CMC | -- | -- | ||
Yu et al. [67] | Three-dimensional displacements, acceleration, and angular velocity; foot velocity and backwing height | -- | -- | -- | 10 | -- | ✓ | IMU sensor (ICM-20649, TDK InvenSense MEMS Motion Tracking™ Device) | 100 Hz | Instep kicking test | Data compared against “Tracker” using two high-speed cameras positioned in front and side view (brand not specified) | RMSD %Error Bland–Altman plots | -- | -- |
Reference | Wearable Device/System | Validity | Reliability | Accuracy | Summary | ||||
---|---|---|---|---|---|---|---|---|---|
Concurrent | Discriminative | Crossed | Between-Session | Within-Session | Intra-Unit | Event Detection | |||
Bastiaansen et al. [56] | MPU-9150, InvenSense | Knee extension velocity and load p = 0.02 ES = 0.94–0.95 Hip load p = 0.97 ES = 0.02 | Authors claim the discriminative validity of the wearable for the knee load but not for the hip load | ||||||
Blair et al. [57] | MVN Link, Xsens Technologies | All metrics collected p = -- ES = trivial | Authors claim the overall concurrent validity of the wearable | ||||||
Burland et al. [58] | IMeasureU Blue Trident dual-g, VICON | Cumulative impact load and step count ICC = 0.58–0.87 p ≤ 0.056 Cumulative bone stimulus ICC = 0.95–0.96 p < 0.001 | Authors indicate lower reliability of the wearable to measure ball kicking as compared to other soccer actions | ||||||
Cuperman et al. [59] | Ivensense MPU-9150 | CNN + bLSTM model F1 score = 96.67% Accuracy = 98.3% QDA, kNN, and decision tree models Accuracy = 40–90% | Authors claim better accuracy of the wearable using deep learning processing models as compared to traditional machine learning | ||||||
de Vries et al. [60] | GT1M/GT3X, ActiGraph | One-axis ANN models Correctly classified activity = 71.4–77.9% Three-axis ANN models Correctly classified activity = 82.1–82.4% | Authors claim better accuracy of the wearable using classification models considering triaxial data as compared to uniaxial | ||||||
Duncan et al. [61] | GENEActiv, Activinsights | Acc count rho = 0.67–0.75 p = 0.0001 AUC = 0.62–0.72 Sensitivity = 59.1–75.3 Specificity = 66.3–68.1 | Authors indicate low cross-validity of the wearable output | ||||||
Lewis et al. [62] | PlayerMaker™/MPU-9150, InvenSense | Ball release velocity r2 = 0.96 p = -- | Ball release velocity CV = 3.93–14.35% | Authors claim the concurrent validity and reliability of the wearable | |||||
Marris et al. [63] | PlayerMaker™/MPU-9150, InvenSense | Ball touches and releases PA = 95.1–97.6% SE = 0.0–0.1% | Ball touches and releases CV = 1.8–2.3% SE = 0.0–0.2% | Authors claim the concurrent validity and reliability of the wearable | |||||
Steijlen et al. [64] | ICM-20649, InvenSense | Hip and knee angle RMSD = 4–18° CMC = 0.63–0.99 Angular velocity RMSD = 61–103°/s CMC = 0.93–0.99 p = -- | Authors claim the concurrent validity of the wearable | ||||||
Stoeve et al. [65] | brand not specified | CNN model F1 score = 0.887–0.928 Sensitivity = 45–84% SVM model F1 score = 0.648–0.815 Sensitivity = 21–39% LSTM and convLSTM models F1 score = 0.777–0.910 Sensitivity = -- | Authors claim the accuracy of the wearable using the CNN processing model but not the SVM model; deep learning models outperformed machine learning | ||||||
Wilmes et al. [66] | MPU 9150, Invensense | Hip and knee angle RMSD = 5–8° CMC = 0.96–0.97 Angular velocity RMSD = 78–177°/s CMC = 0.81–0.89 p = -- | Authors claim the concurrent validity of the wearable | ||||||
