Analysis of the Effect of Skin Pigmentation and Oxygen Saturation on Monte Carlo-Simulated Reflectance Photoplethysmography Signals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Properties
3.2. Mechanical Properties
3.3. Simulation Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef]
- Al-Halawani, R.; Charlton, P.H.; Qassem, M.; Kyriacou, P.A. A review of the effect of skin pigmentation on pulse oximeter accuracy. Physiol. Meas. 2023, 44, 05TR01. [Google Scholar] [CrossRef] [PubMed]
- Cabanas, A.M.; Fuentes-Guajardo, M.; Latorre, K.; León, D.; Martín-Escudero, P. Skin Pigmentation Influence on Pulse Oximetry Accuracy: A Systematic Review and Bibliometric Analysis. Sensors 2022, 22, 3402. [Google Scholar] [CrossRef] [PubMed]
- Al-Halawani, R.; Qassem, M.; Kyriacou, P.A. Monte Carlo simulation of the effect of melanin concentration on light-tissue interactions in transmittance and reflectance finger photoplethysmography. Sci. Rep. 2024, 14, 8145. [Google Scholar] [CrossRef]
- Arefin, M.S.; Dumont, A.P.; Patil, C.A. Monte Carlo based simulations of racial bias in pulse oximetry. In Proceedings of the Design and Quality for Biomedical Technologies XV, San Francisco, CA, USA, 22–23 January 2022; Volume 11951, p. 1195103. [Google Scholar] [CrossRef]
- Al-Halawani, R.; Qassem, M.; Kyriacou, P.A. Monte Carlo simulation of the effect of melanin concentration on light–tissue interactions for transmittance pulse oximetry measurement. J. Biomed. Opt. 2024, 29, S33305. [Google Scholar] [CrossRef]
- Bolic, M. Simulating the Effects of Melanin and Air Gap Depth on the Accuracy of Reflectance Pulse Oximeters. In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies, Lisbon, Portugal, 16–18 February 2023; SCITEPRESS—Science and Technology Publications: Lisbon, Portugal, 2023; pp. 64–71. [Google Scholar]
- Narayana Swamy, S.K.; Liu, C.; Correia, R.; Hayes-Gill, B.R.; Morgan, S.P. Exploring the bias: How skin color influences oxygen saturation readings via Monte Carlo simulations. J. Biomed. Opt. 2024, 29 (Suppl. S3), S33308. [Google Scholar] [CrossRef] [PubMed]
- Modeling Light-Tissue Interactions in Pulse Oximetry: Effect of Device Design and Skin Pigmentation. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12833/3004189/Modeling-light-tissue-interactions-in-pulse-oximetry--effect-of/10.1117/12.3004189.short (accessed on 28 November 2024).
- Hu, H.; Li, J.; Chen, X. The Effect of Skin Melanin Concentration on Wrist Reflectance Photoplethysmography Based on Monte Carlo Simulation|EndNote Click. Available online: https://click.endnote.com/viewer?doi=10.1109%2Fcisp-bmei56279.2022.9979897&token=WzMxMDQxMDQsIjEwLjExMDkvY2lzcC1ibWVpNTYyNzkuMjAyMi45OTc5ODk3Il0.O8tQ0uOC58XV9rez9x1C6dNrl1s (accessed on 28 November 2024).
- Sharma, A.N.; Patel, B.C. Laser Fitzpatrick Skin Type Recommendations. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK557626/ (accessed on 28 November 2024).
