Research on Blood Cell Image Detection Method Based on Fourier Ptychographic Microscopy
Abstract
:1. Introduction
2. Related Works
2.1. Fourier Microscopic Imaging
2.2. Blood Cell Detection
2.2.1. Methods Based on Image Processing
2.2.2. Methods Based on Deep Learning
3. Method
3.1. SCD-YOLOv7 Detection Model
3.1.1. Feature Extraction Network
3.1.2. Sim-Head Detection Head
3.1.3. Loss Function Optimization
4. Experiment and Results
4.1. Experimental Environment and Configuration
4.2. Experimental Analysis
4.2.1. Data Enhancement Strategy Results Analysis
4.2.2. Analysis of Improved Detection Head Results
4.2.3. Analysis of Optimization Loss Function Results
4.2.4. Analysis of Ablation Experimental Results
4.2.5. Analysis of Comparative Experimental Results
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaikh, I.M.; Akhtar, M.N.; Aabid, A.; Ahmed, O.S. Enhancing sustainability in the production of palm oil: Creative monitoring methods using YOLOv7 and YOLOv8 for effective plantation management. Biotechnol. Rep. 2024, 44, e00853. [Google Scholar] [CrossRef]
- Nirapai, A.; Leelasantitham, A. A new adoption model for quality of experience assessed by radiologists using ai medical imaging technology. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100369. [Google Scholar] [CrossRef]
- Sabate, A.; Caballero, M.; Perez, L. Comments on: Tranexamic acid administration during liver transplantation is not associated’ with lower blood loss or with reduced utilization of red blood cell transfusion. Anesth. Analg. 2024, 139, e32–e33. [Google Scholar] [CrossRef]
- Tran, M.H.; Ma, L.; Mubarak, H.; Gomez, O.; Yu, J.; Bryarly, M.; Fei, B. Detection and margin assessment of thyroid carcinoma with microscopic hyperspectral imaging using transformer networks. J. Biomed. Opt. 2024, 29, 093505. [Google Scholar] [CrossRef] [PubMed]
- Qiong, M.; Jufeng, Z.; Guangmang, C. Optimization of the fpm iterative process based on bright-field spectral overlap rate analysis. Opt. Lett. 2024, 49, 5244–5247. [Google Scholar] [CrossRef]
- Jagtap, N.S.; Bodade, V.; Kadrolli, V.; Mahajan, H.; Kale, P.P.; Pise, P.; Hingmire, A. Deep learning-based blood cell classification from microscopic images for haematological disorder identification. Multimedia Tools Appl. 2024, 2, 1–28. [Google Scholar] [CrossRef]
- V.K., A.K.; Chalissery, M.D.; Thomas, S. A bibliometric review of market microstructure literature: Current status, development, and future directions. Financ. Res. Lett. 2024, 69, 106086. [Google Scholar] [CrossRef]
- Yue, P.; Yang, M.; Jiao, Q.; Xu, L.; Wang, X.; Zhang, M.; Tan, X. Compact numerical aperture 0.5 fiber optic spectrometer design using active image plane tilt. Sensors 2024, 24, 3883. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Lu, S.Y.; Li, X.B.; Chen, H.M.; Chen, H.Y.; Chen, X.Y.; Fang, J.Y.; Cui, Y. Endoscopic, clinicopathological, and growth characteristics of minute gastric cancer. J. Dig. Dis. 2022, 23, 628–635. [Google Scholar] [CrossRef]
- Burdet, N.; Shi, X.; Parks, D.; Clark, J.N.; Huang, X.; Kevan, S.D.; Robinson, I.K. Evaluation of partial coherence correction in X-ray ptychography. Opt. Express 2015, 23, 5452–5467. [Google Scholar] [CrossRef]
- Anishchik, S.V.; Dantus, M. Optical microscope with nanometer longitudinal resolution based on a linnik interferometer. J. Opt. 2024, 26, 115602. [Google Scholar] [CrossRef]
