Novel MEMS Multisensor Chip for Aerodynamic Pressure Measurements †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Concepts
2.2. Numerical Simulations
2.3. Chip Fabrication
- Mask TOP_1 for the diffusion of p-type impurities (boron) for making good Ohmic contacts,
- Mask TOP_2 for the diffusion of p-type impurities (boron) for the definition of piezoresistors,
- Mask TOP_3 for the definition of the openings in the protective oxide for metallic contacts,
- Mask TOP_4 for the definition of metallic interconnections,
- Mask BOT_1 for the definition of the silicon diaphragm.
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Subramanian, S.; Hampson, R.; Jackson, W.; Kontis, K.; Dobie, G.; Macleod, C. Automotive Aerodynamics Sensing Using Low-Profile Pressure Sensor Strip. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Cellucci, D.; Cramer, N.; Swei, S.S.-M. Distributed Pressure Sensing for Enabling Self-Aware Autonomous Aerial Vehicles. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2023; pp. 6769–6775. [Google Scholar]
- Polonelli, T.; Muller, H.; Kong, W.; Fischer, R.; Benini, L.; Magno, M. Aerosense: A Self-Sustainable and Long-Range Bluetooth Wireless Sensor Node for Aerodynamic and Aeroacoustic Monitoring on Wind Turbines. IEEE Sensors J. 2022, 23, 715–723. [Google Scholar] [CrossRef]
- Scharer, N.; Polonelli, T.; Deparday, J.; Magno, M. Towards a non-Invasive Monitoring System for Wind Turbine Blades. In Proceeding of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2023; pp. 1–6. [Google Scholar]
- Luo, X.; Kareem, A.; Yoo, S. Optimal sensor placement for reconstructing wind pressure field around buildings using compressed sensing. J. Build. Eng. 2023, 75, 106855. [Google Scholar] [CrossRef]
- Fiorillo, A.; Critello, C.; Pullano, S. Theory, technology and applications of piezoresistive sensors: A review. Sensors Actuators A: Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Song, P.; Ma, Z.; Ma, J.; Yang, L.; Wei, J.; Zhao, Y.; Zhang, M.; Yang, F.; Wang, X. Recent Progress of Miniature MEMS Pressure Sensors. Micromachines 2020, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Huang, M.; Wu, Z.; Gao, Y.; Xia, Y.; Yang, P.; Fan, S.; Lu, X.; Yang, X.; Liang, L.; et al. Advances in high-performance MEMS pressure sensors: Design, fabrication, and packaging. Microsyst. Nanoeng. 2023, 9, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wang, L.; Zhang, S. A High-Performance Micro Differential Pressure Sensor. Micromachines 2024, 15, 1396. [Google Scholar] [CrossRef] [PubMed]
- Roozeboom, C.L.; Hopcroft, M.A.; Smith, W.S.; Sim, J.Y.; Wickeraad, D.A.; Hartwell, P.G.; Pruitt, B.L. Integrated Multifunctional Environmental Sensors. J. Microelectromech. Syst. 2013, 22, 779–793. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Li, M.; Ge, Y.; Wang, T.; Shan, P.; Mao, X. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System. Micromachines 2018, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Djurić, Z.; Matić, M.; Matović, J.; Petrovíc, R.; Simičić, N. Experimental determination of silicon pressure sensor diaphragm deflection. Sensors Actuators A Phys. 1990, 24, 175–179. [Google Scholar] [CrossRef]
- Simičić, N.; Tanasković, D.; Djurić, Z.; Lazić, Ž.; Petrović, R.; Matović, J.; Popović, M.; Matić, M.; Totovski, D. Investigation of impurity distribution for pressure sensor piezoresistors. J. Serb. Chem. Soc. 1993, 58, 951–957. [Google Scholar]
- Lazić, Ž.; Smiljanić, M.M.; Tanasković, D.; Rašljić-Rafajilović, M.; Cvetanović, K.; Milinković, E.; Bošković, M.V.; Andrić, S.; Poljak, P.; Frantlović, M. Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements. In Proceedings of the 10th International Electronic Conference on Sensors and Applications (ECSA 2023), Online, 15–30 November 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazić, Ž.; Smiljanić, M.M.; Tanasković, D.; Rašljić-Rafajilović, M.; Cvetanović, K.; Milinković, E.; Bošković, M.V.; Andrić, S.; Jokić, I.; Poljak, P.; et al. Novel MEMS Multisensor Chip for Aerodynamic Pressure Measurements. Sensors 2025, 25, 600. https://doi.org/10.3390/s25030600
Lazić Ž, Smiljanić MM, Tanasković D, Rašljić-Rafajilović M, Cvetanović K, Milinković E, Bošković MV, Andrić S, Jokić I, Poljak P, et al. Novel MEMS Multisensor Chip for Aerodynamic Pressure Measurements. Sensors. 2025; 25(3):600. https://doi.org/10.3390/s25030600
Chicago/Turabian StyleLazić, Žarko, Milče M. Smiljanić, Dragan Tanasković, Milena Rašljić-Rafajilović, Katarina Cvetanović, Evgenija Milinković, Marko V. Bošković, Stevan Andrić, Ivana Jokić, Predrag Poljak, and et al. 2025. "Novel MEMS Multisensor Chip for Aerodynamic Pressure Measurements" Sensors 25, no. 3: 600. https://doi.org/10.3390/s25030600
APA StyleLazić, Ž., Smiljanić, M. M., Tanasković, D., Rašljić-Rafajilović, M., Cvetanović, K., Milinković, E., Bošković, M. V., Andrić, S., Jokić, I., Poljak, P., & Frantlović, M. (2025). Novel MEMS Multisensor Chip for Aerodynamic Pressure Measurements. Sensors, 25(3), 600. https://doi.org/10.3390/s25030600