Development of a Robust Sensor Calibration for a Commercially Available Rising Platemeter to Estimate Herbage Mass on Temperate Seminatural Pastures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rising Platemeter
2.2. Sampling of the Pasture Herbage
2.3. Statistical Analysis
3. Results
3.1. Evaluation of the Original Equation Using Measured or Constant Dry Matter Concentration
3.2. Development of a New Equation
4. Discussion
4.1. Existing Equation Is Not Valid for Seminatural, Multispecies Pastures
4.2. Selected Variables for the New Equation
4.3. Adequacy of the Newly Developed Equation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isselstein, J.; Jeangros, B.; Pavlu, V. Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe—A review. Agron. Res. 2005, 3, 139–151. [Google Scholar]
- Schils, R.L.; Bufe, C.; Rhyer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Price, J.P.N. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Van Den Pol-Van Dasselaar, A.; Bastiaansen-Aantjes, L.; Bogue, F.; O’Donovan, M.; Huyghe, C. Grassland Use in Europe; Éditions Quae: Montpellier, France, 2019; p. 264. ISBN 978-275-923-145-4. [Google Scholar]
- Peeters, A.; Beaufoy, G.; Canals, R.M.; Vliegher, A.; de Huyghe, C.; Isselstein, J.; Jones, G.; Kessler, W.; Kirilov, A.; Mosquera-Losada, M.R.; et al. Grassland term definitions and classifications adapted to the diversity of European grassland-based systems. In Proceedings of the 25th General Meeting of the European Grassland Federation: EGF at 50: The Future of European Grassland, Aberystwyth, UK, 7–11 September 2014. [Google Scholar]
- Akert, F.S.; Dorn, K.; Frey, H.; Hofstetter, P.; Berard, J.; Kreuzer, M.; Reidy, B. Farm-gate nutrient balances of grassland-based milk production systems with full- or part-time grazing and fresh herbage indoor feeding at variable concentrate levels. Nutr. Cycl. Agroecosyst. 2020, 117, 383–400. [Google Scholar] [CrossRef]
- Dumont, B.; Rook, A.J.; Coran, C.; Röver, K.U. Effects of livestock breed and grazing intensity on biodiversity and production in grazing systems. 2. Diet selection. Grass Forage Sci. 2007, 62, 159–171. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Macdonald, K.A.; Glassey, C.B.; Rawnsley, R.P. The emergence, development and effectiveness of decision rules for pasture based dairy systems. In Proceedings of the 4th Australasian Dairy Science Symposium, Caldwell, New Zealand, 31 August–2 September 2010; pp. 199–209. [Google Scholar]
- Murphy, D.J.; Shine, P.; Brien, B.O.; Donovan, M.O.; Murphy, M.D. Utilising grassland management and climate data for more accurate prediction of herbage mass using the rising plate meter. Precis. Agric. 2021, 22, 1189–1216. [Google Scholar] [CrossRef]
- Lee, J.M.; Clark, A.J.; Roche, J.R. Climate-change effects and adaptation options for temperate pasture-based dairy farming systems: A review. Grass Forage Sci. 2013, 68, 485–503. [Google Scholar] [CrossRef]
- Hoekstra, N.; Holshof, G.; Schils, R.; Philipsen, B.; van Reenen, K.; van Houwelingen, K.; van Eekeren, N. The effect of kurzrasen and strip-grazing on grassland performance and soil quality of a peat meadow. Sustainability 2019, 11, 6283. [Google Scholar] [CrossRef]
- Nakagami, K. Effects of sites and years on the coefficients of rising plate meter calibration under varying coefficient models. Grassl. Sci. 2016, 62, 128–132. [Google Scholar] [CrossRef]
- Shalloo, L.; Dillon, P.; O’loughlin, J.; Rath, M.; Wallace, M. Comparison of a pasture-based system of milk production on a high rainfall, heavy-clay soil with that on a lower rainfall, free-draining soil. Grass Forage Sci. 2004, 59, 157–168. [Google Scholar] [CrossRef]