- Yan, W.; Ying, L.; Yilin, G.; Jiahao, K.; Weijia, W.; YuLe, Y.; Xiaoyan, Q.; Xiaomin, D.; Dong, S.; Yongping, S.; et al. Fine particulate matter exposure disturbs autophagy, redox balance and mitochondrial homeostasis via jnk activation to inhibit proliferation and promote emt in human alveolar epithelial a549 cells. Ecotoxicol. Environ. Saf. 2023, 262, 115134. [Google Scholar]
- Cathrine, K.D.A.; Carolyn, B. Evaluating the family partnership model (fpm) program and implementation in practice in new south wales, Australia. Aust. J. Adv. Nurs. 2007, 25, 28–35. [Google Scholar]
- Yüksel, N.; Çifci, H. A New Model for Technology Foresight: Foresight Periscope Model (fpm). In 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC); IEEE: Piscataway, NI, USA, 2017; pp. 807–817. [Google Scholar]
- Fan, Y.; Sun, J.; Shu, Y.; Zhang, Z.; Zheng, G.; Chen, W.; Zhang, J.; Gui, K.; Wang, K.; Chen, Q.; et al. Efficient synthetic aperture for phaseless fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photon. Rev. 2022, 17, 2200201. [Google Scholar] [CrossRef]
- Habibzadeh, M.; Krzyzak, A.; Fevens, T. White Blood Cell Differential Counts Using Convolutional Neural Networks for Low Resolution Images. In Proceedings of the Artificial Intelligence and Soft Computing: 12th International Conference, ICAISC 2013, Zakopane, Poland, 9–13 June 2013; Part II 12. Springer: Berlin/Heidelberg, Germany, 2013; pp. 263–274. [Google Scholar]
- Jia, G.; Wang, J.; Wang, H.; Hu, X.; Long, F.; Yuan, C.; Liang, C.; Wang, F. New insights into red blood cells in tumor precision diagnosis and treatment. Nanoscale 2024, 16, 11863–11878. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.; Tang, T.-H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron. 2014, 60, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Merino, A.; Puigví, L.; Boldú, L.; Alférez, S.; Rodellar, J. Optimizing morphology through blood cell image analysis. Int. J. Lab. Hematol. 2018, 40, 54–61. [Google Scholar] [CrossRef]
- Hassaballah, M.; Awad, A.I. Deep Learning in Computer Vision: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Verso, M. Some nineteenth-century pioneers of haematology. Med. Hist. 1971, 15, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.; Amudha, P.; Sivakumari, S. Deep Learning Techniques: An Overview. In Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2020; Springer: Singapore, 2021; pp. 599–608. [Google Scholar]
- Djemame, S.; Fichouche, S. A novel edge detection algorithm based on outer totalistic cellular automata. Rev. D’intelligence Artif. 2022, 36, 19–30. [Google Scholar] [CrossRef]
- Sheng, W.F.; Yu, W.T.; Hsiung, W.W. Fuzzy multiobjective hierarchical optimization with application to identify antienzymes of colon cancer cells. J. Taiwan Inst. Chem. Eng. 2022, 132, 104121, (Prepublish). [Google Scholar]
- Xiang, G.; Jingyi, F. Design of public cultural sign based on faster-r-cnn and its application in urban visual communication. PeerJ. Comput. Sci. 2023, 9, e1399. [Google Scholar]
Name | Parameter Description |
---|---|
Operating system | Windows10 |
CPU | Intel(R) Xeon(R) CPU E5-2686 v4 |
GPU | 3060-12G |
Memory | 30G |
CUDA Version | 11.7 |
Python | 3.8 |
Pytorch | 1.13.0 |
Name | Numerical Value |
---|---|
Image size | 640 × 640 × 3 |
Batch size | 2 |
lr0 | 0.01 |
lrf | 0.1 |
Optimizer | SGD |
Weight decay | 0.0005 |
Momentum | 0.937 |
Network Model | Parameter Quantity (MB) | Computation (GB) | mAP (WBC) | mAP (RBC) | mAP (ALL) |
---|---|---|---|---|---|
Yolov7 | 36.5 | 103.2 | 85.1 | 85.3 | 85.2 |
Yolov7 + Flip | 36.5 | 103.2 | 85.6 | 85.2 | 85.4 |
Yolov7 + Flip + Mixup | 36.5 | 103.2 | 86.1 | 85.4 | 85.7 |