Yu et al. [67] | ICM-20649, TDK InvenSense | Reconstructed position RMSD = 0.07 m Foot velocity RMSD = 7.47 m/s Error = 4% Backswing height RMSD = 0.74 m Error = 3% | Authors claim the concurrent validity of the wearable |
Reference | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Rating |
---|---|---|---|---|---|---|---|---|
Bastiaansen et al. [56] | Good | Fair | Poor | Fair | Excellent | Excellent | NA | Moderate |
Blair et al. [57] | Good | Fair | Poor | Excellent | Excellent | Poor | NA | Moderate |
Duncan et al. [61] | Good | Fair | Poor | Fair | Excellent | Excellent | Excellent | Moderate |
Lewis et al. [62] | Excellent | Fair | Poor | Excellent | Excellent | Excellent | NA | Moderate |
Marris et al. [63] | Good | Fair | Poor | Excellent | Excellent | Poor | NA | Moderate |
Steijlen et al. [64] | Good | Fair | Poor | Excellent | Excellent | Excellent | NA | Moderate |
Wilmes et al. [66] | Good | Fair | Poor | Excellent | Excellent | Excellent | NA | Moderate |
Yu et al. [67] | Good | Fair | Poor | Good | Excellent | Poor | NA | Moderate |
Reference | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Item 8 | Item 9 | Item 10 | Item 11 | Rating |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Burland et al. [58] | Good | Fair | Poor | Excellent | Excellent | Excellent | Good | Excellent | Good | Fair | Excellent | Moderate |
Lewis et al. [62] | Excellent | Fair | Poor | Excellent | Good | Fair | Good | Fair | Good | Fair | Poor | Moderate |
Marris et al. [63] | Good | Fair | Poor | Excellent | Good | Fair | Good | Fair | Good | Fair | Poor | Moderate |
Reference | Domain 1 | Domain 2 | Domain 3 | Domain 4 | Rating | |||
---|---|---|---|---|---|---|---|---|
Item A | Item B | Item A | Item B | Item A | Item B | Item A | ||
Cuperman et al. [59] | High | Unclear | Low | Unclear | Unclear | Unclear | Unclear | Low |
de Vries et al. [60] | High | Unclear | Low | Low | Unclear | Low | Unclear | Moderate |
Stoeve et al. [65] | High | Low | Low | Low | Unclear | Low | Unclear | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palucci Vieira, L.H.; Clemente, F.M.; Silva, R.M.; Vargas-Villafuerte, K.R.; Carpes, F.P. Measurement Properties of Wearable Kinematic-Based Data Collection Systems to Evaluate Ball Kicking in Soccer: A Systematic Review with Evidence Gap Map. Sensors 2024, 24, 7912. https://doi.org/10.3390/s24247912
Palucci Vieira LH, Clemente FM, Silva RM, Vargas-Villafuerte KR, Carpes FP. Measurement Properties of Wearable Kinematic-Based Data Collection Systems to Evaluate Ball Kicking in Soccer: A Systematic Review with Evidence Gap Map. Sensors. 2024; 24(24):7912. https://doi.org/10.3390/s24247912
Chicago/Turabian StylePalucci Vieira, Luiz H., Filipe M. Clemente, Rui M. Silva, Kelly R. Vargas-Villafuerte, and Felipe P. Carpes. 2024. "Measurement Properties of Wearable Kinematic-Based Data Collection Systems to Evaluate Ball Kicking in Soccer: A Systematic Review with Evidence Gap Map" Sensors 24, no. 24: 7912. https://doi.org/10.3390/s24247912
APA StylePalucci Vieira, L. H., Clemente, F. M., Silva, R. M., Vargas-Villafuerte, K. R., & Carpes, F. P. (2024). Measurement Properties of Wearable Kinematic-Based Data Collection Systems to Evaluate Ball Kicking in Soccer: A Systematic Review with Evidence Gap Map. Sensors, 24(24), 7912. https://doi.org/10.3390/s24247912