Optical Camera Communications in Healthcare: A Wearable LED Transmitter Evaluation during Indoor Physical Exercise †
Abstract
:1. Introduction
2. System Design
3. Methodology
3.1. Image Processing
3.2. Exercise Analysis
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uysal, M.; Capsoni, C.; Boucouvalas, A.; Udvary, E. Optical Wireless Communications—An Emerging Technology; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Hasan, M.K.; Shahjalal, M.; Alam, M.M.; Jang, Y.M. Design and implementation of an occ-based real-time heart rate and pulse-oxygen saturation monitoring system. IEEE Access 2020, 8, 198740–198747. [Google Scholar] [CrossRef]
- Teli, S.R.; Zvanovec, S.; Ghassemlooy, Z. Optical Internet of Things within 5G: Applications and Challenges. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; pp. 40–45. [Google Scholar] [CrossRef]
- Lin, B.; Ghassemlooy, Z.; Lin, C.; Tang, X.; Li, Y.; Zhang, S. An Indoor Visible Light Positioning System Based on Optical Camera Communications. IEEE Photonics Technol. Lett. 2017, 29, 579–582. [Google Scholar] [CrossRef]
- Majlesein, B. Towards Sustainable IoUT Networks: Enhancing Self-Powered and Camera-Based Underwater Optical Wireless Communication Systems. Ph.D. Thesis, Universidad of de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 2023. [Google Scholar]
- Chavez-Burbano, P.; Guerra, V.; Rabadan, J.; Jurado-Verdu, C.; Perez-Jimenez, R. Novel Indoor Localization System Using Optical Camera Communication. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, Y.; Cang, S.; Yu, H. A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst. Appl. 2019, 137, 167–190. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.S.; Hossain, M.F.; Kim, I. Challenges in design and fabrication of flexible/stretchable carbon-and textile-based wearable sensors for health monitoring: A critical review. Sensors 2020, 20, 3927. [Google Scholar] [CrossRef]
- Nasiri, S.; Khosravani, M.R. Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuators Phys. 2020, 312, 112105. [Google Scholar] [CrossRef]
- De Fazio, R.; De Vittorio, M.; Visconti, P. Innovative IoT solutions and wearable sensing systems for monitoring human biophysical parameters: A review. Electronics 2021, 10, 1660. [Google Scholar] [CrossRef]
- Kharche, S.; Kharche, J. 6G Intelligent Healthcare Framework: A Review on Role of Technologies, Challenges and Future Directions. J. Mob. Multimed. 2023, 19, 603–644. [Google Scholar] [CrossRef]
- Adiono, T.; Armansyah, R.F.; Nolika, S.S.; Ikram, F.D.; Putra, R.V.W.; Salman, A.H. Visible light communication system for wearable patient monitoring device. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 1–4 November 2016; pp. 1969–1972. [Google Scholar] [CrossRef]
- Le Bas, C.; Hoang, T.B.; Sahuguede, S.; Julien-Vergonjanne, A. Lighting fixture communicating in infrared and visible for indoor health monitoring. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), Dalian, China, 12–15 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Hoang, T.B.; Sahuguede, S.; Julien-Vergonjanne, A. Optical wireless network design for off-body-sensor based monitoring. Wirel. Commun. Mob. Comput. 2019, 2019, 5473923. [Google Scholar] [CrossRef]
- Hasan, M.J.; Khalighi, M.A.; García-Márquez, J.; Béchadergue, B. Performance analysis of Optical-CDMA for uplink transmission in medical extra-WBANs. IEEE Access 2020, 8, 171672–171685. [Google Scholar] [CrossRef]
- Chen, S.; Qi, J.; Fan, S.; Qiao, Z.; Yeo, J.C.; Lim, C.T. Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 2021, 10, 2100116. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Castillo, L.; Guerra, V.; Rufo, J.; Rabadan, J.; Perez-Jimenez, R. Survey on optical wireless communications-based services applied to the tourism industry: Potentials and challenges. Sensors 2021, 21, 6282. [Google Scholar] [CrossRef]
- Rabadan, J.; Guerra, V.; Rodríguez, R.; Rufo, J.; Luna-Rivera, M.; Perez-Jimenez, R. Hybrid visible light and ultrasound-based sensor for distance estimation. Sensors 2017, 17, 330. [Google Scholar] [CrossRef]
- Riurean, S.; Antipova, T.; Rocha, Á.; Leba, M.; Ionica, A. VLC, OCC, IR and LiFi reliable optical wireless technologies to be embedded in medical facilities and medical devices. J. Med. Syst. 2019, 43, 308. [Google Scholar] [CrossRef] [PubMed]
- Niarchou, E.; Matus, V.; Rabadan, J.; Guerra, V.; Perez-Jimenez, R. Experimental Evaluation of LED-Based Wearable Transmitter for Optical Camera Communications Systems. In Proceedings of the 2023 17th International Conference on Telecommunications (ConTEL), Graz, Austria, 11–13 July 2023; pp. 1–5. [Google Scholar]
