Future Industrial Applications: Exploring LPWAN-Driven IoT Protocols
Abstract
:1. Introduction
- We compare and contrast the six most widely used IoT communication protocol standards (Sigfox, LoRa, Z-Wave, NB-IoT, LTE-M, and RedCap). In order to comprehend the fundamental differences between the technologies, we first provide a summary of their network architectures. Next, we compare their various important performance parameters, including power utilization, cost, range, data rate, QoS, and security. We also review them from an application perspective in various industrial settings.
- As per our knowledge, we are the first to make a comparative analysis of the NR-based protocol RedCap with ISM-based protocols.
- We, therefore, demonstrate that LPWAN protocols are the protocols of the future for the upcoming industrial revolution and offer the optimal application perspective and case studies for the Industrial Internet of Things (IIoT).
- Finally, we discuss some of the key challenges present in the current technologies that require attention and are open for future research exploration in IoT correspondence.
2. Literature Survey
3. Wireless Protocols Architecture
3.1. LoRaWAN
3.2. Sigfox
3.3. NB-IoT
3.4. LTE-M
3.5. Z-Wave
3.6. RedCap
4. Performance Comparison
4.1. Data Rate
4.2. Range
4.3. Energy Consumption
4.4. Cost
4.5. Security
4.6. QoS
5. Industrial Application Perspective
5.1. Smart City
5.2. Intelligent Logistics and Transportation
5.3. Smart Farming and Agriculture
5.4. Smart Home
5.5. Terminals for Retail Sales
5.6. Smart Environment
5.7. Energy Management
5.8. Manufacturing and Automated Industries
5.9. Asset Tracking and Monitoring
5.10. Wearables and Health
5.11. Work Safety
6. Open Issue
6.1. Scalability
6.2. Complexity and Interoperability
6.3. Integration
6.4. Security and Privacy
6.5. Single Point Gateway
6.6. ALOHA-Based Access
6.7. Data Management
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | 3rd Generation Partnership Project |
AES | Advanced Encryption Standard |
AMQP | Advanced Message Queuing Protocol |
ALOHA | Advocates of Linux Open-source Hawaii Association-based |
AR | Augmented Reality |
CSS | Chirp Spread Spectrum |
CoAP | Constrained Application Protocol |
EC-GSM-IoT | Extended coverage GSM IoT |
eMBB | Enhanced Mobile Broadband |
EPC | Evolved Packet Core |
EU | Europe |
FDMA | Frequency Division Multiple Access |
FR1 | Frequency Range 1 |
FR2 | Frequency Range 2 |
HAN | Home Area Network |
HSS | Home Subscriber Server |
ISM | Industrial, Scientific and Medical |
ITS | Intelligent Transportation Systems |
LTE-M | Long Term Evolution for Machines |
LPWAN | Low Power Wide Area Network |
M2M | Machine-to-Machine |
MIMO | Multiple-Input and Multiple-Output |
MME | Mobility Management Entity |
mMTC | Massive Machine-Type Communications |
MTU | Maximum Transmission Unit |
MQTT | MQ Telemetry Transport |
NA | North America |
NB-IoT | Narrow Band Internet of Things |
NR | New Radio |
OFDM | Orthogonal Frequency-division Multiplexing |
PGW | Packet Gateway |
PAN | Private Area Network |
QPSK | Quadrature Phase Shift Keying |
RedCap | Reduced Capability |
RSUs | Road Side Units |
SGW | Serving Gateway |
UNB | Ultra Narrow Band |
URLLC | Ultra-Reliable Low Latency Communications |
VR | Virtual Reality |
WSN | Wireless Sensor Networks |
References
- Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express 2023, 9, 296–312. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design principles for industrie 4.0 scenarios. In Proceedings of the 2016 49th IEEE Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar]
- IBM. What Is Industry 4.0? 2022. Available online: https://www.ibm.com/topics/industry-4-0 (accessed on 20 February 2024).
- Subhashini, R.; Khang, A. The role of Internet of Things (IoT) in smart city framework. In Smart Cities; CRC Press: Boca Raton, FL, USA, 2023; pp. 31–56. [Google Scholar]
- Carson, S.; Davies, S. Ericsson Mobility Report; Ericsson: Stockholm, Sweden, 2022. [Google Scholar]
- Kanellopoulos, D.; Sharma, V.K.; Panagiotakopoulos, T.; Kameas, A. Networking Architectures and Protocols for IoT Applications in Smart Cities: Recent Developments and Perspectives. Electronics 2023, 12, 2490. [Google Scholar] [CrossRef]
- Alotaibi, A.; Barnawi, A. Securing massive IoT in 6G: Recent solutions, architectures, future directions. Internet Things 2023, 22, 100715. [Google Scholar] [CrossRef]
- Cheimaras, V.; Peladarinos, N.; Monios, N.; Daousis, S.; Papagiakoumos, S.; Papageorgas, P.; Piromalis, D. Emergency Communication System Based on Wireless LPWAN and SD-WAN Technologies: A Hybrid Approach. Signals 2023, 4, 315–336. [Google Scholar] [CrossRef]
- Jouhari, M.; Saeed, N.; Alouini, M.S.; Amhoud, E.M. A survey on scalable LoRaWAN for massive IoT: Recent advances, potentials, and challenges. IEEE Commun. Surv. Tutor. 2023, 25, 1841–1876. [Google Scholar] [CrossRef]
- Khan, M.A.; Anjum, M.; Hassan, S.A.; Jung, H. Applications of LPWANs. In Low-Power Wide-Area Networks: Opportunities, Challenges, Risks and Threats; Springer: Berlin, Germany, 2023; pp. 171–209. [Google Scholar]
- Senthilkumar, S.P.; Subramani, B. Internet of Things in Low-Power Wide Area Network and Short Range Network: A Review. i-Manag. J. Comput. Sci. 2023, 10, 33. [Google Scholar]