- Langeveld, M.; van de Lande, L.S.; O’ Sullivan, E.; van der Lei, B.; van Dongen, J.A. Skin measurement devices to assess skin quality: A systematic review on reliability and validity. Skin Res. Technol. 2022, 28, 212–224. [Google Scholar] [CrossRef] [PubMed]
- He, S.Y.; McCulloch, C.E.; Boscardin, W.J.; Chren, M.-M.; Linos, E.; Arron, S.T. Self-Reported Pigmentary Phenotypes and Race are Significant but Incomplete Predictors of Fitzpatrick Skin Phototype in an Ethnically Diverse Population. J. Am. Acad. Dermatol. 2014, 71, 731. [Google Scholar] [CrossRef]
- Pershing, L.K.; Tirumala, V.P.; Nelson, J.L.; Corlett, J.L.; Lin, A.G.; Meyer, L.J.; Leachman, S.A. Reflectance spectrophotometer: The dermatologists’ sphygmomanometer for skin phototyping? J. Investig. Dermatol. 2008, 128, 1633–1640. [Google Scholar] [CrossRef]
- Strauch, B.; de Moura, W. Arterial system of the fingers. J. Hand Surg. 1990, 15, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Prahl, S.A.; Van Gemert, M.J.C.; Welch, A.J. Determining the optical properties of turbid media by using the adding–doubling method. Appl. Opt. 1993, 32, 559. [Google Scholar] [CrossRef] [PubMed]
- Ly, B.; Dyer, E.; Feig, J.; Chien, A.; Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3–12.e1. [Google Scholar] [CrossRef] [PubMed]
- Skin Optics Summary. Available online: https://omlc.org/news/jan98/skinoptics.html (accessed on 17 July 2023).
- Chatterjee, S.; Kyriacou, P.A. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography. Sensors 2019, 19, 789. [Google Scholar] [CrossRef] [PubMed]
- Bosschaart, N.; Edelman, G.J.; Aalders, M.C.G.; van Leeuwen, T.G.; Faber, D.J. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med. Sci. 2014, 29, 453–479. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef]
- Petrov, G.I.; Doronin, A.; Whelan, H.T.; Meglinski, I.; Yakovlev, V.V. Human tissue color as viewed in high dynamic range optical spectral transmission measurements. Biomed. Opt. Express 2012, 3, 2154. [Google Scholar] [CrossRef]
- 3D-Hyperspectral Imaging and Optical Analysis of Skin for the Human Face (PDF). Available online: https://www.researchgate.net/publication/342491908_3D-hyperspectral_imaging_and_optical_analysis_of_skin_for_the_human_face (accessed on 27 November 2024).
- Sjoding, M.W.; Dickson, R.P.; Iwashyna, T.J.; Gay, S.E.; Valley, T.S. Racial Bias in Pulse Oximetry Measurement. N. Engl. J. Med. 2020, 383, 2477–2478. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.-K.I.; Charpignon, M.; Kim, H.; Josef, C.; de Hond, A.A.H.; Fojas, J.J.; Tabaie, A.; Liu, X.; Mireles-Cabodevila, E.; Carvalho, L.; et al. Analysis of Discrepancies Between Pulse Oximetry and Arterial Oxygen Saturation Measurements by Race and Ethnicity and Association with Organ Dysfunction and Mortality. JAMA Netw. Open 2021, 4, e2131674. [Google Scholar] [CrossRef]
- Bangash, M.N.; Hodson, J.; Evison, F.; Patel, J.M.; Johnston, A.M.; Gallier, S.; Sapey, E.; Parekh, D. Impact of ethnicity on the accuracy of measurements of oxygen saturations: A retrospective observational cohort study. eClinicalMedicine 2022, 48, 101428. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Goodall, M.; Dumville, J.; Hill, J.; Norman, G.; Hamer, O.; Clegg, A.; Watkins, C.L.; Georgiou, G.; Hodkinson, A.; et al. The accuracy of pulse oximetry in measuring oxygen saturation by levels of skin pigmentation: A systematic review and meta-analysis. BMC Med. 2022, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Poon, C.C.; Zhang, Y. Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution. J. NeuroEng. Rehabil. 2005, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Raghuram, M.; Kosaraju, S.; Reddy, K. Reduction of motion artifacts from Pulse oximeter’s PPG signals using MSICA. In Proceedings of the 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 16–17 December 2016; pp. 491–494. [Google Scholar]