- Hart, L.; Huguenin-Elie, O.; Latsch, R.; Simmler, M.; Dubois, S.; Umstatter, C. Comparison of spectral reflectance-based smart farming tools and a conventional approach to determine herbage mass and grass quality on farm. Remote Sens. 2020, 12, 3256. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A review of estimation methods for aboveground biomass in grasslands using UAV. Remote Sens. 2023, 15, 639. [Google Scholar] [CrossRef]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- Hart, L.; Quendler, E.; Umstaetter, C. Sociotechnological sustainability in pasture management: Labor input and optimization potential of smart tools to measure herbage mass and quality. Sustainability 2022, 14, 7490. [Google Scholar] [CrossRef]
- Ferraro, F.P.; Nave, R.L.G.; Sulc, R.M.; Barker, D.J. Seasonal variation in the rising plate meter calibration for forage mass. Agron. J. 2012, 104, 1–6. [Google Scholar] [CrossRef]
- Martin, R.C.; Astatkie, T.; Cooper, J.M.; Fredeen, A.H. A comparison of methods used to determine biomass on naturalized swards. J. Agron. Crop Sci. 2005, 191, 152–160. [Google Scholar] [CrossRef]
- Marini, L.; Scotton, M.; Klimek, S.; Pecile, A. Patterns of plant species richness in Alpine hay meadows: Local vs. landscape controls. Basic Appl. Ecol. 2008, 9, 365–372. [Google Scholar] [CrossRef]
- Pontes-Prates, A.; de Faccio Carvalho, P.C.; Laca, E.A. Mechanisms of grazing management in heterogeneous swards. Sustainability 2020, 12, 8676. [Google Scholar] [CrossRef]
- O’Brien, B.; Murphy, D.; Askari, M.S.; Burke, R.; Magee, A.; Umstätter, C.; Hart, L.; Oudshoorn, F.; Murphy, M.; Kaivosoja, J.; et al. Modelling precision grass measurements for a web-based decision platform to aid grassland management. In Proceedings of the 9th European Conference on Precision Livestock Farming, Moorepark, Cork, Ireland, 26–29 August 2019. [Google Scholar]
- Klootwijk, C.W.; Holshof, G.; Van den Pol-van Dasselaar, A.; van Helvoort, K.L.; Engel, B.; de Boer, I.J.; van Middelaar, C.E. The effect of intensive grazing systems on the rising plate meter calibration for perennial ryegrass pastures. J. Dairy Sci. 2019, 102, 10439–10450. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’Brien, B.; Hennessy, D.; Hurley, M.; Murphy, M.D. Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards. Precis. Agric. 2021, 22, 922–946. [Google Scholar] [CrossRef]
- McSweeney, D.; Delaby, L.; O’Brien, B.; Ferard, A.; Byrne, N.; McDonagh, J.; Coughlan, N.E. Dynamic algorithmic conversion of compressed sward height to dry matter yield by a rising plate meter. Comput. Electron. Agric. 2022, 196, 106919. [Google Scholar] [CrossRef]
- McSweeney, D.; Foley, C.; Halton, P.; O’Brien, B. Calibration of an automated grass height measurement tool equipped with global positioning system to enhance the precision of grass measurement in pasture-based farming systems. In Proceedings of the Grassland Science in Europe Vol. 20—Grassland and Forages in High Output Dairy Farming Systems, Tullamore, The Netherlands, 15–17 June 2015; pp. 265–267. [Google Scholar]
- McSweeney, D.; Coughlan, N.E.; Cuthbert, R.N.; Halton, P.; Ivanov, S. Micro-sonic sensor technology enables enhanced grass height measurement by a Rising Plate Meter. Inf. Process. Agric. 2019, 6, 279–284. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Leiber, F.; Probst, S.; Kreuzer, M.; Weigelt, A.; Buchmann, N.; Scherer-Lorenzen, M. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 2020, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- DLG. Grobfutterbewertung mit der Sinnenprüfung. DLG Inf. 2004, 11. Available online: https://www.gruenland-online.de/medien/grobfutterbewertunga.pdf (accessed on 4 March 2024).