- Sneha; Malik, P.; Das, S.; Inthiyaz, S. Long-Range Technology-Enabled Smart Communication: Challenges and Comparison. J. Circuits Syst. Comput. 2023, 32, 2350161. [Google Scholar]
- Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN technologies: Emerging application characteristics, requirements, and design considerations. Future Internet 2020, 12, 46. [Google Scholar] [CrossRef]
- Polak, L.; Milos, J. Performance analysis of LoRa in the 2.4 GHz ISM band: Coexistence issues with Wi-Fi. Telecommun. Syst. 2020, 74, 299–309. [Google Scholar] [CrossRef]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A study of LoRa: Long range & low power networks for the internet of things. Sensors 2016, 16, 1466. [Google Scholar] [CrossRef]
- Gomez, C.; Veras, J.C.; Vidal, R.; Casals, L.; Paradells, J. A sigfox energy consumption model. Sensors 2019, 19, 681. [Google Scholar] [CrossRef] [PubMed]
- Hoglund, A.; Medina-Acosta, G.A.; Veedu, S.N.K.; Liberg, O.; Tirronen, T.; Yavuz, E.A.; Bergman, J. 3GPP Release-16 preconfigured uplink resources for LTE-M and NB-IoT. IEEE Commun. Stand. Mag. 2020, 4, 50–56. [Google Scholar] [CrossRef]
- Moloudi, S.; Mozaffari, M.; Veedu, S.N.K.; Kittichokechai, K.; Wang, Y.P.E.; Bergman, J.; Höglund, A. Coverage evaluation for 5G reduced capability new radio (NR-RedCap). IEEE Access 2021, 9, 45055–45067. [Google Scholar] [CrossRef]
- Fattah, H. 5G LTE Narrowband Internet of Things, (NB-IoT); CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wang, Y.P.E.; Lin, X.; Adhikary, A.; Grovlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A primer on 3GPP narrowband Internet of Things. IEEE Commun. Mag. 2017, 55, 117–123. [Google Scholar] [CrossRef]
- Ratasuk, R.; Mangalvedhe, N.; Bhatoolaul, D.; Ghosh, A. LTE-M evolution towards 5G massive MTC. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Veedu, S.N.K.; Mozaffari, M.; Höglund, A.; Thangarasa, S.; Yavuz, E.A.; Bergman, J. Redcap—Expanding the 5g Device Ecosystem for Consumers and Industries; Ericsson, Whitepaper: Stockholm, Sweden, 2023. [Google Scholar]
- Khalifeh, A.; Aldahdouh, K.A.; Darabkh, K.A.; Al-Sit, W. A survey of 5G emerging wireless technologies featuring LoRaWAN, Sigfox, NB-IoT and LTE-M. In Proceedings of the 2019 IEEE International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 561–566. [Google Scholar]
- Glória, A.; Cercas, F.; Souto, N. Comparison of communication protocols for low cost Internet of Things devices. In Proceedings of the 2017 IEEE South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Kastoria, Greece, 23–25 September 2017; pp. 1–6. [Google Scholar]
- Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) communication protocols. In Proceedings of the 2017 8th IEEE International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 685–690. [Google Scholar]
- Moraes, T.; Nogueira, B.; Lira, V.; Tavares, E. Performance comparison of IoT communication protocols. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 3249–3254. [Google Scholar]
- Mroue, H.; Nasser, A.; Hamrioui, S.; Parrein, B.; Motta-Cruz, E.; Rouyer, G. MAC layer-based evaluation of IoT technologies: LoRa, SigFox and NB-IoT. In Proceedings of the 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM), Jounieh, Lebanon, 18–20 April 2018; pp. 1–5. [Google Scholar]
- Chen, J.; Hu, K.; Wang, Q.; Sun, Y.; Shi, Z.; He, S. Narrowband internet of things: Implementations and applications. IEEE Internet Things J. 2017, 4, 2309–2314. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (Percom Workshops), Athens, Greece, 19–23 March 2018; pp. 197–202. [Google Scholar]
- Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of capacity and scalability of the LoRa low power wide area network technology. In Proceedings of the 2016 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016; pp. 1–6. [Google Scholar]
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef]
- Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Lieske, H.; Kilian, G.; Breiling, M.; Rauh, S.; Robert, J.; Heuberger, A. Decoding performance in low-power wide area networks with packet collisions. IEEE Trans. Wirel. Commun. 2016, 15, 8195–8208. [Google Scholar] [CrossRef]
- Varsier, N.; Dufrène, L.A.; Dumay, M.; Lampin, Q.; Schwoerer, J. A 5G new radio for balanced and mixed IoT use cases: Challenges and key enablers in FR1 band. IEEE Commun. Mag. 2021, 59, 82–87. [Google Scholar] [CrossRef]
- Moges, T.H.; Lakew, D.S.; Nguyen, N.P.; Dao, N.N.; Cho, S. Cellular Internet of Things: Use cases, technologies, and future work. Internet Things 2023, 24, 100910. [Google Scholar] [CrossRef]
- Çorak, B.H.; Okay, F.Y.; Güzel, M.; Murt, Ş.; Ozdemir, S. Comparative analysis of IoT communication protocols. In Proceedings of the 2018 IEEE International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018; pp. 1–6. [Google Scholar]
- Dizdarević, J.; Carpio, F.; Jukan, A.; Masip-Bruin, X. A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration. ACM Comput. Surv. (CSUR) 2019, 51, 116. [Google Scholar] [CrossRef]
- Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef]
- Sforza, F. Communications System. U.S. Patent 8,406,275, 26 March 2013. Available online: https://www.google.com/patents/US8406275 (accessed on 12 March 2024).