- Eöllős-Jarošíková, K.; Neuman, V.; Niarchou, E.; Gomez-Cardenes, O.; Zvánovec, S.; Perez-Jimenez, R.; Komanec, M. Pilot Experiments of Side-Emitting Fiber-Based Optical Camera Communication for Wearable Applications. In Proceedings of the 2023 South American Conference on Visible Light Communications (SACVLC), Santiago, Chile, 8–10 November 2023; pp. 65–69. [Google Scholar]
- Rachim, V.P.; An, J.; Quan, P.N.; Chung, W.Y. A novel smartphone camera-LED communication for clinical signal transmission in mHealth-rehabilitation system. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Republic of Korea, 11–15 July 2017; pp. 3437–3440. [Google Scholar]
- Teli, S.R.; Chvojka, P.; Vítek, S.; Zvanovec, S.; Perez-Jimenez, R.; Ghassemlooy, Z. A SIMO Hybrid Visible-Light Communication System for Optical IoT. IEEE Internet Things J. 2022, 9, 3548–3558. [Google Scholar] [CrossRef]
- Hasan, M.K.; Shahjalal, M.; Chowdhury, M.Z.; Jang, Y.M. Real-time healthcare data transmission for remote patient monitoring in patch-based hybrid OCC/BLE networks. Sensors 2019, 19, 1208. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.K.; Shahjalal, M.; Chowdhury, M.; Jang, Y.M. Access Point Selection in Hybrid OCC/RF eHealth Architecture for Real-Time Remote Patient Monitoring. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 17–19 October 2018. [Google Scholar] [CrossRef]
- Mohammadi-Abdar, H.; Ridgel, A.L.; Discenzo, F.M.; Phillips, R.S.; Walter, B.L.; Loparo, K.A. Test and Validation of a Smart Exercise Bike for Motor Rehabilitation in Individuals With Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1254–1264. [Google Scholar] [CrossRef]
- Tan, C.; Xiao, C.; Wang, W. Camera-based Cardiovascular Screening based on Heart Rate and Its Variability In Pre- and Post-Exercise Conditions. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Xie, K.; Fu, C.H.; Liang, H.; Hong, H.; Zhu, X. Non-contact Heart Rate Monitoring for Intensive Exercise Based on Singular Spectrum Analysis. In Proceedings of the 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), San Jose, CA, USA, 28–30 March 2019; pp. 228–233. [Google Scholar] [CrossRef]
- Mertens, M.; Debard, G.; Davis, J.; Devriendt, E.; Milisen, K.; Tournoy, J.; Croonenborghs, T.; Vanrumste, B. Motion Sensor-Based Detection of Outlier Days Supporting Continuous Health Assessment for Single Older Adults. Sensors 2021, 21, 6080. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, G. Functional motion detection based on artificial intelligence. J. Supercomput. 2022, 78, 4290–4329. [Google Scholar] [CrossRef]
- Mastoras, R.E.; Iakovakis, D.; Hadjidimitriou, S.; Charisis, V.; Kassie, S.; Alsaadi, T.; Khandoker, A.; Hadjileontiadis, L.J. Touchscreen typing pattern analysis for remote detection of the depressive tendency. Sci. Rep. 2019, 9, 13414. [Google Scholar] [CrossRef]
- Hoeijmakers, A.; Licitra, G.; Meijer, K.; Lam, K.H.; Molenaar, P.; Strijbis, E.; Killestein, J. Disease severity classification using passively collected smartphone-based keystroke dynamics within multiple sclerosis. Sci. Rep. 2023, 13, 1871. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kim, C.; Cho, B.H.; Choi, S.H.; Lee, H.; Jang, D.P. Investigation of daily patterns for smartphone keystroke dynamics based on loneliness and social isolation. Biomed. Eng. Lett. 2024, 14, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Mederos-Barrera, A.; Jurado-Verdu, C.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R. Design and experimental characterization of a discovery and tracking system for optical camera communications. Sensors 2021, 21, 2925. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.Z.; Hossan, M.T.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. A New 5G eHealth Architecture Based on Optical Camera Communication: An Overview, Prospects, and Applications. IEEE Consum. Electron. Mag. 2020, 9, 23–33. [Google Scholar] [CrossRef]
- Stavropoulos, T.G.; Papastergiou, A.; Mpaltadoros, L.; Nikolopoulos, S.; Kompatsiaris, I. IoT wearable sensors and devices in elderly care: A literature review. Sensors 2020, 20, 2826. [Google Scholar] [CrossRef]
- Atmel. XIAO SAMD21, 32 Bit 48 MHz Microcontroller(SAMD21G18) with 256 KB Flash, 32 KB SRAM, Datasheet; Atmel: San Jose, CA, USA, 2016. [Google Scholar]
- Matus, V.; Guerra, V.; Jurado-Verdu, C.; Zvanovec, S.; Perez-Jimenez, R. Wireless sensor networks using sub-pixel optical camera communications: Advances in experimental channel evaluation. Sensors 2021, 21, 2739. [Google Scholar] [CrossRef]
- Samsung. Samsung Galaxy S23. 2023. Available online: https://www.samsung.com/us/smartphones/galaxy-s23/buy/galaxy-s23-256gb-unlocked-sm-s911uzkexaa/ (accessed on 9 February 2014).