- Visscher, J.; Radersma, S.; van den Pol, A. Innovaties in Beweidingssystemen; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2011. [Google Scholar]
- Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics 1969, 11, 1–21. [Google Scholar] [CrossRef]
- Hart, L.; Oudshoorn, F.; Latsch, R.; Umstatter, C. How accurate is the Grasshopper® system in measuring dry matter quantity of Swiss and Danish grassland. In Proceedings of the 9th European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; pp. 188–193. [Google Scholar]
- Hair, J.F.; Black, W.C.; Black, B.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Pearson Education Limited: London, UK, 2013; ISBN 978-129-202-190-4. [Google Scholar]
- Lin, L.I.K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 89, 225–247. [Google Scholar] [CrossRef]
- Bibby, J.M.; Toutenburg, H. Prediction and Improved Estimation in Linear Models; John Wiley and Sons: London, UK, 1977; ISBN 978-047-101-656-4. [Google Scholar]
- Hart, L.; Werner, J.; Velasco, E.; Perdana-Decker, S.; Weber, J.; Dickhöfer, U.; Umstätter, C. Reliable biomass estimates of multispecies grassland using rising plate meter. Grassl. Sci. Eur. 2020, 25, 641–643. [Google Scholar]
- McEvoy, M.; O’Donovan, M.; Shalloo, L. Development and application of an economic ranking index for perennial ryegrass cultivars. J. Dairy Sci. 2011, 94, 1627–1639. [Google Scholar] [CrossRef]
- O’Brien, D.; Capper, J.L.; Garnsworthy, P.C.; Grainger, C.; Shalloo, L. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. J. Dairy Sci. 2014, 97, 1835–1851. [Google Scholar] [CrossRef]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors associated with profitability in pasture-based systems of milk production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, M.; Kennedy, E. Using grass to reduce feed costs. In Proceedings of the National Dairy Conferences 2007 ‘Exploiting the Freedom to Milk’, Kilkenny, Ireland, 21 November 2007; pp. 63–80. [Google Scholar]
- Hearn, C.; Egan, M.; Lynch, M.B.; Fleming, C.; O’Donovan, M. Seasonal variations in nutritive and botanical composition properties of multispecies grazing swards over an entire dairy grazing season. Grassl. Res. 2022, 1, 221–233. [Google Scholar] [CrossRef]
- Velasco, E.; Dickhoefer, U.; Binder, S.; Nieland, C.; Griese, S.; Werner, J. Variability in forage biomass on extensive pastures and productivity of grazing cows on organic dairy farms in South Germany during a dry year. In Proceedings of the IAHA Pre-Conference on Organic Animal Husbandry, linked to the 20th Organic World Congress of IFOAM, Frick, Switzerland, 6–7 September 2021; pp. 6–7. [Google Scholar]
- Adler, P.; Raff, D.; Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 2001, 128, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Tonn, B.; Raab, C.; Isselstein, J. Sward patterns created by patch grazing are stable over more than a decade. Grass Forage Sci. 2019, 74, 104–114. [Google Scholar] [CrossRef]
- Obermeyer, K.; Komainda, M.; Kayser, M.; Isselstein, J. Exploring the potential of rising plate meter techniques to analyse ecosystem services from multi-species grasslands. Crop Pasture Sci. 2022, 74, 378–391. [Google Scholar] [CrossRef]
- Albéri, M.; Baldoncini, M.; Bottardi, C.; Chiarelli, E.; Fiorentini, G.; Raptis, K.G.C.; Realini, E.; Reguzzoni, M.; Rossi, L.; Sampietro, D.; et al. Accuracy of flight altitude measured with low-cost GNSS, radar and barometer sensors: Implications for airborne radiometric surveys. Sensors 2017, 17, 1889. [Google Scholar] [CrossRef] [PubMed]