- Piechowiak, M.; Zwierzykowski, P.; Musznicki, B. LoRaWAN metering infrastructure planning in smart cities. Appl. Sci. 2023, 13, 8431. [Google Scholar] [CrossRef]
- Samie, F.; Bauer, L.; Henkel, J. IoT technologies for embedded computing: A survey. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10. [Google Scholar]
- Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. Lorawan Specification; LoRa Alliance: Fremont, CA, USA, 2015; p. 1. [Google Scholar]
- Buurman, B.; Kamruzzaman, J.; Karmakar, G.; Islam, S. Low-power wide-area networks: Design goals, architecture, suitability to use cases and research challenges. IEEE Access 2020, 8, 17179–17220. [Google Scholar] [CrossRef]
- Rastogi, E.; Saxena, N.; Roy, A.; Shin, D.R. Narrowband internet of things: A comprehensive study. Comput. Netw. 2020, 173, 107209. [Google Scholar] [CrossRef]
- Moltchanov, D.; Sopin, E.; Begishev, V.; Samuylov, A.; Koucheryavy, Y.; Samouylov, K. A tutorial on mathematical modeling of 5G/6G millimeter wave and terahertz cellular systems. IEEE Commun. Surv. Tutor. 2022, 24, 1072–1116. [Google Scholar] [CrossRef]
- Kabilamani, P.; Gomathy, C. Implementation of Downlink Physical Channel Processing Architecture for NB-IoT Using LTE/5G Networks. Wirel. Pers. Commun. 2021, 116, 3527–3551. [Google Scholar] [CrossRef]
- Borkar, S.R. Long-term evolution for machines (LTE-M). In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–166. [Google Scholar]
- Sørensen, A.; Wang, H.; Remy, M.J.; Kjettrup, N.; Sørensen, R.B.; Nielsen, J.J.; Popovski, P.; Madueño, G.C. Modeling and experimental validation for battery lifetime estimation in nb-iot and lte-m. IEEE Internet Things J. 2022, 9, 9804–9819. [Google Scholar] [CrossRef]
- Zayas, A.D.; Merino, P. The 3GPP NB-IoT system architecture for the Internet of Things. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 277–282. [Google Scholar]
- Iqbal, M.; Abdullah, A.Y.M.; Shabnam, F. An application based comparative study of LPWAN technologies for IoT environment. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1857–1860. [Google Scholar]
- Lawson, E. Making Sense of IoT Standards; Technical Report; Redbend: Waltham, MA, USA, 2015. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Fouladi, B.; Ghanoun, S. Security evaluation of the Z-Wave wireless protocol. Black Hat USA 2013, 24, 1–2. [Google Scholar]
- Salman, T.; Jain, R. Networking protocols and standards for internet of things. In Internet of Things and Data Analytics Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; Volume 13, pp. 215–238. [Google Scholar]
- Ab Rahman, A.B.; Azamuddin, R. Comparison of Internet of Things (IoT) Data Link Protocols; Technical Report; Washington University in St Louis: St. Louis, MO, USA, 2015. [Google Scholar]
- Ericsso. 5G Wireless Access: An Overview; White Paper; Ericsson: Stockholm, Sweden, 2020. [Google Scholar]
- 3GPP. Key Directions for Release 17; doc. RP-190831; Technical Report; Nokia: Newport Beach, CA, USA, 2019. [Google Scholar]
- Baker, S.; Xiang, W. Artificial Intelligence of Things for Smarter Healthcare: A Survey of Advancements, Challenges, and Opportunities. IEEE Commun. Surv. Tutor. 2023, 25, 1261–1293. [Google Scholar] [CrossRef]
- Ratasuk, R.; Mangalvedhe, N.; Lee, G.; Bhatoolaul, D. Reduced capability devices for 5G IoT. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1339–1344. [Google Scholar]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Hassan, M.B.; Ali, E.S.; Mokhtar, R.A.; Saeed, R.A.; Chaudhari, B.S. NB-IoT: Concepts, applications, and deployment challenges. In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–144. [Google Scholar]
- Dragomir, D.; Gheorghe, L.; Costea, S.; Radovici, A. A survey on secure communication protocols for IoT systems. In Proceedings of the 2016 IEEE International Workshop on Secure Internet of Things (SIoT), Heraklian, Greece, 26–30 September 2016; pp. 47–62. [Google Scholar]
- Mansour, M.; Gamal, A.; Ahmed, A.I.; Said, L.A.; Elbaz, A.; Herencsar, N.; Soltan, A. Internet of things: A comprehensive overview on protocols, architectures, technologies, simulation tools, and future directions. Energies 2023, 16, 3465. [Google Scholar] [CrossRef]
- Soy, H. Coverage Analysis of LoRa and NB-IoT Technologies on LPWAN-Based Agricultural Vehicle Tracking Application. Sensors 2023, 23, 8859. [Google Scholar] [CrossRef] [PubMed]
- 3GPP. RP 191047 NR-Lite for Industrial Sensors and Wearables; Technical Report; Ericsson: Newport Beach, CA, USA, 2019. [Google Scholar]
- Mehboob, U.; Zaib, Q.; Usama, C. Survey of IoT Communication Protocols Techniques, Applications, and Issues; xFlow Research Inc.: Islamabad, Pakistan, 2016. [Google Scholar]
- Aragues, A.; Martinez, I.; Del Valle, P.; Munoz, P.; Escayola, J.; Trigo, J.D. Trends in entertainment, home automation and e-health: Toward cross-domain integration. IEEE Commun. Mag. 2012, 50, 160–167. [Google Scholar] [CrossRef]
- Oh, S.M.; Shin, J. An efficient small data transmission scheme in the 3GPP NB-IoT system. IEEE Commun. Lett. 2016, 21, 660–663. [Google Scholar] [CrossRef]
- Koelmel, B.; Borsch, M.; Bulander, R.; Waidelich, L.; Brugger, T.; Kuehn, A.; Weyer, M.; Schmerber, L.; Krutwig, M. Quantifying the Economic and Financial Viability of NB-IoT and LoRaWAN Technologies: A Comprehensive Life Cycle Cost Analysis Using Pragmatic Computational Tools. FinTech 2023, 2, 510–526. [Google Scholar] [CrossRef]