- Le, T.; Le, N.T.; Jang, Y.M. Performance of rolling shutter and global shutter camera in optical camera communications. In Proceedings of the 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 28–30 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 124–128. [Google Scholar]
- ISO 2720:1974; General Purpose Photographic Exposure Meters (Photoelectric Type)—Guide to Product Specification. International Organization for Standardization (ISO): Geneva, Switzerland, 1974. Available online: https://www.iso.org/standard/7690.html (accessed on 23 April 2024).
- Chow, C.W.; Chen, C.Y.; Chen, S.H. Enhancement of Signal Performance in LED Visible Light Communications Using Mobile Phone Camera. IEEE Photonics J. 2015, 7, 7903607. [Google Scholar] [CrossRef]
Module | Parameter | Value |
---|---|---|
Light source | LED array | |
Device dimensions | 11 × 6.5 × 3.5 cm | |
Power supply | 5 V | |
Microcontroller | Seeeduino XIAO | |
(Shenzhen, China) | ||
Illuminance | 105 lux | |
Modulation | Modulation time | 0.4 ms |
Data packet size | 6b/packet [110100] | |
Smartphone camera | Samsung Galaxy S23 | |
(Suwon, Republic of Korea) | ||
Image sensor | S5KGN3 | |
Exposure time | 83 s | |
Frame rate | 30 fps | |
ISO | 125 | |
Resolution | 7680 × 4320 px | |
Channel | Link distance d | 20–30 cm |
Position Data | Radius [px] | Data Included | Data Lost | Reduction |
---|---|---|---|---|
100% | 1609 | 100% | 0% | 52.9% |
99% | 832 | 97% | 3% | 82.6% |
98% | 706 | 92% | 8% | 86.1% |
97% | 656 | 85% | 15% | 87.3% |
96% | 606 | 82% | 18% | 88.6% |
95% | 556 | 65% | 35% | 89.7% |
Position Data | Radius [px] | Data Included | Data Lost | Reduction |
---|---|---|---|---|
100% | 1841 | 100% | 0% | 41.2% |
99% | 1036 | 98% | 2% | 76.2% |
98% | 950 | 86% | 14% | 79.0% |
97% | 864 | 74% | 26% | 81.7% |
96% | 807 | 64% | 36% | 83.4% |
95% | 778 | 62% | 38% | 84.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niarchou, E.; Matus, V.; Rabadan, J.; Guerra, V.; Perez-Jimenez, R. Optical Camera Communications in Healthcare: A Wearable LED Transmitter Evaluation during Indoor Physical Exercise. Sensors 2024, 24, 2766. https://doi.org/10.3390/s24092766
Niarchou E, Matus V, Rabadan J, Guerra V, Perez-Jimenez R. Optical Camera Communications in Healthcare: A Wearable LED Transmitter Evaluation during Indoor Physical Exercise. Sensors. 2024; 24(9):2766. https://doi.org/10.3390/s24092766
Chicago/Turabian StyleNiarchou, Eleni, Vicente Matus, Jose Rabadan, Victor Guerra, and Rafael Perez-Jimenez. 2024. "Optical Camera Communications in Healthcare: A Wearable LED Transmitter Evaluation during Indoor Physical Exercise" Sensors 24, no. 9: 2766. https://doi.org/10.3390/s24092766
APA StyleNiarchou, E., Matus, V., Rabadan, J., Guerra, V., & Perez-Jimenez, R. (2024). Optical Camera Communications in Healthcare: A Wearable LED Transmitter Evaluation during Indoor Physical Exercise. Sensors, 24(9), 2766. https://doi.org/10.3390/s24092766