Yolov7 + Flip + Mixup + Hsv | 36.5 | 103.2 | 86.4 | 85.7 | 86.0 |
Y7 + Flip + Mixup + Hsv + Mosaic | 36.5 | 103.2 | 87.3 | 85.6 | 86.5 |
Attention Mechanism | Parameter Quantity (MB) | Computation (GB) | mAP (WBC) | mAP (RBC) | mAP (ALL) |
---|---|---|---|---|---|
Yolov7 | 36.5 | 103.2 | 87.3 | 85.6 | 86.5 |
Yolov7 + SE | 36.5 | 103.7 | 87.4 | 86.9 | 87.2 |
Yolov7 + CBAM | 36.5 | 103.7 | 92.6 | 83.7 | 88.2 |
Yolov7 + GAM | 38.2 | 103.7 | 89.7 | 86.0 | 87.8 |
Yolov7 + ECA | 36.5 | 103.6 | 88.9 | 83.9 | 86.4 |
Yolov7 + BiFormer | 36.8 | 103.7 | 85.8 | 81.8 | 83.8 |
Yolov7 + SimAM | 36.5 | 103.6 | 90.4 | 86.4 | 88.4 |
Loss Function | Parameter Quantity (MB) | Computation (GB) | mAP (WBC) | mAP (RBC) | mAP (ALL) |
---|---|---|---|---|---|
GIoU | 36.5 | 88.6 | 93.3 | 87.0 | 90.2 |
DIoU | 36.5 | 88.6 | 94.2 | 86.9 | 90.5 |
CIoU | 36.5 | 88.6 | 95.7 | 87.4 | 91.6 |
WIoU | 36.5 | 88.6 | 93.2 | 87.5 | 90.4 |
EIoU | 36.5 | 88.6 | 95.9 | 86.9 | 91.4 |
Focal-EIoU | 36.5 | 88.6 | 96.9 | 87.4 | 92.2 |
a | g | Parameter Quantity (MB) | Computation (GB) | mAP (WBC) | mAP (RBC) | mAP (ALL) |
---|---|---|---|---|---|---|
1 | 1 | 36.5 | 88.6 | 97.2 | 87.6 | 92.4 |
1 | 0.75 | 36.5 | 88.6 | 96.0 | 86.4 | 91.2 |
1 | 0.5 | 36.5 | 88.6 | 96.8 | 87.4 | 92.1 |
2 | 1 | 36.5 | 88.6 | 94.2 | 87.0 | 90.6 |
2 | 0.75 | 36.5 | 88.6 | 95.8 | 87.2 | 91.5 |
2 | 0.5 | 36.5 | 88.6 | 95.4 | 86.8 | 91.1 |
Y7 + Data | Sim-Head | C-MP | D-ELAN | Focal-EIoU | Parameter (MB) | Computation (GB) | mAP (WBC) | mAP (RBC) | Map (ALL) |
---|---|---|---|---|---|---|---|---|---|
Y | 36.5 | 103.2 | 87.3 | 85.6 | 86.5 | ||||
Y | Y | 36.5 | 103.6 | 90.4 | 86.4 | 88.4 | |||
Y | Y | 36.5 | 103.2 | 89.0 | 86.8 | 87.9 | |||
Y | Y | 36.4 | 88.2 | 85.9 | 85.0 | 85.5 | |||
Y | Y | 36.4 | 103.2 | 90.5 | 84.3 | 87.4 | |||
Y | Y | Y | 36.5 | 103.7 | 93.5 | 88.2 | 90.9 | ||
Y | Y | Y | Y | 36.5 | 88.6 | 95.7 | 87.4 | 91.6 | |
Y | Y | Y | Y | Y | 36.5 | 88.6 | 97.2 | 87.6 | 92.4 |
Network Model | Parameter Quantity (MB) | Computation (GB) | mAP (WBC) | mAP (RBC) | mAP (ALL) |
---|---|---|---|---|---|
SSD | 24.0 | 274.5 | 75.8 | 71.8 | 73.8 |
Faster-RCNN | 136.7 | 401.8 | 81.3 | 75.7 | 78.5 |
YOLOv4 | 52.4 | 119.7 | 85.1 | 78.0 | 81.6 |
YOLOv5l | 46.3 | 108.9 | 86.7 | 85.0 | 85.8 |
YOLOv5s | 7.1 | 16.3 | 87.4 | 77.3 | 82.3 |
YOLOX | 54.2 | 155.6 | 87.3 | 85.6 | 86.5 |
YOLOv6 | 34.8 | 85.6 | 86.8 | 82.7 | 84.7 |
YOLOv7 | 36.5 | 103.2 | 85.1 | 85.3 | 85.2 |
SCD-YOLOv7 | 36.5 | 88.6 | 97.2 | 87.6 | 92.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yang, L.; Fang, S.; Liu, X.; Yun, H.; Wang, X.; Du, Q.; Han, Z.; Wang, J. Research on Blood Cell Image Detection Method Based on Fourier Ptychographic Microscopy. Sensors 2025, 25, 882. https://doi.org/10.3390/s25030882
Li M, Yang L, Fang S, Liu X, Yun H, Wang X, Du Q, Han Z, Wang J. Research on Blood Cell Image Detection Method Based on Fourier Ptychographic Microscopy. Sensors. 2025; 25(3):882. https://doi.org/10.3390/s25030882
Chicago/Turabian StyleLi, Mingjing, Le Yang, Shu Fang, Xinyang Liu, Haijiao Yun, Xiaoli Wang, Qingyu Du, Ziqing Han, and Junshuai Wang. 2025. "Research on Blood Cell Image Detection Method Based on Fourier Ptychographic Microscopy" Sensors 25, no. 3: 882. https://doi.org/10.3390/s25030882
APA StyleLi, M., Yang, L., Fang, S., Liu, X., Yun, H., Wang, X., Du, Q., Han, Z., & Wang, J. (2025). Research on Blood Cell Image Detection Method Based on Fourier Ptychographic Microscopy. Sensors, 25(3), 882. https://doi.org/10.3390/s25030882