- Saqib, M.; Moon, A.H. A systematic security assessment and review of Internet of things in the context of authentication. Comput. Secur. 2023, 125, 103053. [Google Scholar] [CrossRef]
- LoRa Alliance. A Technical Overview of LoRa and LoRaWAN. White Paper; LoRa Alliance: Fremont, CA, USA, 2015. [Google Scholar]
- Lauridsen, M.; Krigslund, R.; Rohr, M.; Madueno, G. An empirical NB-IoT power consumption model for battery lifetime estimation. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar]
- Oliveira, L.; Rodrigues, J.J.; Kozlov, S.A.; Rabêlo, R.A.; Albuquerque, V.H.C.d. MAC layer protocols for Internet of Things: A survey. Future Internet 2019, 11, 16. [Google Scholar] [CrossRef]
- Hossain, M.I.; Markendahl, J.I. Comparison of LPWAN technologies: Cost structure and scalability. Wirel. Pers. Commun. 2021, 121, 887–903. [Google Scholar] [CrossRef]
- Tan, S.F.; Samsudin, A. Recent technologies, security countermeasure and ongoing challenges of Industrial Internet of Things (IIoT): A survey. Sensors 2021, 21, 6647. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.L.; Huang, Y.L.; Leu, F.Y.; You, I.; Huang, Y.L.; Tsai, C.H. AES-128 based secure low power communication for LoRaWAN IoT environments. IEEE Access 2018, 6, 45325–45334. [Google Scholar] [CrossRef]
- Chacko, S.; Job, M.D. Security mechanisms and Vulnerabilities in LPWAN. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 20–21 April 2018, Kerala, India; IOP Publishing: Bristol, UK, 2018; Volume 396, p. 012027. [Google Scholar]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low power wide area networks: An overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef]
- Wang, H.; Yu, F.R.; Jiang, H. Modeling of radio channels with leaky coaxial cable for LTE-M based CBTC systems. IEEE Commun. Lett. 2016, 20, 1038–1041. [Google Scholar] [CrossRef]
- Noreen, U.; Bounceur, A.; Clavier, L. A study of LoRa low power and wide area network technology. In Proceedings of the 2017 IEEE International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar]
- Thaenkaew, P.; Quoitin, B.; Meddahi, A. Evaluating the cost of beyond AES-128 LoRaWAN security. In Proceedings of the 2022 IEEE International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 19–22 July 2022; pp. 1–6. [Google Scholar]
- Sangar, Y.; Krishnaswamy, B. WiChronos: Energy-efficient modulation for long-range, large-scale wireless networks. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020; pp. 1–14. [Google Scholar]
- Dawaliby, S.; Bradai, A.; Pousset, Y. In depth performance evaluation of LTE-M for M2M communications. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016; pp. 1–8. [Google Scholar]
- Fuller, J.D.; Ramsey, B.W.; Rice, M.J.; Pecarina, J.M. Misuse-based detection of Z-Wave network attacks. Comput. Secur. 2017, 64, 44–58. [Google Scholar] [CrossRef]
- Baviskar, A.; Baviskar, J.; Wagh, S.; Mulla, A.; Dave, P. Comparative study of communication technologies for power optimized automation systems: A review and implementation. In Proceedings of the 2015 Fifth IEEE International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015; pp. 375–380. [Google Scholar]
- Gvozdenovic, S.; Becker, J.K.; Mikulskis, J.; Starobinski, D. IoT-Scan: Network Reconnaissance for the Internet of Things. IEEE Internet Things J. 2023, 11, 13091–13107. [Google Scholar] [CrossRef]
- Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and bluetooth wireless technologies used in home automation. In Proceedings of the 2019 7th IEEE International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–5. [Google Scholar]
- Hasanaj, R.; Abuhemidan, A. Air-Quality Sensor with 10-Years Lifespan; HKR: Kristianstad, Sweden, 2019. [Google Scholar]
- Leussink, S.; Kohlmann, R.; BV, D.S. Wireless standards for home automation, energy, care and security devices. In DECT ULE Whitepaper; Renesas: Tokyo, Japan, 2012. [Google Scholar]
- Veedu, S.N.K.; Mozaffari, M.; Höglund, A.; Yavuz, E.A.; Tirronen, T.; Bergman, J.; Wang, Y.P.E. Toward smaller and lower-cost 5 g devices with longer battery life: An overview of 3 gpp release 17 redcap. IEEE Commun. Stand. Mag. 2022, 6, 84–90. [Google Scholar] [CrossRef]
- Ballerini, M.; Polonelli, T.; Brunelli, D.; Magno, M.; Benini, L. NB-IoT versus LoRaWAN: An experimental evaluation for industrial applications. IEEE Trans. Ind. Inform. 2020, 16, 7802–7811. [Google Scholar] [CrossRef]
- Martinez, B.; Vilajosana, X.; Vilajosana, I.; Dohler, M. Lean sensing: Exploiting contextual information for most energy-efficient sensing. IEEE Trans. Ind. Inform. 2015, 11, 1156–1165. [Google Scholar] [CrossRef]
- Nor, R.F.A.M.; Zaman, F.H.; Mubdi, S. Smart traffic light for congestion monitoring using LoRaWAN. In Proceedings of the 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 4–5 August 2017; pp. 132–137. [Google Scholar]
- Poddar, N.; Khan, S.Z.; Mass, J.; Srirama, S.N. Coverage analysis of nb-iot and sigfox: Two estonian university campuses as a case study. In Proceedings of the 2020 IEEE International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1491–1497. [Google Scholar]