- Michalk, D.L.; Herbert, P.K. Assessment of four techniques for estimating yield on dryland pastures. Agron. J. 1977, 69, 864–868. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating forage mass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef]
- Litherland, A.J.; Webby, R.R.J.; Fraser, T.A.; Matthew, C.O.; McCleod, K.A.; Walcroft, J.; Bryant, J.; Devantier, B.; Hoogendoorn, C.J.; Moss, R.; et al. Indirect measurement of pasture mass and pasture growth rate on sheep and beef pastures. Proc. N. Z. Grassl. Assoc. 2008, 70, 137–144. [Google Scholar] [CrossRef]
- Michell, P.; Large, R.V. The estimation of herbage mass of perennial ryegrass swards: A comparative evaluation of a rising-plate meter and a single-probe capacitance meter calibrated at and above ground level. Grass Forage Sci. 1983, 38, 295–299. [Google Scholar] [CrossRef]
- Garay, A.H.; Matthew, C.; Hodgson, J. Tiller size/density compensation in perennial ryegrass miniature swards subject to differing defoliation heights and a proposed productivity index. Grass Forage Sci. 1999, 54, 347–356. [Google Scholar] [CrossRef]
- Zimpel, T.; Perdana-Decker, S.; Leukel, J.; Scheurer, L.; Dickhoefer, U.; Werner, J. P42 Estimating pasture yield using machine learning and weather data: Effect of small and large prediction horizons. Anim.-Sci. Proc. 2023, 14, 628–629. [Google Scholar] [CrossRef]
Trial | Year | Farms (n) | Altitude (m above Sea Level) | Annual Precipitation 1 (mm) | Annual Ambient Air Temperature 1 (°C) | Number of Paddocks (n) | Paddock Size (ha) | Sampling Area (m2) | Measurement Points er Sampling (n) | Observations per Trial before Cleaning (n) | Observations per Trial after Cleaning (n) | Sample Drying |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2019 | 7 | 580 ± 202 | 975 ± 104 | 9.9 ± 1.2 | 4 ± 2.8 | 3.0 ± 1.7 | 1.00 | 5 | 287 | 220 | 45 °C 72 h |
2 | 2019 | 1 | 682 | 1212 | 8.4 | 1 | 3.0 | 0.25 | 3 | 283 | 264 | 100 °C 24 h |
3 | 2019 | 2 | 1087 ± 202 | 1174 | 7 | 5 ± 0.5 | 9.3 ± 2.5 | 0.25 | 5 | 533 | 482 | 60 °C 48 h |
4 | 2019 | 1 | 534 | 1878 | 10.5 | 1 | - | 0.25 | 3 | 39 | 37 | 60 °C 48 h |
5 | 2020 | 7 | 536 ± 206 | 774 ± 79 | 10.1 ± 1.1 | 3 ± 2.8 | 4.0 ± 1.3 | 1.00 | 5 | 429 | 290 | 45 °C 72 h |
6 | 2020 | 4 | 916 ± 80 | 1143 | 8.4 | 3 ± 0.5 | 7.8 ± 2.1 | 1.00 | 5 | 305 | 113 | 45 °C 72 h |
7 | 2021 | 4 | 919 ± 72 | 1324 | 6.9 | 2 ± 0.7 | 8.9 ± 4.0 | 1.00 | 5 | 238 | 105 | 45 °C 72 h |
Dependent Variable | Mean | Standard Deviation | Min | Median | Max | |
---|---|---|---|---|---|---|
Herbage mass | kg dry matter/ha | 1218 | 774 | 59 | 1088 | 3538 |
Independent variables | ||||||
Month | from 0 to 12 | 7 | 2 | 4 | 7 | 11 |
Week | from 0 to 52 | 30 | 8 | 17 | 29 | 45 |
Altitude | m above sea level | 799 | 284 | 302 | 807 | 1297 |
Precipitation 1 | mm | 88.6 | 46.9 | 0.4 | 77.3 | 285.4 |
Annual precipitation | mm | 1100 | 219 | 665 | 1174 | 1878 |
Mean ambient air temperature 1 | °C | 13.6 | 4.5 | 3.5 | 15.2 | 20.6 |
Annual temperature | °C | 8.7 | 1.3 | 6.9 | 8.4 | 11.5 |
Canopy cover | % | 91 | 8 | 70 | 90 | 100 |
CSHpre | mm | 83.2 | 39.0 | 4.2 | 79.0 | 215.4 |
CSHpost | mm | 40.5 | 16.2 | 0.2 | 38.6 | 103.8 |
CSHpre-CSHpost | mm | 42.7 | 29.7 | 0.8 | 34.8 | 163.2 |