- Lee, J.; Jung, W.; Kang, I.; Kim, Y.; Lee, G. Design of filter to reject motion artifact of pulse oximetry. Comput. Stand. Interfaces 2004, 26, 241–249. [Google Scholar] [CrossRef]
- Sun, S.; Peeters, W.; Bezemer, R.; Long, X.; Paulussen, I.; Aarts, R.; Noordergraaf, G. Finger and forehead photoplethysmography-derived pulse-pressure variation and the benefits of baseline correction. J. Clin. Monit. Comput. 2019, 33, 65–75. [Google Scholar] [CrossRef]
660 nm | 940 nm | |||||
---|---|---|---|---|---|---|
μa | μs | g | μa | μs | g | |
Oxygenated haemoglobin [20] | 0.150 | 92.3 | 0.985 | 0.650 | 56.8 | 0.977 |
Deoxygenated haemoglobin [20] | 1.64 | 81.5 | 0.986 | 0.430 | 49.7 | 0.978 |
Water [21] | 0.000400 | - | - | 0.0267 | - | - |
Water concentration (%) [22] | ||||||
Papillary dermis | 50 | |||||
Upper blood net dermis | 60 | |||||
Reticular dermis | 70 | |||||
Deep blood net dermis | 70 |
Tissue Layer/Component | μa (mm−1) | μs (mm−1) | g | |||
---|---|---|---|---|---|---|
660 nm | 940 nm | 660 nm | 940 nm | 660 nm | 940 nm | |
Stratum corneum | 0.0495 | 0.0170 | 25.6 | 5.68 | 0.910 | 0.940 |
Light epidermis | 0.00964 | 0.00571 | 13.8 | 7.79 | 0.800 | 0.800 |
Moderate epidermis | 0.0195 | 0.00567 | 12.3 | 7.10 | 0.800 | 0.800 |
Dark epidermis | 0.0396 | 0.00627 | 12.9 | 7.70 | 0.800 | 0.800 |
Dermis (Bloodless) | 0.0135 | 0.0209 | 25.6 | 5.68 | 0.910 | 0.940 |
Blood vessels (O2 = 70%) | 0.672 | 0.573 | 60.6 | 37.1 | 0.985 | 0.977 |
Blood vessels (O2 = 100%) | 0.225 | 0.639 | 87.8 | 54.1 | 0.985 | 0.977 |
Fat | 0.0104 | 0.0170 | 6.20 | 5.42 | 0.900 | 0.900 |
Muscle | 0.0816 | 0.0401 | 8.61 | 5.81 | 0.880 | 0.910 |
Bone | 0.0351 | 0.0457 | 34.5 | 24.7 | 0.920 | 0.930 |
Red | Infrared | |||
---|---|---|---|---|
70% | 100% | 70% | 100% | |
Light–Moderate skin | 1.28 | 1.39 | 0.0356 | 0.166 |
Light–Dark skin | 4.89 | 5.16 | 0.0966 | 0.128 |
SaO2 (%) | Red (660 nm) | Infrared (940 nm) | ||||
---|---|---|---|---|---|---|
L | M | D | L | M | D | |
70 | 0.0484 | 0.0478 | 0.0467 | 0.0393 | 0.0398 | 0.0403 |
100 | 0.0221 | 0.0215 | 0.0217 | 0.0422 | 0.0429 | 0.0421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Halawani, R.; Qassem, M.; Kyriacou, P.A. Analysis of the Effect of Skin Pigmentation and Oxygen Saturation on Monte Carlo-Simulated Reflectance Photoplethysmography Signals. Sensors 2025, 25, 372. https://doi.org/10.3390/s25020372
Al-Halawani R, Qassem M, Kyriacou PA. Analysis of the Effect of Skin Pigmentation and Oxygen Saturation on Monte Carlo-Simulated Reflectance Photoplethysmography Signals. Sensors. 2025; 25(2):372. https://doi.org/10.3390/s25020372
Chicago/Turabian StyleAl-Halawani, Raghda, Meha Qassem, and Panicos A. Kyriacou. 2025. "Analysis of the Effect of Skin Pigmentation and Oxygen Saturation on Monte Carlo-Simulated Reflectance Photoplethysmography Signals" Sensors 25, no. 2: 372. https://doi.org/10.3390/s25020372
APA StyleAl-Halawani, R., Qassem, M., & Kyriacou, P. A. (2025). Analysis of the Effect of Skin Pigmentation and Oxygen Saturation on Monte Carlo-Simulated Reflectance Photoplethysmography Signals. Sensors, 25(2), 372. https://doi.org/10.3390/s25020372