- Shahgholi, T.; Sheikhahmadi, A.; Khamforoosh, K.; Azizi, S. LPWAN-based hybrid backhaul communication for intelligent transportation systems: Architecture and performance evaluation. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 35. [Google Scholar] [CrossRef]
- Shi, J.; Jin, L.; Li, J.; Fang, Z. A smart parking system based on NB-IoT and third-party payment platform. In Proceedings of the 2017 17th IEEE International Symposium on Communications and Information Technologies (ISCIT), Cairns, Australia, 25–27 September 2017; pp. 1–5. [Google Scholar]
- Ray, P.P. Internet of things for smart agriculture: Technologies, practices and future direction. J. Ambient. Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Suji Prasad, S.; Thangatamilan, M.; Suresh, M.; Panchal, H.; Rajan, C.A.; Sagana, C.; Gunapriya, B.; Sharma, A.; Panchal, T.; Sadasivuni, K.K. An efficient LoRa-based smart agriculture management and monitoring system using wireless sensor networks. Int. J. Ambient. Energy 2022, 43, 5447–5450. [Google Scholar] [CrossRef]
- Yamazaki, S.; Nakajima, Y. A Sigfox Energy Consumption Model via Field Trial: Case of Smart Agriculture. IEEE Access 2023, 11, 145320–145330. [Google Scholar] [CrossRef]
- Pagano, A.; Croce, D.; Tinnirello, I.; Vitale, G. A Survey on LoRa for Smart Agriculture: Current Trends and Future Perspectives. IEEE Internet Things J. 2022, 10, 3664–3679. [Google Scholar] [CrossRef]
- Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture. Sensors 2020, 20, 2028. [Google Scholar] [CrossRef] [PubMed]
- Orfanos, V.A.; Kaminaris, S.D.; Papageorgas, P.; Piromalis, D.; Kandris, D. A Comprehensive Review of IoT Networking Technologies for Smart Home Automation Applications. J. Sens. Actuator Netw. 2023, 12, 30. [Google Scholar] [CrossRef]
- Islam, R.; Rahman, M.W.; Rubaiat, R.; Hasan, M.M.; Reza, M.M.; Rahman, M.M. LoRa and server-based home automation using the internet of things (IoT). J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 3703–3712. [Google Scholar] [CrossRef]
- Nanni, S.; Benetti, E.; Mazzini, G. Indoor monitoring in Public Buildings: Workplace wellbeing and energy consumptions. An example of IoT for smart cities application. Adv. Sci. Technol. Eng. Syst 2017, 2, 884–890. [Google Scholar] [CrossRef]
- Vatcharatiansakul, N.; Tuwanut, P.; Pornavalai, C. Experimental performance evaluation of LoRaWAN: A case study in Bangkok. In Proceedings of the 2017 14th IEEE International Joint Conference on Computer Science and Software Engineering (JCSSE), Nakhon Si Thammarat, Thailand, 12–14 July 2017; pp. 1–4. [Google Scholar]
- Saarikko, T.; Westergren, U.H.; Blomquist, T. The Internet of Things: Are you ready for what’s coming? Bus. Horizons 2017, 60, 667–676. [Google Scholar] [CrossRef]
- Govea, J.; Gaibor-Naranjo, W.; Sanchez-Viteri, S.; Villegas-Ch, W. Integration of Data and Predictive Models for the Evaluation of Air Quality and Noise in Urban Environments. Sensors 2024, 24, 311. [Google Scholar] [CrossRef]
- Kabalcı, Y.; Ali, M. Emerging LPWAN technologies for smart environments: An outlook. In Proceedings of the 2019 1st IEEE Global Power, Energy and Communication Conference (GPECOM), Cappadocia, Turkey, 12–15 June 2019; pp. 24–29. [Google Scholar]
- Saravanan, M.; Das, A.; Iyer, V. Smart water grid management using LPWAN IoT technology. In Proceedings of the 2017 IEEE Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–6. [Google Scholar]
- Villarim, M.R.; de Luna, J.V.H.; de Farias Medeiros, D.; Pereira, R.I.S.; de Souza, C.P.; Baiocchi, O.; da Cunha Martins, F.C. An evaluation of LoRa communication range in urban and forest areas: A case study in brazil and portugal. In Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 827–832. [Google Scholar]
- Jain, S.; Pradish, M.; Paventhan, A.; Saravanan, M.; Das, A. Smart energy metering using LPWAN IoT technology. In Proceedings of the ISGW 2017: Compendium of Technical Papers: 3rd International Conference and Exhibition on Smart Grids and Smart Cities; Springer: Berlin, Germany, 2018; pp. 19–28. [Google Scholar]
- Zaraket, C.; Papageorgas, P.; Aillerie, M.; Agavanakis, K. LoRaWAN IoT technology for energy smart metering case study Lebanon. In Key Engineering Materials; Trans Tech Publications: Baech, Switzerland, 2021; Volume 886, pp. 30–41. [Google Scholar]
- Judge, M.A.; Manzoor, A.; Khattak, H.A.; Din, I.U.; Almogren, A.; Adnan, M. Secure transmission lines monitoring and efficient electricity management in ultra-reliable low latency industrial internet of things. Comput. Stand. Interfaces 2021, 77, 103500. [Google Scholar] [CrossRef]
- Farooq, M.S.; Abdullah, M.; Riaz, S.; Alvi, A.; Rustam, F.; Flores, M.A.L.; Galán, J.C.; Samad, M.A.; Ashraf, I. A Survey on the Role of Industrial IoT in Manufacturing for Implementation of Smart Industry. Sensors 2023, 23, 8958. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasilakos, A.V. Software-defined industrial internet of things in the context of industry 4.0. IEEE Sens. J. 2016, 16, 7373–7380. [Google Scholar] [CrossRef]
- Sánchez-Sutil, F.; Cano-Ortega, A. Design and testing of a power analyzer monitor and programming device in industries with a lora lpwan network. Electronics 2021, 10, 453. [Google Scholar] [CrossRef]