Dry matter | g/100 g fresh matter | 26.0 | 7.8 | 7.0 | 24.0 | 50.0 |
Density | kg ha/m3 | 141 | 61 | 50 | 134 | 465 |
Season | spring (18%), summer (52%), autumn (30%) | |||||
Sampling position | inside the cage (16%), outside the cage (84%) | |||||
Botanical composition | grass-rich (18%), herb-rich (33%), balanced (49%) | |||||
Slope | flat (33%), hilly (43%), steep (24%) | |||||
Grazing system | continuous (7%), rotational (71%), short grass (22%) |
Observed Herbage Mass | Predicted Herbage Mass | MSPE | CCC | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation | RMSE | RMSE | ECT | ER | ED | CCC | ρ | Cb | ||
(kg DM/ha) | (kg DM/ha) | (kg DM/ha) | (% of Observed Herbage Mass) | (% of MSPE) | (% of MSPE) | (% of MSPE) | From −1 to 1 | From −1 to 1 | From 0 to 1 | |
1 | 1218 | 1223 | 540 | 44.3 | 0.01 | 24.97 | 75.03 | 0.79 | 0.80 | 0.99 |
2 | 1218 | 1923 | 1291 | 106.0 | 29.83 | 53.74 | 16.43 | 0.51 | 0.74 | 0.69 |
3 | 1218 | 1218 | 421 | 34.6 | - | - | - | 0.83 | 0.84 | 0.98 |
Observed Herbage Mass | Predicted Herbage Mass | MSPE | CCC | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation | RMSE | RMSE | ECT | ER | ED | CCC | ρ | Cb | ||
(kg DM/ha) | (kg DM/ha) | (kg DM/ha) | (% of Observed Herbage Mass) | (% of MSPE) | (% of MSPE) | (% of MSPE) | From −1 to 1 | From −1 to 1 | From 0 to 1 | |
1 | 948 | 1096 | 452 | 47.7 | 10.81 | 36.51 | 52.69 | 0.84 | 0.88 | 0.95 |
2 | 948 | 1619 | 1068 | 112.7 | 39.49 | 49.59 | 10.92 | 0.58 | 0.86 | 0.68 |
Variable | Unit | Estimate | SE | p-Value |
---|---|---|---|---|
Intercept | kg dry matter/ha | −1754 | 132.0 | <0.01 |
CSHpre | mm | 17.7 | 0.52 | <0.01 |
Slope | ||||
flat | 0 | - | - | |
hilly | 140 | 62.7 | 0.03 | |
steep | 134 | 71.1 | 0.06 | |
Cover | % | 15 | 1.5 | <0.01 |
Altitude | m above sea level | 0.39 | 0.05 | <0.01 |
CSHpre × Slope | ||||
flat | 0 | - | - | |
hilly | −3.5 | 0.66 | <0.01 | |
steep | −4.9 | 0.77 | <0.01 | |
Adjusted R2 | 0.71 | |||
RMSE | 421 kg dry matter/ha; 35% of observed mean | |||
MAPE | 316 kg dry matter/ha; 35% of observed mean |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werner, J.; Salazar-Cubillas, K.; Perdana-Decker, S.; Obermeyer, K.; Velasco, E.; Hart, L.; Dickhoefer, U. Development of a Robust Sensor Calibration for a Commercially Available Rising Platemeter to Estimate Herbage Mass on Temperate Seminatural Pastures. Sensors 2024, 24, 2326. https://doi.org/10.3390/s24072326
Werner J, Salazar-Cubillas K, Perdana-Decker S, Obermeyer K, Velasco E, Hart L, Dickhoefer U. Development of a Robust Sensor Calibration for a Commercially Available Rising Platemeter to Estimate Herbage Mass on Temperate Seminatural Pastures. Sensors. 2024; 24(7):2326. https://doi.org/10.3390/s24072326
Chicago/Turabian StyleWerner, Jessica, Khaterine Salazar-Cubillas, Sari Perdana-Decker, Kilian Obermeyer, Elizabeth Velasco, Leonie Hart, and Uta Dickhoefer. 2024. "Development of a Robust Sensor Calibration for a Commercially Available Rising Platemeter to Estimate Herbage Mass on Temperate Seminatural Pastures" Sensors 24, no. 7: 2326. https://doi.org/10.3390/s24072326
APA StyleWerner, J., Salazar-Cubillas, K., Perdana-Decker, S., Obermeyer, K., Velasco, E., Hart, L., & Dickhoefer, U. (2024). Development of a Robust Sensor Calibration for a Commercially Available Rising Platemeter to Estimate Herbage Mass on Temperate Seminatural Pastures. Sensors, 24(7), 2326. https://doi.org/10.3390/s24072326