- Pointl, M.; Fuchs-Hanusch, D. Assessing the potential of LPWAN communication technologies for near real-time leak detection in water distribution systems. Sensors 2021, 21, 293. [Google Scholar] [CrossRef] [PubMed]
- Kaburaki, A.; Adachi, K.; Takyu, O.; Ohta, M.; Fujii, T. Adaptive Resource Allocation Utilizing Periodic Traffic and Clock Drift in LPWAN. IEEE Trans. Wirel. Commun. 2023. early access. [Google Scholar]
- Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the use of LoRaWAN for indoor industrial IoT applications. Wirel. Commun. Mob. Comput. 2018, 2018, 3982646. [Google Scholar] [CrossRef]
- Beliatis, M.J.; Jensen, K.; Ellegaard, L.; Aagaard, A.; Presser, M. Next generation industrial IoT digitalization for traceability in metal manufacturing industry: A case study of industry 4.0. Electronics 2021, 10, 628. [Google Scholar] [CrossRef]
- Pagin, M.; Zugno, T.; Giordani, M.; Dufrene, L.A.; Lampin, Q.; Zorzi, M. 5G NR-Light at Millimeter Waves: Design Guidelines for Mid-Market IoT Use Cases. In Proceedings of the 2023 IEEE International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 20–22 February 2023; pp. 652–658. [Google Scholar]
- Di Renzone, G.; Fort, A.; Mugnaini, M.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Interoperability among sub-GHz technologies for metallic assets tracking and monitoring. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Rome, Italy, 3–5 June 2020; pp. 131–136. [Google Scholar]
- Formosa, F.; Malgeri, M.; Vigo, M. A LPWAN Case Study for Asset Tracking. In Data Science and Internet of Things: Research and Applications at the Intersection of DS and IoT; Springer: Cham, Switzerland, 2021; pp. 63–81. [Google Scholar]
- Khalid, R.; Ejaz, W. Internet of Things-based On-demand Rental Asset Tracking and Monitoring System. In Proceedings of the 2022 5th IEEE International Conference on Information and Computer Technologies (ICICT), New York, NY, USA, 4–6 March 2022; pp. 84–89. [Google Scholar]
- Priyanta, I.F.; Golatowski, F.; Schulz, T.; Timmermann, D. Evaluation of LoRa technology for vehicle and asset tracking in smart harbors. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 4221–4228. [Google Scholar]
- Yasmin, R.; Mikhaylov, K.; Pouttu, A. Lorawan for smart campus: Deployment and long-term operation analysis. Sensors 2020, 20, 6721. [Google Scholar] [CrossRef] [PubMed]
- Downes, J. LoRaWAN Temperature Sensors for Local Government Asset Management. arXiv 2020, arXiv:2009.00172. [Google Scholar]
- Al-Turjman, F.; Alturjman, S. Context-sensitive access in industrial internet of things (IIoT) healthcare applications. IEEE Trans. Ind. Inform. 2018, 14, 2736–2744. [Google Scholar] [CrossRef]
- Kumar, P.M.; Lokesh, S.; Varatharajan, R.; Babu, G.C.; Parthasarathy, P. Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 2018, 86, 527–534. [Google Scholar] [CrossRef]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Chung, Y.; Ahn, J.Y.; Du Huh, J. Experiments of A LPWAN tracking (TR) platform based on Sigfox test network. In Proceedings of the 2018 IEEE International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 17–19 October 2018; pp. 1373–1376. [Google Scholar]
- Petäjäjärvi, J.; Mikhaylov, K.; Yasmin, R.; Hämäläinen, M.; Iinatti, J. Evaluation of LoRa LPWAN technology for indoor remote health and wellbeing monitoring. Int. J. Wirel. Inf. Netw. 2017, 24, 153–165. [Google Scholar] [CrossRef]
- Mouratidis, H.; Diamantopoulou, V. A security analysis method for industrial Internet of Things. IEEE Trans. Ind. Inform. 2018, 14, 4093–4100. [Google Scholar] [CrossRef]
- Porselvi, T.; Ganesh, S.; Janaki, B.; Priyadarshini, K.; Begam, S. IoT based coal mine safety and health monitoring system using LoRaWAN. In Proceedings of the 2021 3rd IEEE International Conference on Signal Processing and Communication (ICPSC), Tamil Nadu, India, 13–14 May 2021; pp. 49–53. [Google Scholar]
- Alqurashi, H.; Bouabdallah, F.; Khairullah, E. SCAP SigFox: A Scalable Communication Protocol for Low-Power Wide-Area IoT Networks. Sensors 2023, 23, 3732. [Google Scholar] [CrossRef] [PubMed]
- Saleem, Y.; Crespi, N.; Rehmani, M.H.; Copeland, R. Internet of things-aided smart grid: Technologies, architectures, applications, prototypes, and future research directions. IEEE Access 2019, 7, 62962–63003. [Google Scholar] [CrossRef]
- Migabo, E.M.; Djouani, K.D.; Kurien, A.M. The narrowband Internet of Things (NB-IoT) resources management performance state of art, challenges, and opportunities. IEEE Access 2020, 8, 97658–97675. [Google Scholar] [CrossRef]
- Salika, F.; Nasser, A.; Mroue, M.; Parrein, B.; Mansour, A. LoRaCog: A protocol for cognitive radio-based LoRa network. Sensors 2022, 22, 3885. [Google Scholar] [CrossRef]
- GC, D.; Bouhafs, F.; Raschellà, A.; Mackay, M.; Shi, Q. Radio resource management framework for energy-efficient communications in the Internet of Things. Trans. Emerg. Telecommun. Technol. 2019, 30, e3766. [Google Scholar]
- Gomez, A.K.; Bajaj, S. Challenges of testing complex Internet of Things (IoT) devices and systems. In Proceedings of the 2019 11th IEEE International Conference on Knowledge and Systems Engineering (KSE), Da Nang, Vietnam, 24–26 October 2019; pp. 1–4. [Google Scholar]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in internet of things: Taxonomies and open challenges. Mob. Netw. Appl. 2019, 24, 796–809. [Google Scholar] [CrossRef]
- Atlam, H.F.; Wills, G.B. IoT security, privacy, safety and ethics. In Digital Twin Technologies and Smart Cities; Springer: Cham, Switzerland, 2020; pp. 123–149. [Google Scholar]
- Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and security: Challenges and solutions. Appl. Sci. 2020, 10, 4102. [Google Scholar] [CrossRef]
- Chen, Y.; Sambo, Y.A.; Onireti, O.; Imran, M.A. A survey on LPWAN-5G integration: Main challenges and potential solutions. IEEE Access 2022, 10, 32132–32149. [Google Scholar] [CrossRef]
- Karale, A. The challenges of IoT addressing security, ethics, privacy, and laws. Internet Things 2021, 15, 100420. [Google Scholar] [CrossRef]
- Ogbodo, E.U.; Abu-Mahfouz, A.M.; Kurien, A.M. A survey on 5G and LPWAN-IoT for improved smart cities and remote area applications: From the aspect of architecture and security. Sensors 2022, 22, 6313. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating critical security issues of the IoT world: Present and future challenges. IEEE Internet Things J. 2017, 5, 2483–2495. [Google Scholar] [CrossRef]
- Tsai, C.W.; Lai, C.F.; Vasilakos, A.V. Future internet of things: Open issues and challenges. Wirel. Netw. 2014, 20, 2201–2217. [Google Scholar] [CrossRef]
- Katasonov, A.; Kaykova, O.; Khriyenko, O.; Nikitin, S.; Terziyan, V. Smart semantic middleware for the internet of things. In Proceedings of the International Conference on Informatics in Control, Automation and Robotics, Funchal, Portugal, 11–15 May 2008; SciTePress: Setúbal, Portugal, 2008; Volume 2, pp. 169–178. [Google Scholar]
- de Carvalho Silva, J.; Rodrigues, J.J.; Alberti, A.M.; Solic, P.; Aquino, A.L. LoRaWAN—A low power WAN protocol for Internet of Things: A review and opportunities. In Proceedings of the 2017 2nd IEEE International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 12–14 July 2017; pp. 1–6. [Google Scholar]
Research | IoT Layer | Metrics | Protocols | Comparative Analysis | Experimental Analysis |
---|---|---|---|---|---|
Andre Gl’oria et al. [24] | Physical, Data link | Multinode capability, low-cost and power saving capabilities, delay, data rate | Wifi, Zigbee, LoRa, Bluetooth | ✓ | ✓ |
Shadi Al-Sarawi et al. [25] | Physical, Data link | Power consumption, security, spreading data rate | 6LoWPAN, ZigBee, BLE, Z-Wave, NFC, SigFox LPWAN | ✓ | ✓ |
Ala’ Khalifeh et al. [23] | Physical, Data link | Small size, low cost, limited energy | LoRaWAN, Sigfox, NB-IoT and LTE-M | ✓ | ✗ |
Burak H. Çorak et al. [36] | Application | Packet creation time, packet delivery speed, delay differences | CoAP, MQTT and XMPP | ✓ | ✓ |
Thays Moraes et al. [26] | Application | Throughput, message size, packet loss | AMQP, CoAP and MQTT | ✓ | ✓ |
JASENKA et al. [37] | Application | Latency, energy consumption and network throughput | MQTT, AMQP, XMPP, DDS, HTTP and CoAP | ✓ | ✗ |
Kais Mekki et al. [29] | Physical | Network capacity, devices lifetime, cost, quality of service and latency | Sigfox, LoRaWAN and NB-IoT | ✓ | ✗ |
H. Mroue et al. [27] | Physical | Carrier frequency, packet duration, number of channels and spectrum access. | LoRa, Sigfox and NB-IoT | ✓ | ✓ |
Nadège Varsier et al. [34] | Physical | Bandwidth, coverage, data rate, latency reliability and battery life. | NB-IoT, LTE-M and RedCap | ✓ | ✗ |
Teshager Hailemariam Moges et al. [35] | Physical | Bandwidth, range, data rate, battery life | NB-IoT, LTE-M, RedCap, EC-GSM-IoT | ✓ | ✗ |
Our Research | Physical, Data link | QoS, security, power consumption, cost, coverage, datarate | LoRa, Sigfox, NB-IoT LTE-M, Z-Wave, RedCap | ✓ | ✗ |
Features | LoRa | Sigfox | NB-IoT | LTE-M | Z-Wave | RedCap |
---|---|---|---|---|---|---|
Standard | LoRaWAN | Collaboration with ETSI | 3GPP | 3GPP | Sigma Designs | 3GPP |
Frequency Band Type | Sub GHz ISM Bands | Sub GHz ISM Bands | Licensed Bands | Licensed Bands | ISM Bands | Licensed Bands |
Frequency Band (GHz) | 0.868 (EU) 0.915 (NA) | 0.868 (EU) 0.915 (NA) | 0.7, 0.8 0.9 | Cellular Bands | 0.868 (EU) 0.915 (NA) | 0.4–7.1 (FR1) 24.2–52.6 (FR2) |
Minimum Carrier Bandwidth (kHz) | 125 | 0.1–0.6 | 200 | 1400 | 40–100 | 10,000 |
Data Rate (kbps) | 50 | 0.1 | 250 | Upto 1000 | 9.6–100 | Upto 150,000 |
Transmission Range (km) | 5–20 | 10–40 | 1–10 | 5 | 0.03 | 0.03 |
Energy Consumption | Very low | Low | Medium | Medium | Low | Medium |
Cost | Low | Low | Medium | High | Low | High |
Security | AES 128 | Authentication and Encryption | AES 256 | AES 256 | AES 128 and CCM | - |
Modulation | CSS | DBPSK, GFSK | QPSK | QPSK, 16-QAM and 64-QAM | GFSK | 256-QAM, 64-QAM |
Battery lifetime (Years) | >10 | >10 | >10 | 10 | >10 | <10 |
Link budget (db) | 154 | 159 | 151 | 146 | 101 | 144 |
Reference | [20,29,60,71,80] [13,31,66,76,81] | [20,60,72,73,82] [13,29,66,77] | [19,32,60,61] [29,47,71,73] | [21,47,61,83] [29,35,71,73] | [62,84,85,86] [25,87,88,89] | [22,34,65] [35,57,59,90] |
Use Cases | Features | Protocol |
---|---|---|
Smart City | Large coverage area, latency, cost | Sigfox and LoRaWAN [25,31,71] |
Intelligent Logistics and Transportation | Low latency, high QoS, large coverage | NB-IoT [31,95] |
Smart Farming and Agriculture | Large coverage area, latency, cost, low power | Sigfox and LoRaWAN [29,99,100] |
Smart Home | Short range, lower latency, cost, low power | Sigfox and LoRaWAN [29,104] |
Terminals for Retail Sales | Low latency, high QoS, large coverage | NB-IoT [29,106] |
Smart Environment | Low latency, high QoS, large coverage | NB-IoT, LTE-M [111,113] |
Smart Metering, Energy, and Grid | Long range, low power, robust QoS, and readability | NB-IoT [111,113] |
Manufacturing and Automated Industries | Long range, low power, robust QoS, readability and cost | Sigfox and LoRaWAN and NB-IoT and RedCap [10,34,118] |
Wearables and Health | Long range, low power, Robust QoS, readability and cost | Sigfox and LoRaWAN and NB-IoT and RedCap [22,34,50,131,132] |
Work Safety | Low power, cost and readability | Sigfox and LoRaWAN and NB-IoT and RedCap [34,133] |
Reference | Application Area | Geographical Location | Technology | Final Outcome |
---|---|---|---|---|
[94] | Smart City | Estonia | Sigfox, NB-IoT | In outdoor area both protocol provide coverage without delay, while in indoor NB-IoT perform better. |
[96] | Intelligent Logistics and Transportation | Zhejiang Province, China | NB-IoT | To mitigate high power consumption and high deployment costs of wireless network, a smart parking system is developed. |
[101] | Smart Farming and Agriculture | Italy | LoRaWAN | In terms of data transmission and energy efficiency performance observed in both indoor and outdoor area. |
[105] | Smart Home | Bangkok, Thailand | LoRaWAN | Obtain the performance of LoRaWAN through a case study to explore communication ranges in both an outdoor and an indoor environment. |
[127] | Asset tracking | Melville, Perth, Western Australia | LoRaWAN | Illustrated the suitability of using LoRaWAN to conduct temperature studies on local government assets in Australian metropolitan and residential areas. |
[110] | Smart Environment | Brazil and Portugal | LoRaWAN | This study finds that LoRa performs incredibly well in crowded urban environments. |
[112] | Smart Metering, Energy, and Grid | Lebanon | LoRaWAN | Suggests that LoRa can be used to build an open-source, inexpensive, modular system for energy metering applications. |
[120] | Manufacturing and Automated Industries | Denmark | SigFox | Proposes a suitable deployment roadmap in smart manufacturing using LPWAN which is more suitable than Radio Frequency Identification (RFID). |
[132] | Wearables and Health | Finland | LoRaWAN | Investigates the indoor performance of LoRa technology in remote health monitoring. The implementation shows that a small transmit power is enough to cover a large area. |
[134] | Work Safety | India | LoRaWAN | Implemented a smart alert system for the safety of mineworkers that constantly observes the environment and alerts the workers. It is efficient in reducing death rate and disease. |
Theme | Challenges | Research Path |
---|---|---|
Scalability [9,43,135,136,137,138,139] | Spectrum congestion, packet collision, interference, becoming bottleneck | Clustering approaches, fog computing modes, peer-to-peer communications, gateway densification |
Complexity and interoperability [140,141,142,143] | Lack of defined architectural standard, risk of vendor lock-in, security threads | Flexible protocol designing, standardization, fog or edge computing |
Integration [37,144] | Different protocols use different mechanisms, data management, lack of good security in proprietary protocols | Designing a hybrid architecture, network-independent security solutions, unified database management |
Security and Privacy [142,145,146,147] | Security threats like attack at physical level, network level, encryption, DDoS attack, privacy threats like authentication, identification, profiling | Building tamper resistant hardware, designing lightweight but strong authentication and encryption methods |
Single-Point Gateway [66] | Single-point failure resulting in whole system failure | Network, data, application layer communication protocols rather than only physical level |
ALOHA-based Access [31] | Restriction on deterministic traffic handling | Designing hybrid or complete TDMA scheduler |
Data Management [148,149] | Data extraction will be a tough task in an ever expanding network | Redesigning systems based on memory constraints, processing speed, network bandwidth |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.; Jamil, H.M.M.; Pranto, S.A.; Das, R.K.; Amin, A.; Khan, A. Future Industrial Applications: Exploring LPWAN-Driven IoT Protocols. Sensors 2024, 24, 2509. https://doi.org/10.3390/s24082509
Islam M, Jamil HMM, Pranto SA, Das RK, Amin A, Khan A. Future Industrial Applications: Exploring LPWAN-Driven IoT Protocols. Sensors. 2024; 24(8):2509. https://doi.org/10.3390/s24082509
Chicago/Turabian StyleIslam, Mahbubul, Hossain Md. Mubashshir Jamil, Samiul Ahsan Pranto, Rupak Kumar Das, Al Amin, and Arshia Khan. 2024. "Future Industrial Applications: Exploring LPWAN-Driven IoT Protocols" Sensors 24, no. 8: 2509. https://doi.org/10.3390/s24082509
APA StyleIslam, M., Jamil, H. M. M., Pranto, S. A., Das, R. K., Amin, A., & Khan, A. (2024). Future Industrial Applications: Exploring LPWAN-Driven IoT Protocols. Sensors, 24(8), 2509. https://doi.org/10.3390/s24082509